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We present a theory for the temperature dependence of the electronic quasiparticle spectrum of fer-

romagnetic 4f systems. A concrete evaluation for the semiconductor Euo is performed and dis-

cussed. The study is based on a d fexcha-nge model, which has been exactly solved for T =0 in part
I of this series. The exact solution allows us to fix the "free" Bloch energies c. (k} of the model in a
highly realistic manner by application of a self-consistent spin-polarized band-structure calculation
based on density-functional theory. For finite temperatures the d fmodel -is approximately solved by
a many-body procedure, which takes special care for a proper treatment of spin-exchange processes
between localized 4f moments and itinerant conduction electrons. The method reproduces the exact
T =0 limiting case. The resulting f-spin correlation functions are calculated by a moment method.
We discuss in detail the one-electron spectral density for k vectors along the I L direction, real and

imaginary parts of the electronic self-energy, and quasiparticle densities of states. The prominent

peaks of the spectral density are used to construct a temperature-dependent quasiparticle band struc-
ture. The temperature dependence is to first order due to the magnetization, and to second order due

to a transverse correlation function of the localized 4f spins.

I. INTRODUCTION

In the first paper of this series' (hereafter referred to as
I), we presented a T =0 theory for the electronic quasi-
particle spectrum of ferromagnetic 4f systems with special
application to the semiconductor EuO. It is well known
that for a qualitative understanding of such materials the
so-called s fmodel ' has tu-rned out to be an excellent
basis. We extended this model by explicitly taking into
account the 5d character of the conduction band. The de-
cisive part of this model is an intra-atomic exchange in-
teraction between localized 4f states and extended
conduction-band states, which creates a nontrivial many-
body problem. The model contains some important pa-
rameters, which have to be fixed as realistically as possi-
ble, in order to allow a direct comparison of the results to
experimental data. One of these parameters is the dfex--
change matrix element. We used already in I a value
(g =0.2 eV), which will be justified in this paper by fitting
the total edge shift of the conduction band to the well-
known red shift of the optical absorption edge for elec-
tronic 4f Sd ~4f 5d' transitions. Other very impor-
tant model parameters are the one-particle Bloch energies
e (k) (m =band index), which should contain in a realis-
tic manner effects of all the other particle interactions
which are not directly covered by the d fexchange. For-
this purpose we performed in I a new self-consistent
band-structure calculation based on the density-functional
theory (DFT). The key question was, however, how to in-
corporate the DFT results into the d fmodel without-
counting interactions twice. The answer was found by

performing an exact T =0 calculation for the d-f model.
In the ferromagnetic saturation the energy spectrum of
spin-up quasiparticles becomes rather trivial. If we as-
sume an empty conduction band (n =0), being surely
realistic for EuO, then the spin-up quasiparticle density of
states (t-Q-DOS) becomes identical in shape with the
"free" Bloch density of states (B-DOS), only rigidly shift-
ed by a constant energy amount. This gave us the possi-
bility to identify the results of the above-mentioned self-
consistent band-structure calculation in the spin-up case
with the Bloch energies of our model, which were there-
with predetermined in a highly realistic manner. They
automatically involve then all electron-electron interac-
tions which are not explicitly treated within the frame-
work of the d fmodel. Since-in the T =0 spin-up case
the d fexchange is r-ather meaningless (the rigid shift of
the whole spin-up spectrum is compensated by the arbi-
trary choice of the energy zero), no interaction was count-
ed twice when we solved, with the so-fixed model parame-
ters, the d fmodel for the -spin-down spectrum. In spite
of the fact that the spin-down spectrum is nontrivial, an
exact solution is possible for T =0 showing interesting
many-body effects which we discussed in detail in I in
terms of self-energies, spectral densities, quasiparticle den-
sities of states, and quasiparticle band structures.

In this paper we extend our theory of finite-temperature
eff'ects. For T&0 the d fmodel is no longe-r exactly solv-
able, so we propose in Sec. II a many-body approach,
which, however, exactly reproduces the T =0 theory of I.
We apply our theory again to the ferromagnetic semicon-
ductor EuO.
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H =Ho+Hi,
(m)Ho g Tij crmacj ma'

ij 0

(9)

values as, e.g. , the magnetization (S') or the spin correla-
tion (S; S; ) will enter our final results. These terms
are treated separately in Sec. II C.

Previous work on the subject ' ' has clearly indicated
that the characteristic properties of exchange models like
(6) are mainly determined by the nondiagonal part of H,„,
which describes spin-exchange processes between conduc-
tion electrons and localized f spins. Neglecting them
from the very beginning, as is sometimes done for
mathematical simplicity, is surely a very inappropriate
procedure. Thinking that just the opposite is necessary,
we shall handle the spin-flip terms with special care. On
the other hand, the diagonal "Isinglike" part of the ex-
change interaction H,„ is believed to be sufFiciently well
treated by relatively simple mean-field approximations. In
this spirit we shall construct our approximate solution,
starting with the following decomposition of the model
Hamiltonian into a "free" (Ho) and an "interacting" part
(H, ):

EF,'/, J' (E)= «S; [c/, ,H];cjt ))~

+(([S,—,H] c„. .;c,'.)), . (18)

Since the conduction band of a semiconductor like EuO
can be considered as practically empty, the averaging in
the Green functions is performed with the electron vacu-
um. Therefore, the second "higher" Green function on
the right-hand side of (18) vanishes identically. The other
function can be divided into a "free" part (according to
Hp) and an "interacting" part (according to Hi). The
"free" part is simplified by a mean-field decoupling:

« S,
—[c„.,H, ];c,' .»

~ g [Tk/7 T~gm (Z a—(S ) +5;k )5k/ ]F;/ j'a . (19)

This leads to the following intermediate result:

which should be handled with care because it expresses
the above-mentioned spin-exchange processes between
conduction electrons and f spins. The equation of motion
of this function may be written as

g gm g ZaS& ~/ma
m i, 0'

1 0'
Hl 2 Q gm g Si cim —acima

m f, CT

(10)
g I [E+—,'gm(Za(S') +5k)]5k& —Tk~ ']Fz~a(E)
P

=(1 5k)H—k/j'a«) ,'gm5—;k—R;j' '«) .

In the following equations of motion we need the commu-
tators

Here we have defined

[cimaiHO] — g Tij ckmo zgmzaSi cimo
k

[ imo~ 1]— 2gm i im —a

(12)

(13)

Hk;~' (E)=(([ck,H1] S;;cj ))E,
R ji '(E)=((S; S; c;;cm ))g,

(21)

(22)

Terms arising from Ho are treated in the mean-field ap-
proximation. This yieIds the following approximate equa-
tion of motion of the one-particle Green function:

The "higher" Green function on the right-hand side
defines the electronic self-energy M/ '(E),

« [ ;c, H]; ct »~ —= y M'/, '6/'„'(E), (15)

yielding, after Fourier transformation, the formal solution

G',.'(E)=X[E—s (k)+-,'g z. (S'& —M„' (E)]-' .

The goa1 is a well-founded approximation for the self-
energy Mk/ '(E), which according to (13) and (15) is main-

ly determined by the "spin-flip" function

F,'„,'. (E)= «S,—c„.;c,' .»,

g [(E+—,'g (S'&)5;k —Tk]Gk/ 1(E)
k

=55;j+(([c;,H, ];cjt ))k . (14)

where HkI j' (E) is a one-electron Green function. The
spectral decomposition of this function gives evidence that
its "pole structure" must be the same as for the function
G;j '(E), except for the difFerent spectral weights. The ex-
act relation (15) therefore makes the following ansatz
pIausible

(i~k)
Hk; j/ (E) ~ QMk ' (E)F ' (E),

P

(23)

((S,— S,'c, .;[H„c,'.] )&, yM„';.'(E)R,,' (E) .
k

(24)

This procedure finally leads to the following closed set of
equations:

where the self-energy Mk/z1 (E) has to be determined
self-consistently within our procedure. The other
"higher" Green function R,j/ '(E), defined in Eq. (22), is
treated in the same spirit. First we construct the equation
of motion of this function. Terms resulting from Ho are
again decoupled by a mean-field approximation, while the
remaining "higher" function is reformulated like Hki;/' (E)'
in (23):
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II. MANY-BODY APPROACH

A. The d-f model

We briefly repeat the most important ingredients of our
model, details are already presented in I. The characteris-
tic properties of magnetic 4f systems like EuO are de-
cisively influenced by an intimate correlation between the
localized Eu + 4f s-tates and extended conduction-band
states, which are mainly of Sd type. ' The seven 4f elec-
tron of the Eu + ion form localized magnetic moments,
excellently described by the Heisenberg-Hamiltonian

Hf ———g JjS; Sj .

1.4"

g, (e&~J tz

1.0"

0.4"

02-

-2 -1 0 1 2 3

E(e&)

The completely delocalized conduction electrons build the
second subsystem in our model:

Hc —g Tij CimaCjma= g em(k)CkmaCkma
(m)

k, o.

where m numbers the five 5d subbands, e (k) are the
"free" Bloch energies, and TJ ' the corresponding hop-
ping integrals. As already discussed in the Introduction
the em(k) are to be considered as decisive model parame-
ters. They should be calculated in a proper one-particle
basis. According to the exact Eq. (19) in I we can identify
them with the T =0 spin-up quasiparticle spectrum of the
fully interacting system. The best one-particle basis, being
available at present for EuO, is therefore given by the
self-consistent spin-up spin-polarized band-structure cal-
culation, presented in our previous paper I. Figure 1

shows the calculated one-electron density of states for the
first five conduction bands, labeled by m =1,2, . . . , 5,

FIG. 1. Total Bloch density of states po per atom of EuO
(solid line) as a function of energy, calculated for the first five
conduction bands, which are mainly of Eu +-5d character. The
partial densities of states (m =1, . . . , 5) are also indicated. The
energy zero coincides with the center of gravity of the m = 1 sub-
band.

which are predominantly Eu +-5d-like. These we choose
as "free" Bloch density of states (8-DOS); E (k) are then
the corresponding renormalized one-particle energies. By
this procedure, which only works because of the exact re-
sult (19) in I, we take automatically into account those in-
teractions which are not explicitly contained in the df-
model.

The two subsystems (1) and (2) are connected by an ex-
change interaction of the following form

1 qRi z 0(k k+'q)e ( ~i CknoCk+qrno +~i Ckn aCk+qma) r-
i,a k, qm, n

+1 for o. =)
J ~J + ~ ~j (4)

g„(k,k+q) denotes the exchange coupling, where, how-
ever, its wave-vector dependence as well as its o6'-diagonal
elements are usually neglected, excluding therewith inter-
subband transitions:

one-electron spectral density A k '(E), and the quasiparti-
cle density of states (Q-DOS) p' '(E). All these terms fol-
low directly from the (retarded or advanced) one-electron
Green function

g„(k,k+q)~g 5„

The total Hamiltonian of the d fmodel-
H =H, +Hf+H, „ (6)

provokes a nontrivial many body problem, which cannot
be solved exactly with the exception of some limiting
cases (zero band width limit, ferromagnetic satura-
tion's "). Our approximation is presented in Sec. II B.

B. Electronic self-energy

%'e want to derive reasonable expressions for basic
quantities like the electronic self-energy M k '(E), the

G„' (E)=«....; ..))

~ G(m) (~)
—ik (R; —Ri )

ij o.

l)J

As far as we are interested in the electronic excitation
spectrum, only, we are surely allowed to neglect the mag-
non Hamiltonian Hf, because magnon energies are small-
er by some orders of magnitude than typical electronic
quantities. For this part of our theory we therefore set
Hf ——0. %'e shall, however, see, that as a consequence of
the exchange-interaction H,„some magnon expectation
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g [(E+ —,'gm z~ (S') )6;), —T k ']Gk~~'(E) =bio~ —,' g —F;; ' (E),
k

g [(E——,'gmz~(S') )5k~ —Tgp
' —Mk~ ~(E)]F~~~(E)+6;),g Mk~

' ~(E)F~p~~(E) ——,'gm6g, F;;q~(E)

(25)

This can be solved by Fourier transformation. We use (8) and

F(m) 1 ~ —i (k.R(+P Rk —q R) )F(m)
kp, qo +3y2 ~ ikj ~

ijk

= —
—,'g. &S,

—
S,'&8,„G„( )(E) . (26)

(27)

therewith getting a formal solution for Gk (E), which, compared to Eq. (16), yields the final implicit condition equation
for the electronic self-energy:

B(m) (E)M' '(E)= —' (S; S; )
[ ) M(m) (E)]B(m)

(28)

As a consequence of the neglected magnon dispersion the self-energy turns out to be wave-vector independent. BD ' (E)
denotes the propagator

B() (E)=—g( ) 1

E —e (p)+ —,'g z (S') —M' '(E)
(29)

It is easy to see that our approximate theory correctly reproduces the exact T =0 limiting case, which we discussed ex-
tensively in our previous paper I. For, with

r

0 if o. =y
2S if a=1 (30)

we find from (28)

M', )(E;T=O)=0,
Bo(( )(E;T =0)

M', '(E;T=0)=—,'g S
1 ——,'g B('), '(E; T =0)

B('), '(E; T =0)=—g [E—E (p)+ —,'g S]1

P

(31)

(32)

(33)

This agrees with Eqs. (24) and (25) in I. We consider this agreement of our approximate theory with the exact solution
of the nontrivial T =0 case as a weighty argument for our procedure.

Physical quantities of special importance for our further study are the one™electron spectral density

Ak( '(E)= ——ImG(', '(E+iO+) (34)

and the quasiparticle density of states

(m)(E) y g(m)(E)1
C7 ~g kC7

k

In general, the electronic self-energy M' '(E) will be a complex quantity

M' '(E) =R ™(E)+iI '(E),
so that with (16) and (34) the spectral density reads as

) fi 0+ I (m) (E)
Ak( '(E)= —

( )~ [E—R' '(E)+- —,'g z (S') —e (k)] +[0+—I' '(E)]

(35)

(36)

(37)

The wave-vector summation in (35) may be replaced by an energy integration, if one introduces the Bloch density of
states (B-DOS) po '(E)

po '(E)= —g&(E —e (k)) .1 (38)

For the Q-DOS we have then to evaluate



35 DYNAMICAL CORRECTIONS TO DENSITY-. . . . II. 7029

p' '(E)=po '(E —R' '(E)+ —,'g z (S')) if I' '—=0, (39)

p' '(E)= — I—' '(E) J dxpo '(x)[[E—R '(E)+ —,'g z (S') —x] +[I' '(E)] ]
' if I' '(E)&0 . (40)

ImBo '(E)= —irp' '(E) . (41)

That means that the imaginary part of the self-energy may
be written as

According to Eq. (28) the imaginary part I' ' of the self-
energy is mainly determined by the imaginary part of the
propagator Bz ' (E). Combining (16), (29), (34), and (35)
we get

we get for the Heisenberg Hamiltonian Hf (Refs. 16 and
17)

Hf — NS —Jo+ g fico(q)aqaq
q

1+
ql, . . . , q4

I' '(E) =p' '(E)F (E), (42) a~a~n eq&+qZ q3+q4 ql qZ q3 q4 ' (48)

where F(E) is a more or less complicated function of en-

ergy E. From this relation we conclude that both spin
spectra [p' '(E) and p' '(E)] will occupy the same energy
regions, because from p~ '&0 follows I' '&0 and there-
with according to (40) p' '&0 and vice versa. We shall
come back to this point when discussing the results.

The above-presented general results give clear evidence
how sensitively the concrete conclusions of our model will

depend on a proper choice of the B-DOS, which we have
derived from a self-consistent band-structure calculation
based on density-functional theory as explained in Sec.
II A.

The present results are, however, also very sensitively
dependent on the f magnetization (S') as well as the
intra-atomic f spin correlation (S S ). These quanti-
ties we determine by use of a moment method.

C. f-spin correlations

S; =&2Sa;, (43)

From our general results (28) and (29) it is clear, that
the quasiparticle energy spectrum will exhibit a strong
temperature dependence caused by the magnetization
(S') and the transverse spin correlation (S S ) of the
localized f system. In principle, these quantities must be
derived from our model Hamiltonian (6). Since we can,
however, assume for EuO an empty conduction band, it is
completely sufhcient to use the operator Hf, defined in
Eq. (1). Hf represents the well-known, but not exactly
solvable Heisenberg model. We first rewrite Hf by use of
the Dyson-Male ev transformation of the spin opera-
tors16, 17

The second term represents noninteracting spin waves,

iiico(q) =2S [Jo—J(q)], Jo ——J (q=O) (49)

while the third term describes an interaction between
them. As for the electronic system in Eq. (34) we can
define for the magnon system, too, a one-particle spectral
density:

B,(E)= J "
d (t —t')([aq(t), atq(t')] )2' 00

Xexp E(& —& )— (50)

We determine this function by a moment method, ' ' '
which consists of two steps. First we try to find a physi-
cally reasonable ansatz for the spectral density, which
should contain some free parameters. In the second step
these parameters are fixed by equating the first moments
Mq"' of Bq(E) via

Mq'"' ———J dE E"Bq(E) . (51)

The moments are calculable, independently of - the re-
quired function Bq(E), by the relation

Mq ([[ [[ q Hf] Hf] . . . Hf] aq] ) . (52)

where the square brackets enclose an n-fold commutator.
What is a reasonable ansatz for Bq(E)'? For very low

temperature (T~O) the interaction term in (48) becomes
meaningless because the system contains only very few
magnons. Then

(44)
B~q '(E)=fi6(E —fico(q)) (53)

(45)

After transforming the Bose operators a;,a;, as well as
the exchange integrals JJ to wave vectors

(46)

is exact. For raising temperatures, magnon interactions
become non-negligible leading to a renormalization of the
spin waves and to finite lifetimes of the quasiparticles.
For not too high temperatures, however, magnon damp-
ing is surely not that important, so that we can assume re-
normalized, but real spin wave energies. A proper ansatz
for the spectral density is then

J(q)= —g J~e'
l,J

(47)
Bq(E)=bq5(E —iiiQ(q)), (54)

where bq and fiQ(q) are at first unknown parameters,
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which we fix by the first two spectral moments, using Eqs.
(48), (51), and (52). This leads to

(55)

and gives an implicit condition equation for the "renor-
malized" spin-wave energies:

J(q) —&(0)+J(qi ) —J (q —
q& )

N exp[f3iriQ(q, )]—1

(56)

Here we have used the spectral theorem for the expecta-
tion value &an't, az, ),

1 + Bq(E)

&S')/S =1— g {exp[PiiiQ(q)] —1]
1

XS (62)

The numerical results are excellently fitted by the expan-
sion

&S')!S=1—0. 1757t i (1+2.9025t —1.1012t ),
t =T/T, . (63)

The Eu + ions occupy sites of an fcc lattice, so we have to
sum in Eq. (60) over the first fcc Brillouin zone. This can
be done self-consistently without further restrictions. By
use of the so determined renormalized spin-wave energies
A'Q(q) we can derive the f magnetization &S'), for which
we have to evaluate according to Eqs. (45), (46) and (57)
the following expression:

= [ exp [PiriQ( q, ) ]—1 j (57)

This spin-wave result is correct at least in the temperature
region 0&t &0.7. In the critical region (0.9&t & 1.0) we
can use a power law

It is a remarkable fact that the simple ansatz (54) turns
out to be completely equivalent to Dyson's famous spin-
wave theory. ' '

If z; is the number of f moments in the ith shell with
respect to a given atom, J; the exchange integral between
ith neighbors, and

&S') Is = l. 17(1 t)— (64)

The intermediate region (0.7& i &0.9) is not directly ac-
cessible. We have combined the two regions (63) and (64)
by the following polynomial fit:

& S') /S =0.6571 —0. 1424X —0.0505x —0.0149x ~,

(58)

AQ(q) =2S g (1—y~")z;J;[1—3;(T)], (59)

(I)

A;(T) =
NS exp[PiriQ(p) ]—1

(60)

It is well known' that in EuO only nearest and next-
nearest neighbors interact via

Ji /kg =0.625 K Jp/kg =0. 125 K (61)

where the sum runs over all magnetic sites Rz. of the ith
shell, then the renormalized spin waves (56) can be cast
into the form

x =7.69231 —6. 1544 . (65)

1 'n~n~a a
q~ qp q3 q~+qp —q3

qi qz q3

(66)

Using the spectral theorem the expectation value on the
right-hand side is derivable from the following "higher"
spectral density:

The full result (63), (64), and (65) for the EuO magnetiza-
tion &S')/S is represented in the inset in Fig. 2. The
agreement with the experimental data of Ref. 20 is excel-
lent.

The determination of the transverse spin correlation
function still remains:

&S; S;+)= 25(S —&S'))

B&,z, .z, (E)= d (t t ')
& [az,(t)az, (t)az, +—~, z,(t),az, (t')] )exp E(t —t')— (67)

Inspecting the spectral decomposition of this function one
recognizes that its poles express just the energies needed
for adding one additional magnon to the system. The
poles are therefore the same as for the simpler function
Bz(E), defined in (50), only the spectral weights are
different. If we accept the one-pole ansatz for B~(E), we
have consequently to accept a one-pole ansatz for„„„(), too:

a(q, ,qi, q3) =A&aq, aq, )(5q, q, +5q, q, ) . (69)

This finally leads to the following simple result for the
transverse spin correlation, surely reliable at least in the
temperature region 0 & T/T, &0.7:

eter, namely the spectral weight a(qi, qq, q3), which equals
just the first spectral moment of 8:

Bq,q, .q, (E)=a(q, ,q„q, )5(E —fiQ(qi)) . (68)

This ansatz contains only one additional unknown param- +(s+&s'))(s —&s')) . (70)
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Particularly striking is the shift of the lower conduction
band edge to lower energies with decreasing temperature.
This effect has been observed in ferromagnetic semicon-
ductors as red shift of the optical absorption edge for the
electronic 4f 5d ~4f Sd' transition. The temperature
dependence of the optical absorption edge of EuQ, as
measured by Schoenes and Wachter, is plotted as a solid
line in Fig. 3. This red shift effect serves to fix the ex-
change constant g &. The problem, however, is that the
lower edge is not uniquely defined, neither theoretically
nor experimentally. We have chosen

05 1.5 g&
——0.2 eV . (72)

FIG. 2. Transverse intra-atomic f-spin correlation of EuO
(T, =69.33 K) as a function of reduced temperature T/T, . The
low-temperature part is calculated by a moment method (Sec.
II C), the high-temperature part (T & T, ) by the local mean-field
theory of Sinkkonen (Ref. 24). The inset shows the f magnetiza-
tion (S') as function of T/T, . The solid line represents the
theory of Sec. II C. Points are experimental data from Ref. 20.

(S, S,
— ) = —', S(S+1)—g 1—1 Tc J(q

N T J(0) (71)

The concrete evaluation of this formula for EuO is also
plotted in Fig. 2.

This is plotted in Fig. 2. Unfortunately, we cannot apply
the above-presented low-temperature theory in the critical
and the paramagnetic region. For T ) T, the formula of
Sinkkonen's "local" mean-field approximation ' appears
sufficiently useful:

In spite of the fact that this value gives a slightly too high
total red shift [0.28 eV instead of 0.26 eV (Ref. 27)], we
believe that this is a realistic choice, because it is well
known that the density-functional theory gives slightly
too broad bands (up to 10%). Smaller bandwidth, howev-
er, means less red shift, as is illustrated in Fig. 3. If we
replace, tentatively, for an unambiguous definition of the
edge shift the real m =1 subband DOS (in Fig. 1) by a
rectangular triangle DOS with the same area and the
same height, then we get with g& ——0.2 eV a nearly exact
fit of the experimental value for the total red shift. Below
0.8T, our theoretical curves for the edge shift show a real-
istic temperature behavior (Fig. 3) compared to the experi-
mental data. In the paramagnetic region the calculated
edge shift is always a little bit too small. This may be due
to the mean-field approximation (71) for the intra-atomic
transverse spin correlation.

Unfortunately we have no direct possibility to fit in a
similar manner the exchange constants of th other 5d sub-
bands. Since it is to expect that all g will be of the same
order of magnitude, we have assumed, somewhat arbi-

III. DISCUSSION OF THE RESULTS

The main goal of our investigation concerns the temper-
ature dependence of the electronic quasiparticle spectrum
of the ferromagnetic semiconductor EuO. Starting point
for our study is the exchange model (6), which we approx-
imately solved by a many-body theoretical treatment. In
our previous paper (I) we concentrated ourselves on the
T =0 solution, which could be found rigorously. We
consider it as a weighty confirmation of our approximate
theory that this nontrivial, exactly solvable limiting case
of d fmodel (6) is correctl-y reproduced. Our model (6)
contains some important parameters. As already stressed
in Sec. IIA, special attention is devoted to the B-DOS
po '(E). Via the exact relation (19) in I [or equivalently
Eq. (21) in this paper] we were able to construct a direct
connection between our many-body theory and a spin-
polarized, self-consistent band-structure calculation,
which permitted a really realistic determination of
pIi '(E). The B-DOS is plotted in Fig. 1. We use this
function for our further analysis. Another important
model parameter is the exchange coupling constant g . It
has been shown ' ' that this quantity together with the
Bloch bandwidth 8' decisively determines the tempera-
ture dependence of the quasiparticle energy spectrum.
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~ ~ ~O ~

FICx. 3. Shift of the lower conduction band edge as a function
of the reduced temperature T/T, . : experimental data
(Ref. 27) --.-----: theory presented in this paper.
edge shift calculated with a triangle 8-DOS and W=2 eV;

edge shift calculated with a triangle 8-DOS and
W=1 eV.
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FIG. 4. Total quasiparticle density of states p, per atom as a
function of energy for EuO at three different temperatures.

trarily, all g to be equal.
With the so fixed model parameters we have first calcu-

lated the total spin-polarized Q-DOS p, and p„which are
plotted in Figs. 4 and 5 as functions of energy. We ob-
serve some drastic temperature effects, in the spin-up
spectrum most remarkably in the low-energy part of the
conduction band, in the spin-down spectrum more strik-
ingly in the high-energy part. The first prominent spin-up
peak, e.g. , is shifted by about 1 eV to lower energies,
when the crystal is cooled down from room temperature
to 0 K. The second spin-up peak does not shift so much,
but increases strongly with decreasing temperature. Such
effects should be observable in an inverse photoemission
experiment.

The temperature dependences of the two spin-polarized
Q-DOS p, and p„are especially striking in the ferromag-
netic phase, and then mainly caused by the f magnetiza-
tion (S'). As a consequence of the transverse spin corre-
lation function in the expression (28) for the electronic
self-energy, temperature reactions are, however, not at all
restricted to the ferromagnetic phase, but happen in the
paramagnetic phase, too. As already discussed in connec-
tion with Eq. (42) both spin-spectra occupy for finite tem-
peratures exactly the same energy regions. For tempera-
tures below the Curie point T„ the spin-down state densi-
ty is, however, very much smaller near the lower edge
than the spin-up state density, so that there appears an
effective exchange splitting which increases with decreas-
ing temperature. The relative shift is not all rigid. We
observe strong modifications of the original B-DOS result-
ing first of all from spin-exchange processes between f
moments and conduction electrons mediated by the
transversal part of the d-f exchange interaction (3). This
part is also responsible for the temperature dependence of
the Q-DOS in the paramagnetic phase.

The total Q-DOS p, in Fig. 4 and p, in Fig. 5 are sim-

ply the sums of the five corresponding partial subband
densities of states p™,which are plotted separately in
Fig. 6. The T =0 spin-up curves are identical in shape
with the B-DOS po™because of the exact result (31). The
comparison of the other curves with the original state
densities po

' in Fig. 1 gives evidence how strongly

1.2-

g (eV~), o

05"

04.-

Og"

-2 —1 0 1 2

E(eV)

3 4 5 6

FIG. 5. The same as in Fig. 4, but for p, .

many-body effects influence the quasiparticle energy spec-
trum of a ferromagnetic 4f system like EuO. An interest-
ing detail is the double-peak structure of the paramagnetic
Q-DOS of the m =3 and m = 5 subband. In the fer-
romagnetic phase the lower peak of p', ' ' increases at cost
of the upper peak, and vice versa for p', ' '.

A quantity, which should be directly observable in an
inverse photoemission experiment, is the one-electron
spectral density (37). In our previous paper (I) we have
discussed this function at length for the exactly solvable
T =0 limiting case. Let us therefore concentrate our-
selves here mainly on the temperature dependence. Fig-
ure 7 presents some examples for the m =1 subband.
The k vectors are again chosen representatively from the
I L direction. The k dependence of AI, '(E) is, strictly
speaking, an E (k) dependence. The E (k) values are in-
dicated in Fig. 7 as small arrows. In the ferromagnetic
saturation (T =0) A k,

' is a trivial 6 function at the ener-

gy [s (k) ——,'gS], corresponding to a bound state, i.e., a
quasiparticle with infinite lifetime. A spin-up electron
cannot exchange its spin with the completely parallel
aligned f-spin system. Many-body effects are to be seen
at T =0 only in the spin-down spectrum, because a spin-
down electron can exchange its spin with the f moments,
e.g. , by magnon emission. A spin flip by magnon emis-
sion can of course only happen, when there are spin-up
states within reach, onto which the original spin-down
electrons can be scattered. This is the reason, why

AI, „'(E) is exactly in the same energy region different
from zero as pI '(E). In addition to this scattering part,
there sometimes appears in Ak, (E) a sharp 6 function at
higher energies, representing an infinitely living quasipar-
ticle ("bound state" "). This quasiparticle solution,
which we called in I the "polaron peak", belongs to an
energy outside the region p', '&0, so that spin flip by
magnon emission is excluded. In some situations this po-
laron peak is pushed into the scattering part [see Figs.
4—8 in I], getting therewith a finite width. The width is
broader the greater the spin-flip scattering probability, i.e.,
the larger the state density p', ' at this energy. Magnon
emission of a spin-down electron is, in principle,
equivalent to magnon-absorption of a spin-up electron.
The latter is, however, impossible at T =0, since the sys-
tem does not contain any magnon. This is the reason
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FIG. 8. The same as in Fig. 7, but for the m =3 subband.

why at T=0 the spin-up spectrum is so much simpler
than the spin-down spectrum. At finite temperatures,
however, the situation changes drastically. Examples for
T =0.8T, and T =4T, are plotted in Figs. 7 and 8. The
first observation is that bound states no longer appear.
All quasiparticles have finite lifetimes. We have seen in

connection with Eq. (42) that both Q-DOS p' '(E) and
p' '(E) occupy exactly the same energy regions. If a o
electron is excited into one of the quasiparticle subbands,
it has therefore always the possibility to flip its spin by
magnon emission or absorption. This leads to a continu-
um of scattering states, which coincides exactly with the

R~ (e V)

I.(eV)

m=1
0.2"

R, (ev)

I, (eV)

E(e
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FIG. 9. Real part R"' {solid lines) and imaginary part I"' (dashed and dashed-dotted lines) of the electronic self-energy as a func-
tion of E for three dN'erent temperatures and both spin directions. The curves are calculated for the m =1 subband.
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FIG. 10. The same as Fig. 9, but for the rn =3 subband.

Q-DOS p' ' and p' '. Although AI, ' is finite over a
width of several eV, substantial spectral weight is concen-
trated in a relatively small region, only. The original
T =0 polaron peak is now more or less smeared out. The
polaron decay happens of course also via magnon emis-
sion or absorption. Particularly for the m =3 subband
(Fig. 8), and similarly for the m =5 subband, which is not
plotted, we observe in some cases interesting double-peak
structures of the one-electron spectral density. One is due
to a sharp bunching of the ever existing scattering states,
the other to the magnetic polaron. Only the latter is a
real quasiparticle with an energy E (k) corresponding to
a pole of the one-electron Green function (16):

E (k)=e (k) ——,'gz (S')+M™[E(k)] .

EuO

Experimentally it is of course not distinguishable, whether
the peak in A j,

' stems from sharply bunched scattering
states or from a quasiparticle in the classical sense. Sum-
ming up these spectral densities over all wave vectors of
the first Brillouin zone results in the partial Q-DOS p'
plotted in Fig. 6.

Examples for the real and the imaginary part of the
electronic self-energy R' '(E) and I' '(E) are plotted in
Fig. 9 for the m =1 subband and in Fig. 10 for the m =3
subband. According to formula (42) I' ' has a similar
shape as p' ', since the spin-Hip scattering probability of
the original o electron is higher the more ( cr ) states are-
available.

Our detailed results for the spectral densities A k
' per-

mit the derivation of temperature-dependent quasiparticle
band structures, which are plotted for three different tem-
peratures in Figs. 11—13. Figure 11 repeats for compar-
ison the exact T =0 results being discussed in detail in I.
The spin-up spectrum is identical to the results of the

FIG. 11. Full quasiparticle band structure for EuO at T =0
K along the I L direction. Solid lines belong to spin-up quasi-
particles, which have always infinite lifetimes ("bound states").
Small solid circles characterizes spin-down quasiparticles with
infinite lifetimes, large solid circles correspond to well-defined
quasiparticles, but with finite lifetimes, and triangles represent
not well-defined quasiparticles.
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FIG. 12. Full quasiparticle band structure for EuO at
T =0.8T, (T, =69.33 K) in the I L direction. Solid circles
mark well-defined quasiparticles with finite lifetimes (sharp peak
in the spectral density), triangles indicate non-well-defined quasi-
particles (broad peak in the spectral density). Open circles be-

long to a "quasiparticle splitting" according to a double-peak
structure of the corresponding spectral density (see Figs. 7 and
8).

self-consistent spin-polarized band calculation based on
density-functional theory as described in Sec. IV of paper

It consists, as explained above, of bound states, only,
and serves as reference scheme for the one-particle spec-
trum E (k).

For finite temperatures (0.8T, in Fig. 12; 4T, in Fig.
13) the "quasiparticle" energies, which are used in Figs.
12 and 13 for constructing the dispersion curves, are
identified with the peak positions of the corresponding
spectral density. We observe for T & T, an exchange
splitting of each m dispersion, being roughly proportional
to g(S'). For T & T, spin-up and spin-down curves of
course coincide, but nevertheless there remains a tempera-
ture dependence, now determined by the transverse spin
correlation function of the f system. The striking double
peak structure of the spectral density, particularly ob-
served in parts of the m =3 and m =5 subbands, mani-
fests itself in a "quasiparticle splitting, " indicated by the
open circles in Figs. 12 and 13. Let us finally point out
once mare, that for T &0 the spectra do not contain any
bound state, all quasiparticles have finite lifetimes.

IV. SUMMARY

We have presented in this paper a theory for the tem-
perature dependence of the electronic quasiparticle spec-

FIG. 13. The same as in Fig. 12, but for T =4T, (paramag-
netic region).

trum of ferromagnetic 4f systems, which has been evalu-
ated for the insulator EuO. We used a d fexchange-
model, which has been exactly solved in our previous pa-
per I for T =0. We performed a self-consistent spin-
polarized band-structure calculation based on density-
functional theory in order to fix the one-particle Bloch en-
ergies in the d fmodel as realist-ic as possible taking
therewith into account all interactions which are not
directly covered by the d fmodel. We found -that the df-
exchange interaction produces a strong temperature
dependence, which we discussed in connection with the
spectral density, the real and the imaginary part of the
electronic self-energy, as well as the quasiparticle density
of states. The temperature inhuence is in first order due
to the magnetization, and in second order due to the
transverse correlation function of the localized 4f spins.
We constructed a temperature-dependent quasiparticle
band structure for the rl direction in that part of the
spectrum which has mainly 5d character representing the
empty conduction band of the semiconductor EuO.
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