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Complete unbinding and quasi-long-range order in lamellar phases
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Lamellar phases of lyotropic liquid crystals can be swollen by addition of solvent. Such a process,
which leads to a strong increase of the mean interlamellar separation l, can be viewed as a phase
transition, termed complete unbinding. Starting from the microscopic interaction for a pair of lamel-

lae, we derive an effective model for the multilayer phase. We predict a power-law increase of l, and
show that the system exhibits quasi-long-range translational order characterized by an exponent X
which is either universal or, for sufficiently long-range repulsive interactions, depends on molecular
details.

I. INTRODUCTION

One of the simplest of the large variety' of different
structures found in solutions of amphiphilic molecules is
the so-called lamellar phase in which the molecules form
roughly parallel layers separated by layers of solvent.
Lamellar structures have recently regained the attention
of the physicists from both experimental ' and theoreti-
cal viewpoints. Experimental studies have been carried
out in lyotropic liquid crystals: in binary systems, such as
phospholipid bilayers alternating by water [Fig. 1(a)], or
in (quasi) ternary solutions where the surfactant films
separate two different solvents usually water and oil '
[Fig. 1(b)). The second class of experiments is more
robust since the lamellar structure can be swollen either
by adding water or oil: in the latter case unusually large
spacings up to 6500 A have been observed. '

A recently developed theory describing the interactions
of two fluctuating membranes predicted the existence of
critical unbinding transitions between a state in which the
membranes are bound together to a state in which they
are completely separated. Here, we address the issue of
how this theory can be applied to the case of lyotropic
liquid crystals, and to the swelling of lamellar structures.

Toward those ends, we generalize the model of Ref. 6
to a stack of fi'uctuating membranes (or lamellae), and to
constrained systems. The latter notion arises because in
the process of swelling the separation between the lamel-
lae is usually determined by the composition of the mix-
ture, a situation different from the case in which the mem-
branes are allowed to equilibrate in excess solvent, so that
their mean separation is directly determined by the inter-
membrane forces.

In Sec. II we first consider two lamellae interacting via
molecular forces, such as van der Waals attraction and
short-range hydration repulsion, in the presence of an
external constraint, such as an external pressure. We ar-
gue that the process of swelling is equivalent to relaxing
this constraint, and can also be viewed as an unbinding
transition. However, this new transition, which we call
complete unbinding, is quite different from the critical un-
binding transition. While the former is again driven by
thermal fluctuations, their effect is much weaker and can

be accurately taken into account by introducing an
effective entropic (steric) repulsion between the mem-
branes. We show that complete unbinding can be de-
scribed by an effective Gaussian model

In Sec. III we extend these results to the case of a stack
of lamellae. The effective Gaussian model leads naturally
to the prediction of quasi-long-range order in the lamellar
structure. If the interactions are sufficiently short-ranged,
the characteristic exponent X which describes the decay
of correlations of the lamellae does not depend asymptoti-
cally on the mean separation I, between the layers and is,
in fact, a pure number. These results seem to be con-
sistent with recent experiments in (quasi) ternary solu-
tions, where the quasi-long-range order manifests itself in
power-law decay of the scattering intensities. '

Sections II and III describe the case of electrically neu-
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FIG. 1. A schematic view of the lamellar phases of lyotropic
liquid crystals. (a) Binary system. (b) Quasiternary system. In
the latter case one can swell the structure either by addition of
water or oil. l is the mean spacing between the lamellae, 6 is the
thickness of the layers.
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tral lamellae. The case of charged layers is taken up in
Sec. IV, with emphasis on the interesting situation in
which the lamellae interact via long-range, unscreened
repulsive forces. Such interactions drastically change the
critical properties of complete unbinding, as well as the
power-law decay of the scattering peaks. In addition the
presence of such long-range interactions can lead to first-
order transitions among two different lamellar structures.
In the concluding section (V), we discuss the relevance of
our theory to experiments in lyotropic liquid crystals.

II. TWO LAMELLAE UNDER CONSTRAINT

The effective interaction between two lamellae resulting
from the microscopic forces between the various mole-
cules are complicated and despite many experimental and
theoretical studies, are not understood thoroughly. We
shall therefore concentrate on the generic situation in
which the free energy per unit area or the interaction po-
tential

Vg(l) = —W6 /I (2)

where 8' is the Hamaker constant, " and 5 the typical
thickness of the lamellae which is assumed small com-
pared to the mean separation I. If unscreened electrostat-
ic interactions, resulting from charges on the lamellae are
present, one must add a repulsive long-range part to Vp(1)
given by'

Vd(&) =E/&,

for sufficiently large I. We postpone this case to the end
of the paper.

In many experimental cases, ' the lamellar phase does
not coexist with a bulk solvent phase but rather, the
lamellar structure is progressively swollen as oil or water
is added. This is accounted for by including a pressure-
like term in the interaction potential:

Vp(l) = Vg(l)+ Vg (l)

between two neighboring lamellae at spacing I has a repul-
sive part V~ (I), and an attractive part V~ (l), which dom-
inates for large I. The attractive part is usually due to
the van der Waals interaction. ' For large I, one has

where ~o is the rigidity constant, and a high-momentum
cutoff A-I/6 is implicitly included. This model embo-
dies several simplifying assumptions: it neglects finite-size
effects, highly curved configurations of the lamellae, inter-
nal degrees of freedom of the layers, etc. In addition it
does not account for other forms of aggegation such as
micelles or vesicles. From an experimental point of view
this could be an oversimplifying assumption, as we dis-
cuss in the end of this paper.

We aim to describe the process of swelling of the lamel
lae, as has been observed, for instance, by Larche et aI.
in experiments on extremely dilute lyotropic liquid crys-
tals. Thus we take the potential V(l) in the form (4) and
study the limit P~O. We have recently shown that for
two membranes or lamellae under no external constraint,
i.e., P =0, a eriticaI unbinding transition can occur be-
tween a state in which the lamellae are bound and a state
in which they are completely separated. This critical
transition is driven by fiuctuations. For a potential V(l)
of the form (1) and (2) (and P =0) the critical unbinding
transition takes place in three-dimensional systems at a
nonzero value of the Hamaker constant W & 0, for
0 & W & W the two membranes are completely unbound
even though their molecular interaction has a minimum at
a finite distance I. This is an example of unbinding in the
strong-fluctuation regime. This regime contains all in-
teraction potentials V(l) such that, for large 1,

V(l)l'=0,

with

r=2(d —I)/(5 —d) .

Suppose now that one approaches P =P, =0 with
8' & W„as shown in Fig. 2. Then, P is the only relevant
scaling field. On the other hand, at the critical point
(W, P) =( W„O) there are two relevant fields: the "pres-
sure" P and the critical-point deviation, W —W„of the
Hamaker constant. ' In both cases, the mean separation

V(l) = Vp(l)+ Pl . (4)

The parameter P can be viewed as a Lagrange multiplier
if the mean spacing between the lamellae is determined by
the total volume fraction of solvent. By increasing the
amount of solvent one decreases this external constraint,
and thus P~O. Alternatively, P may represent the exter-
nal osmotic, mechanical, or vapor pressure applied to the
lamellar system in equilibrium with a reservoir of sol-
vent. '

The interaction potential V(l) is the free energy per
unit area for two planar membranes which are at a con-
strained distance. Undulations of the membranes give rise
to an elastic contribution to the free energy which leads to
the effective Hamiltonian

&[1(x)]=f d 'x[ —,'Irp(V' I) + [Vl( )]x/ gkT, (5)

Complete
unbinding

Critical
unbinding
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FIG. 2. The swelling of the lamellar phase can be viewed as
the limit P~O, where P is a pressurelike variable. For values of
the Hamaker constant W smaller than the critical value W,
complete unbinding takes place. In this (P, W) diagram the criti-
cal unbinding transition corresponds to the approach of
( W, P)=( W„O).
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between lamellae diverges asymptotically for P~O, with a
power law characterized by a new exponent it:

transition point, with
g~~

——oo, the scaling form (16) implies
that

p —0 (8) Q(X) KX (17)

as P~O. For the slightly generalized interface potential

(9)

we find that

(10)

with

g=(5 —d)/2 .

Thus, in particular, for q = 1 in the physical, three-
dimensional case,

for large x, which leads to

1/G(k) =Kk (g~~
——~ ) .

This shows that there is no anomalous decay of the corre-
lation function of the two lamellae when the transition
point P =0 is approached. ' The only effect of the in-
teractions is to change the rigidity coefficient ~o to an
effective rigidity ~. Therefore, we can use an effective
Gaussian model to describe the separation of the lamellae.
Let us consider the three-dimensional case, where (14) can
be written more precisely as

g=1/3 (d =3) . (12)
1 =cp(kg T/K) g~~ (d =3) (19)

The result (8) is derived from a self-consistency argu-
ment. ' We put 1 =1+/, where 1 is to be determined,
and build a field theory for P with the potential

V(P)= V(1)—V(1)= g
n)1

(13)

The v„=v„(P,l) represent the perturbation theoretic "ver-
tices." Now, we express l in terms of the correlation
lengths gi and

g~~
which describe the fluctuation of the

lamellae,

l-gi-g1, (14)

with g given by Eq. (11).
From the form (13) for the potential V(l) it follows that

all vertices vanish for P~O, as v„-Pl~ "-Pg~~~
Now, let us consider the Fourier transform of the two-
point correlation function

(15)

1/G(k) =g
~)

Q(kg(() =g'(~ [alp+ 02(kg())

+04(kg~~) + ] . (16)

The expansion coefficients Q„(n =0,2, 4, . . . ) represent
sums of Feynman diagrams which all give a finite contri-
bution for d & 5 even when the cutoF A in (5) goes to
infinity. It is interesting to note that one recovers
d &d2 ——3—,

' as a condition for the self-consistency of this
approach.

The scaling form (16) has important consequences.
First, it shows that the k term which might be regarded
as a surface tension contribution has a prefactor -g~~
which vanishes at the transition. Furthermore, at the

One can show' that any Feynman diagram of the pertur-
bation expansion for 1/G (k =0) is proportional to

(Pgf '+ ), where X is the number of vertices which
appear in the Feynman diagram. Self-consistency then re-
quires 1/G(k =0)—

g~~ which, together with the scaling
relation (14) yields (8) and (10). Further, one finds the
scaling form

Here, co is a numerical constant of order unity. Then the
effective Gaussian Hamiltonian for two lamellae is given
by

&G[p]= j d x[ 2K(V' p) +——,'Kg~~ p ]/k Tti, (20j

III. STACK OF LAMELLAE

Now, we consider a stack of lamellae and describe the
interaction of each pair of nearest neighbors within this
stack by the Hamiltonian (5). Then we take the continu-
um limit, and introduce a coarse-grained displacement
variable u (x,z) which depends on z in a continuous way.
In this way, we obtain the effective Gaussian model

2

HG= j d xdz ,'B + —,'K(V' u) /—kgT, (21)

with

B:Kl/g~~ ~cp(kti T) /Kl; K—=K/1—,— (22)

where the scaling relation (14) has been used (for d =3).
A model analogous to this has been introduced in the
context of smectic liquid crystals. ' It leads to the predic-
tion of quasi-long-range translational order characterized
by the algebraic decay of correlations with exponent

where ~ is the rigidity constant renormalized by the in-
teraction.

So far, we have tacitly assumed that the interaction po-
tential V(l) has only one minimum for P =0. However,
one expects that, in the strong Auctuation regime, the Auc-
tuations of the lamellae are so large that they can over-
come barriers between two competing minima. This ex-
pectation is indeed confirmed by the results of a function-
al renormalization group calculation. ' We find that the
critical behavior for potentials V(l) with two minima
which are separated by a small barrier is governed by the
same fixed point as for potentials with only one minimum.
Thus, for P =0, and for potentials V(l) in the strong fluc-
tuation regime satisfying (6), a first-order transition can
only occur for a sufficiently deep minimum. ' By con-
tinuity, we expect this to be also valid for the approach to
complete unbinding, e.g. , for P ~ 0.
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X =kg Tq /8m(KB)' (23)

where q =2am/I (m =1,2, . . . ). The quasi-long-range
order can be observed by analyzing the power-law scatter-
ing intensity peaks. '

S(q, )-(q, —q )
—(2 —X j

(24)

At the approach to complete unbinding, because of the
particular behavior of the effective elastic constants B and
K, as given by Eq. (22), the exponent X is given by

L =~I /2cp (25)

and is therefore a pure number. In particular, it does not
depend on the mean separation I, when I is large, i.e., on
approach to complete unbinding.

In practice, there is a correction to (25) resulting from
the finite thickness, 6, of the membranes. ' If one
neglects the lateral variations of 6, then a simple geometri-
cal consideration leads to the effective elastic coupling
constants

B =Kl/g~~ =C01(kB T) /a(l —5), K =K/1 (26)

where I is now the period of the structure. When these
formulae for the elastic constants are inserted into (23),
one obtains

X (5)=(arm /2co)(1 —5/I) (27)

an expression which seems to be confirmed by recent ex-
periments. ' For small ratios 6/I this formula reduces to
Eq. (25). In fact the experiment by Safinya et al. shows
that X comes close to its asymptotic value for a spacing
of the order of 200 A.

For smectic liquid crystals, it has been shown that
higher-order anharmonic terms in the gradients of u
should be included in (20). The form of these terms is, in
fact, dictated by symmetry. The anharmonic terms have
been shown to be important for wavelengths 1/(q, —q )

large compared to a crossover length z'
~ In the case

considered here, this length scale is given by

2
&a ~ 6 128m

z cp —exp
I 5cp2 kg T

(28)

IV. ELECTROSTATIC INTERACTIONS

Until now, we have assumed, that the electrostatic in-
teractions do not play any important role, at least in
(quasi) ternary lyotropic liquid crystals which are swollen
by the addition of oil. If, however, on approach to com-
plete unbinding, the swelling of lamellae is not governed

In lyotropic liquid crystals, the rigidity constant is expect-
ed to be k~ T 5 ~ 5 100 k~ T. Therefore, at room tempera-
tures and for co= 1, Eq. (28) leads to z* & 10 5 /I, which
is much larger than the size of the experimentally studied
systems. Because of the exponential dependence of z* on
cp and ~, the anharmonic effects could easily become im-
portant, e.g., for ~=0. 1 k&T, or cp 5. Note, however,
that one should be careful in applying the result (28) to
the case of lamellar system because of the singular behav-
ior of the elastic constant B and E.

by thermal fluctuations, but rather by an unscreened
long-range electrostatic repulsion (3), then Eq. (25) must
be modified.

In this case, the approach to the unbound phase as
P~O is described by mean-field theory which leads to
1-P ' and g~~-P . This implies effective elastic
constants vanishing as B—1/I -P and K —1/I-P'
and therefore the exponent

X =kgT/(Elrl)' -P' (29)

depends explicitly on the mean lamellar spacing l and
vanishes as P~O.

Furthermore, since mean-field theory is valid here, we
conclude that the separation of two lamellae now changes
in a discontinuous way if the potential has two competing
minima. Hence, in the presence of long-range electrostat-
ic repulsions, it would be easier to find physical systems in
which two lamellar phases which differ in their spacing I
coexist. More complicated structures could also be possi-
ble in which the mean separation I varies within a lamellar
phase. For this, one would have to take further neighbor
interactions into account in order to determine the struc-
ture.

V. CONCLUSIONS

Let us now return to the generic case without electro-
static interactions (1) and to the results (8) and (10).
These expressions can also be obtained in a heuristic way
by assuming that the thermal fluctuations induce the
effective steric repulsion

V„—(kgT) /irl (d =3) (30)

between lamellae, as postulated by Helfrich, and then us-
ing, for instance B =l(d V„/dl )&. indeed, such an ap-
proach has been adopted by several authors. ' But note,
first, that the steric repulsion alone cannot lead to a finite
separation I of the lamellae: one has also to include the
molecular potential with its attractive part Vq(l) of the
pressure-like term, Pl. Second, it is important to realize
that the simple superposition of the molecular potential
V(l) and the effective entropic interactions V„(l) is not
correct in general. Indeed, this reasoning is certainly not
valid for the critical unbinding transition in three dimen-
sions: even to predict the existence of a continuous un-
binding transition it is necessary there to carry out a full
statistical treatment of the model. One may therefore ask
why, in the present case, the simple-minded derivation
gives the correct asymptotic behavior. This arises from
the fact that for the complete unbinding transition the
phase boundary at P =P, =0 cannot be shifted by fluctua-
tions. As a result, one has only two scaling regimes for
complete unbinding: a mean-field regime for d & d2 ——3 3,
and a weak fluctuation regime for d &d2. Both regimes
are in principle accessible experimentally: in the presence
of electrostatic repulsion (3), one would probe the mean-
field regime, whereas in the absence of such interactions,
the weak-fluctuation regime is entered.

For sufficiently weak attraction between the lamellae
our theory predicts that the mean separation I can in-
crease without limits when a solvent is added. However,
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the theoretical description of the swelling of the lamellae
presented here does not take into account other forms of
aggregation such as micelles, vesicles, hexagonal struc-
tures, etc. It also ignores the possible formation of de-
fects. Such structures can have a lower free energy than
the lamellar phase. In this case, the swelling of lamellae
could still be large, but would eventually be limited, in
thermal equilibrium, by the appearance of a new amphi-
philic phase. Even then one could still study the ap-
proach to complete unbinding along the metastable
branch of the lamellar phase if the time scale which
governs the decay into new structures is sufficiently large.

The results described in this paper also depend crucial-
ly on the assumption that the thermal fluctuations of the
lamellae are controlled by their curvature energy. Indeed,
by analogy with the smectic liquid crystals one can argue
on the basis of symmetry arguments' ' that a surface
tension-like term is absent in the effective Hamiltonian
(21). On the other hand, one expects that, in some cases,
a nonzero tension of the lamellae can be induced by the
boundary conditions, fast exchange of molecules with
other aggegates, " or other factors.

The presence of a surface tension term, o.(Vl), in the
eff'ective Hamiltonian (5) and (21) would have several in-
teresting consequences: (i) it would introduce additional
scales Aq ——(k~T/a)' and Xl

——(~lo )' for the perpen-
dicular and parallel correlations, respectively; (ii) for
l &&kq, the steric entropic repulsion would still be given
by Eq. (30), but for i »A, q, it would be replaced by a
Gaussian tail; (iii) the scattering intensity would exhibit

Brag g peaks since the Debye-Wailer factor would no
longer vanish.

In conclusion, we have shown that in some situations
the swelling of lamellar liquid crystals can be considered
as a new phase transition termed complete unbinding.
The quantitative predictions of our model, such as the be-
havior of the mean separation between lamellae I, or the
existence of quasi-long-range order characterized by the
exponent X, can be checked experimentally.

Note added in proof. Recent experiments by D. Roux
and C. Safinya and collaborators have shown that in the
presence of unscreened electrostatic interactions, the
effective exponent XM indeed decreases with l, in qualita-
tive agreement with our prediction (29). For details, see
D. Roux, Proceedings of Les Houches Conference "Am-
phiphilic films, " February 1987 (to be published).
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