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Electron correlations in the effective-potential expansion method
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The method of effective-potential expansion is successfully applied to a three-dimensional electron
gas. Calculated correlation energies agree quite well with accurate Monte Carlo data. The difference
is less than 1% for 1 & r, & 10. The static structure factor and pair-distribution function are also cal-
culated. The latter is found to be always positive for these densities.

I. INTRODUCTION

The method of effective-potential expansion for the
many-body problem was formulated by the present author
a few years ago' and applied to a two-dimensional elec-
tron gas in a previous paper, hereafter referred to as I.
Since we have already explained motivations for the intro-
duction of the method in I, we will not repeat them here.
We have only to mention that the essential idea of the
method is the introduction of an effective potential V, in
terms of which any physical quantity is expanded. A
variational procedure is used to determine V.

In I, we employed an approximation in which all terms
higher than second order in V were neglected. (We
denoted as the two-body approximation the cutoft of our
cluster expansion at this level. ) In addition, when we
determined V variationally, we first assumed some func-
tional form (such as a Thomas-Fermi —type screened po-
tential) for V and then chose optimum values for parame-
ters involved in the function. Even in such a crude ap-
proximation, we obtained the results for the correlation
energy c, in a two-dimensional electron gas in rather good
agreement with those given by the variational Monte Car-
lo method. (The difference was within several percent for
1&r, &100.) However, the major problem was that the
spin-antiparallel pair-distribution function g„(r) became
negative near r =0 for r, & 2. 5.

In the present paper, we apply the method to a three-
dimensional electron gas. Compared to the numerical
procedure in I, we have developed the method in two as-
pects: One is that we have determined V by a numerical
solution of an Euler-Lagrange —type equation. The other
is that we have gone beyond the two-body approximation.
Namely, besides all terms up to second order in V, we
have included the ring terms in third and fourth orders in
V, together with their exchange partners so as to make the
Pauli principle hold order by order. As a result of these
improvements, we have obtained c, in quite good agree-
ment with the essentially exact Monte Carlo data of
Ceperley and Alder. (The difference is less than 1% for
1 &r, & 10.) We have also found that g»(r) is always pos-
itive.

In Sec. II, we give a brief account of the method and
show calculated results in the two-body approximation.
Some of the higher-order terms are included in Sec. III.
Results for e„g» (r), and the spin-dependent static struc-

ture factor S (q) are compared with those obtained by
several other methods. In Sec. IV, we summarize our re-
sults and discuss spin dependence of V. In the Appendix,
we prove rigorously that the energy evaluated in the two-
body approximation gives an upper bound to the ground-
state energy for sufficiently weak effective potentials.

II. TWO-BODY APPROXIMATION

A. Preliminaries

Since the formalism is just the same as that in I, we
give only a brief description of it here. The Hamiltonian
of an electron gas in a uniform positive background is
written as

H =Ho+ V

where

and

Ho= g EkCk~Ck~,
k, o.

(2)

0, 0+ f l.'Hot /A — —IHP t/RxI.„ dt e e Ve

(4)

where
~

0) is the state described by a plane-wave Slater
determinant, and V is an effective potential, defined by

V= —,
' g g g V~~(q)Ck+qcrCk qcr Ck a'Cka' — ''

q(&oj k o k', o'

V= —,
' g g g V(q)Ck+q Ck q Ck~ Ck~, (3)

q (&0) k, o k', cr'

with ek=fi k /2m and V(q)=4sre /q . As usual, C„ is
the destruction operator of an electron specified by wave
vector k and spin o.. In the following, we measure mo-
menta and energies in units of the Fermi momentum AkF
and rydbergs me /2A, respectively. Then the system can
be described by only one parameter r„defined by
r, =me /aA' kF with a—= (4/9m)'~ =0.521.

For the ground-state wave function, we consider the
following trial function:

n
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The symbol L„ in Eq. (4) represents the instruction to
consider only terms in which each V in V" is unlinked to
others. The eff'ective potential V (q) in Eq. (5) will be
determined variationally, but in Secs. II and III, we will
neglect the spin dependence of V. Therefore we will
suppress the subscript oo' for the time being. (We will
discuss dependence of V on spin orientations in Sec. IV.)

The expectation value of the Hamiltonian with respect
to the trial function (4) is given by the following cluster
expansion:

(H ) = (0&0
~

H
~

0&0) /(No
~

40) = g E'"',
n=0

where E' ' is the Hartree-Fock energy, given by

E' '=N(2. 21/r, —0.916/r, ),

(6)

(7)

with N being the total number of electrons, and for n & 1,

E " = C„„)(V)+C„)„(V)+C„„(HD)+C„„(V). (8)

In Eq. (8), C„„(A) is defined by

C„„(A)=g gg g Q 0 —f"dr ' ' ' V ' 1

—i f 0 0 H Itt — —A I*
)

dt e e Ved

(li, . . . , l„
i

3 il'i, . . . , l'„),
X nln't (9)

where the subscript c represents the instruction to take only connected diagrams into account,
~

1) denotes a (2e-2h) state
in which two electrons below the Fermi surface are excited above it and leave two holes, and

~
l~, . . . , 1„) is a state

composed of n such (2e-2h) states which are uncorrelated to each other.

B. Correlation energy

In the two-body approximation, we neglect E'"' for n & 2. Thus the correlation energy c., is given by E"'/N. In Fig.
1, we represent terms in E"' by Goldstone diagrams. [Since the contribution of C|0(V) is the same as that of Co~(V),
the diagrams for C,o( V) are not drawn in the figure. ] Once a diagram is given, we can obtain an expression for the term
easily. For example, Co (V) is given by

Co)'(V)= ~~ g g V(q)V(
~

k' —k —q ~

)

q, k, k' ~k+q 8k+ ~k' —q ~k'
(10)

g V(q) V(
i
k'+k+q

i
)

q, k, k' o. Ek+q ~k+ ~k'+q ~k'
(10')

with the Fermi distribution function n k at T =0. Equa-
tion (10') is obtained from Eq. (10) with the use of the fact
that ek ——e |, and V(

~ q ~

)= V(
~

—q i
). Refer to Sec. II B

of I for other terms.
Although there are twelve terms in C~~( V), they can be

grouped into three: the ring family [CI'~"'(V), CII'(V),
CI|"'(V), and CI~' (V)], the self-energy family [CP~ '(V)
and CI,'(V)], and the ladder family [C'„'(V), CI, ; (V),
CI& (V), CI('(V), C (V), and C' ' (V)]. For the pro-
cesses of small momentum transfer q, the ring family
gives the most important contribution, while for those of
large q, the ladder family, in particular, C„'(V) and
C', ,'( V), dominate others.

C. Numerical procedure

We evaluate each term in E'" numerically in much the
same way as in I. We first make a table of a "weight
function" for each term in E ' ". For example, Co, I

( V) is
rewritten as

with P(q) =—V(q)/(4ire /kF) and P(q') =—V(q')/(4ire /kF).
We can obtain the weight function tc&(q, q') by performing
a four-dimensional integral. Since a two-dimensional in-
tegral has to be done afterwards in Eq. (11), we have to
make a six-dimensional integral in all to obtain Co ( V).
In order to check the accuracy of our calculation, we set
P(q') for P(q') in Eq. (11). Then Cp~'(V)/N has been
evaluated analytically to be 0.048358. In our numerical
calculation, it is found to be 0.048360. Thus for Co(", (V),
we can expect an accuracy of better than 10 . For terms
in C»(V), however, we cannot expect accuracy of the
same order, because in general, a six-dimensional integral
is necessary for the calculation of weight functions and a
nine-dimensional integral is necessary for evaluating
C»(V). In fact, the ring family can be calculated rather
easily, but it is not an easy task to obtain accuracy of
better than 0.1% for terms in the ladder family.

The optimum effective potential can be determined by
the functional derivative of E"'.

Co", (V)=N f"dq q P(q) f"dq'q' P(q')u, (q, q'), (l l)
0 0

6E"'/5V(q) =0 . (12)
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FIG. 2. Correlation energy per electron in units of Ry in the
two-body approximation as a function of r, . The results of the
GFMC calculation are also shown by solid points. A dashed
curve indicates the results which have been given by the interpo-
lation of those GFMC points. The dotted curve shows the re-

sults with addition of terms C'12"'(V), C»"'(V), and C&2'(Ho) to
E(l)

c"'(v) c"'(v)
11 ll c '(v)ll
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FIG. 1. Goldstone diagrams for Co&( V) and C»(HO) given in

(a) and those for C&l(V) in (b).

This gives a linear integral equation for V(q). We have
solved Eq. (12) by an iterative method. [The iteration is
continued until a relative error between old and new
V(q)'s at each point becomes smaller than 10 .] For
r, & 30, it takes about twenty steps to get a result of V(q).
However, for r, & 40, we cannot obtain a convergent result
for V(q). We do not think that this arises from some
physical reason. We need to obtain terms in C»(V) with
better accuracy to get a convergent result for such low-
density cases.

D. Results for correlation energy

In Fig. 2, we have shown the calculated results of the
correlation energy c, =E'"/N by a solid curve as a func-
tion of r, . For comparison, the results obtained by the
Green's function Monte Carlo (GFMC) method and
those by the interpolation through the points of the
CxFMC calculation are also given by the solid points and

dashed curve, respectively. (The results indicated by the
dotted curve will be explained in Sec. III.) We have plot-
ted the optimum V(q) in Fig. 3 where instead of V(q),
r, V(q) is shown because this is the expansion parameter
of the series (6). There are two remarkable facts in this
figure. One is that even if r, increased by 20 times, the
change of r, V(q) is quite moderate. This is related to the
fact that relative errors between our c,, and those of the
GFMC calculation change only slightly with the increase
of r, : They are 7.5%, 9.6%, 11.3%, and 12.1%%uo for r, = 1,
5, 10, and 20, respectively. The other is that when r, & 9,
V(q) becomes negative for large q. In order to see what
terms in C»( V) play an important role in the occurrence
of the negative V(q), we have solved Eq. (12) at r, =20
while omitting some terms in C»(V). For example, the
dashed curve in Fig. 4 corresponds to the case in which
only the electron-electron ladder terms [i.e., C'~~ '(V) and
C'&~( ( V)] are included in the ladder family, while all oth-
er terms in the ring and the self-energy families are taken
into account. Although there is a structure at q=2kF,
V(q) is always positive in this case. This structure might
be related to the problem of a peak in the local-field
correction, conventionally denoted by G(q), at q =2kF.
(When only the ring term C'&'&"'( V) and the electron-
electron ladder terms are considered, there is no structure
at q =2kF, as shown by a dotted curve in Fig. 4.) On the
other hand, the dotted-dashed curve gives the results for
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of V(q). Thus we must select important terms in E'~'.
For this purpose, Fig. 3 for V(q) in the two-body approxi-
rnation is very useful. It suggests that a large correction
may come only from small-q processes, because the ex-
pansion parameter r, V(q) has already become so small for

q larger than 2kF, that higher-order corrections for large-q
processes wi11 be negligible. This can also be explained
from a physical point of view as follows. For small spa-
tial separations (i.e. , large-q case), the four-electron pro-
cesses which are treated explicitly in E' ' are dominated
by the two-electron processes which have already been in-
cluded in E'". Thus we need not consider the large-q
processes in E' '.

The dominant contribution for sma11-q processes will
come from the ring terms, C', z '( V), C~q~ '( V), and
Czz'(Ho), as shown diagrammatically in Figs. 6(a), 6(b),
and 6(c). When only these ring terms are added to E'",
we have obtained much better results for c, as plotted by
a dotted curve in Fig. 2. (The obtained results for V(q)
are of course different from those in Sec. II, but conver-
gent results are given for r, & 30, which is just the same as
in Sec. II.) However, it is our principle of calculations to
consider direct and exchange terms in pairs in order to
make g, , (r) vanish at r =0 when V(q)/2 is replaced by

e' '. Thus we have to take account of terms like CIq'( V)
and Czz'(V) in addition to the ring terms. We also in-
clude the terms Cpz '(V), C '(V) C' '(V), and C' '(V)
so as to consider the first correction to the ring terms in
the calculation of g, (r). The exchange partners of these
terms, Cpz'(V), CI~'~(V), C~zz'(V), and C~zz'(V) are in-
cluded correspondingly. Other terms in the ring family,
such as CIz"I(V) and C'~q '(V) in Fig. 6(a) are not con-
sidered. This is because the contribution of the sum of
C'&z '(V) and CI&z'(V) is much smaller than that of the
sum of C'&~ '(V) and C'&z'( V), even though C'&z"'(V) may
give a comparable contribution to CPq'( V).

Selection of exchange terms in Czz(HO) is made in ac-
cordance with that in C&z(V). All the singly exchanged
terms, i.e., the terms which are obtained by exchanging
two pairs of electron-hole lines in the ring diagrams, are
shown diagrammatically in Czz'(Ho) in Fig. 6(c). Each
term gives the same contribution and corresponds to the
term C'~z'( V) [or equally Cpq"'( V) or even C'&z '(V)] with
the substitution of —V for V. Thus they will be included
in our calculations. Selection in the doubly exchanged
terms given in C'z'z'(Ho) is much involved. The terms (I)
correspond to C &z'( V) with the change of V into —V and
will be taken into account. The terms (4) correspond to
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FIG. 6. Csoldstone diagrams considered in E"'. Terms in C»( V), C&q( V), and C»(Hp) are given in (a), (b), and (c), respectively.
Terms, gimme~ by C» '(V), C&p (V), C&p (V), and Ciq" (V), and the terms (4) in Cqq'(Hp) are not included in the calculation. Half of
contributions of the terms (2) and (3) in Cqq"(Hp) are not considered, either.
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C'12 '(V) and will be neglected. Terms in (2) and (3) pro-
duce contributions corresponding to the sum of CI2" (V)
and C(, 2 '(V) and that of C(12"(V) and CI2 '(V), respec-
tively. Thus only a half of contributions should be taken
into account for the terms (2) and (3).

F —2C)2( V) +C22( V) + C22(HP )

where

(15)

Summarizing the selection of terms in E' ', we can
write E"' as

C12(V)=C ' (V)+C12"(V)+C""'(V)+C'"'(V)+C ' '(V)+C'12"(V)
4

=-,'XX X X X II",-,(I-",., )

q k&o
&

k2~2 k,o, k4o4 I —1

+[(Ek(+q Ek)+ek2+q Ek, )(Ek, +q Ek&+Ek3+q Ek3)(Sk3+q Ek&+Ek4+q Ek4)]
—1

X [ —V(q) V(q)'+6, „V(
I
k(+k4+q

I
) V(q)'

+26 V(q)V(q)'V(
I
k, +k, +q I

)

6, ,V(
I k)+k4+q

I
)v(q)'v( k)+k2+q

I
)

+6, , V(q) V(q)'V(
I
k2+k3+q

I
)

v(
I
k(+k4+q

I
) v(q) v(

I
k2+k3+q

I
)] (16)

( V) —C( d)( V)+ ( 2(2
)

( V)+ ( 2(2d)( V)+ C(22 )
( V)+ C( )

( V)+ ( 22 ( V)

Q nk (1 n„.—.,)
q klo l k2o2 k3og k4o.4 k~(T5 i =1

X [(Ek( gq Ek( +Ek2+q Ek2)( Ek&+q Ek2+ Ek3+q Ek& )( Ek& gq Ek&+ Ek4+q Ek4)

+(Ek4+q rk4+Sk&+q Ek&)]
—1

x [ V(q) V(q) —6 V( k( —k5
I

) V(q) —26, , V(q) V(q) V(
I
k1+k2+q

I
)

+26 6, , V( Ik( —ks
I

) V(q)'V(
I
k(+k2+q

I
)

—26,V(q)V(q) V(
I
k2+k3+q

I
)

+26 6 V(
I
k( —k& ) V(q) V(

I
k2+k3+q I )l (17)

and C22(Hp) is given by —C)2(V). In writing Eqs. (16)
and (17), we have changed the signs of some momentum
variables, as we did in Eq. (10) to obtain Eq. (10').

B. Numerical procedure

Each term in Eqs. (16) and (17) can be evaluated by the
introduction of weight functions as explained in Sec. II C.
The eftective potential is determined by the equation

6(~(1)+~ (2)
) =0.

6V(q)
(18)

The obtained results for V(q) are, in general, diff'erent
from those obtained in the preceding section. Quite gen-
erally, as we increase the number of terms considered in
the series (6), V(q) approaches the bare potential V(q). '

An example of calculated V(q) is shown in Fig. 7 for the

case of r, = 5. The solid curve represents the result of the
solution of Eq. (18), while the dashed curve corresponds
to that of the solution of Eq. (12). (For comparison, the
bare potential is shown by a dotted curve. ) For q smaller
than kF, the present V(q) becomes larger than the previ-
ous one by about 15% [and goes a little bit closer to
V(q)], but for larger q, they are essentially the same.

For r, & 10, we have obtained results for V(q) numeri-
cally with no more difficulty than those in the two-body
approximation. However, for r, ~ 15, we encounter the
same problem as we did at r, =40 in the two-body ap-
proximation. Namely, we cannot get a convergent result
for V(q). If we remember that a convergent result was
obtained even at r, =30 when only the ring terms in E' '

were considered, we can conclude that the less accurate
evaluation of exchange terms in E' ' has made the
difficulty occur at a much lower value of r, .
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suits coincide with them. The accuracy of the present cal-
culation is about the same as that in the coupled-cluster
method of Emrich and Zabolitzky. All other previous
calculations are less accurate than ours.

To calculate g»(r) in the present calculation, we have
to include the terms represented by O'Iz ', C'I2 ', C'&z"',

C22"', Cz2"', and C22"' in Fig. 6 in addition to the terms
already considered in Sec. IIE. Figure 8 shows the re-
sults of g»(r) for several values of r, . In contrast with
the case in the two-body approximation (Fig. 5), g»(r) is
always positive as long as we have obtained a convergent
result for V(q). The values of g»(0) are compared with
those in the previous calculations in Fig. 9. The solid
curve represents the present results. (The dotted one
shows those in the two-body approximation. ) Results in
the Fermi hypernetted-chain approximation are given by
the dotted-dashed and double-dotted —dashed curves.
They were, respectively, calculated by Lantto' and Zabol-
itzky. " The dashed curve shows the results obtained by
Yasuhara, ' who considered only the electron-electron
ladder term (CII"I term in our notation) and gave an ex-
pression for g» (0) as

FIG. 7. Effective potential V(q) determined by the solution of
Eq. (18), together with that given by Eq. (12). They are, respec-
tively, shown by the solid and dashed curves. Calculations are
done at r, =5.

C. Numerical results

The calculated results for the correlation energy are
given in units of Ry in the column indicated by E'"+E' '

in Table I. For comparison, we have also shown the re-
sults in the two-body approximation (in the column of
E' "), those in the GFMC method, ' those in the
coupled-cluster formalism, ' those in the Fermi
hypernetted-chain method, ' '" those in the equation-of-
motion approach calculated by Ichimaru and Utsumi, '

and those in the Green's function method by Suehiro, Ou-
saka, and Yasuhara (SOY). ' It is seen that our results
are always very close to the GFMC data. The difference
is less than 1% and in particular, for 4&r, & 8, our re-

g»(0)=I2(ar, /7r)'~ /II[4(ar, /m)' ]I (19)

—
—,', (q /k~ ) for q & 2k+,

1 for q &2kF . (20)

where II(x) is the first-order modified Bessel function of
the first kind. Although our results agree surprisingly
well with those of Yasuhara, there are no reasons why
they should coincide with each other. We have con-
sidered much more terms like the electron-hole and hole-
hole ladders than Yasuhara.

The spin-dependent static structure factors are also cal-
culated and compared with the results very recently given
by SOY. In Fig. 10, S»(q) and S»(q) —S', ,I(q) calculat-
ed at r, =4 are shown by solid curves, where SI, , (q) is the
static structure factor in the Hartree-Fock approximation,
given by

TABLE I. Correlation energy in Ry units. The first column shows our present results, while the second corresponds to our results
in the two-body approximation. The column indicated by GFMC gives the results in the Green's Function Monte Carlo method, ob-
tained from Ref. 4. (Numbers in parentheses are from Ref. 6.) The columns indicated by CC(BL) and CC(EZ) show the results in the
coupled-cluster formalism, obtained by Bishop and Luhrmann (Ref. 8) and Emrich and Zabolitzky (Ref. 9), respectively. The columns
FHNC(L) and FHNC(Z) give the results in the Fermi hypernetted-chain approximation, calculated by Lantto (Ref. 10) and Zabolitzky
(Ref. 11), respectively. The column, indicated by IU, shows the results of Ichimaru and Utsumi (Ref. 12). The last column SOY gives
the results of Suehiro, Ousaka, and Yasuhara (Ref 13).

rs ~(1)+E(2) E(l) GFMC CC(BL) CC(EZ) FHNC(L) FHNC(Z) IU SOY

1

2
3
4
5
6
8

10

—0.119
—0.0891
—0.0737
—0.0636
—0.0563
—0.0507
—0.0427
—0.0370

—0.111
—0.0821
—0.0671
—0.0575
—0.0506
—0.0455
—0.0380
—0.0329

—0.119 ( —0.120)
—0.0902 ( —0.0896)

( —0.0738)
( —0.0636)

—0.0563 ( —0.0563)
( —0.0507)
( —0.0427)

—0.03722( —0.0371)

—0.125
—0.0919
—0.0743
—0.0625
—0.0544

—0.122
—0.0904
—0.0738
—0.0634
—0.0560
—0.0505
—0.0425
—0.0370

—0.118
—0.0865
—0.0709
—0.0610
—0.0540

—0.0355

—0.114
—0.0859
—0.0710
—0.0612
—0,0541

—0.0355

—0.1174
—0.0869
—0.0711
—0.0610
—0.0538
—0.0483

—0.0350

—0.1211
—0.0912
—0.0757
—0.0658
—0.0588
—0.0534
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q/k

v&&
—v(q),

v&,
—o.5~v(q). where V2, is a 2n- oa n-body interaction

ofE . (6n o q. (6) which can be rew tte rewritten as

(H)= (0
~

L„(U+ )HL U"„U")
~
0, /m!n!,

where the o ne y

(A

e operator U is defined by

U= ——0 0+tte ex (iHp i Ot lfi) V exp( iHot Ifi) . —

(A3)
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q. 2') at r, =2.
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&H&=E"'+&O~ U~+H ~O&, +&O~HU, ~O&,

+&0i U2HU2 i0),
+ —,

'
& 0

~

L„(U ~+')H
~

0), + & 0
~
U,+H

~

0),

gence circle in terms of U2 is readily known to be unity
from Eq. (AS). Thus for a sufficiently weak effective in-
teraction V2, the upper-bound property holds, but for
large

~

V2 ~, it is not guaranteed. '

When we define U2„by
+ —,

' &0
[
HL„(U$)

[
0), + &0

[
HU$ [0),+

(A4)

n —1

U2„=2 cos L„[(U2/&2)" ],4 n
(A7)

Now for a given V2, we can choose Vq„'s for n & 2 so that
the higher-order terms in Eq. (A4) vanish order by order.
As a result, we have an expression for &H) having only
first four terms in Eq. (A4).

In fact, by choosing V2„so as to satisfy

U2„—— L„(U p),( —l)"

we obtain

&H ) E(o)+E(1) (A6)

with E(') defined by Eqs. (8) and (9) with the substitution
of V2 for V. Since Eq. (A6) is exact for a trial function
having the form of Eq. (4) with V defined by Eqs. (Al),
(A3), and (AS), this equation gives a variational upper
bound to the true ground-state energy. However, this is
true only when V (or equivalently U) determined from
Eqs. (Al) and (AS) is finite. The radius of the conver-

instead of Eq. (AS), we obtain

H ) =E' )+E(1)+E(2) (AS)

&H)= y E("',
n=0

(A9)

for any positive integer m. Note that the case m = oo is
special in the sense that the radius of the convergence cir-
cle is infinite to make the upper-bound property hold for
any V2.

with E'"' given by the substitution of Vq for V in Eqs. (8)
and (9). Again for small V2, Eq. (A8) is always larger
than the true ground-state energy. Compared with Eq.
(AS), the radius of the convergent circle becomes &2
times as large as before. Thus the upper-bound property
holds for a wider class of effective potentials V2 in this
case. In a similar way, we can define U2„so that we ob-
tain
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