
PHYSICAL REVIEW B VOLUME 35, NUMBER 13 1 MAY 1987
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Avinash Singh and Eduardo Fradkin
Department of Physics and Materials Research Laboratory, Uniuersity of Illinois at Urbana C-hampaign,

1110 8 est Green, Urbana, Illinois 61801
(Received 15 September 1986)

The effects of disorder, in particular of localization, have been studied in the vicinity of the fer-
rornagnetic transition by making use of a generalized X-orbital model within a 1/N expansion tech-
nique. Fermi-liquid behavior is obtained in the iV~ ~ limit with two separate diffusion constants for
spin- and charge-density fluctuations. The spin-diffusion constant associated with spin fluctuations
and Stoner excitations is found to acquire a localization correction. While the dc conductivity in the
ferromagnetic phase also acquires the same localization correction, the spin-wave stiffness constant
does not. This indicates the system can exist in an insulating state and exhibit long-range magnetic
order a ferr—omagnetic Anderson insulating state.

I. INTRODUCTION

In this paper we introduce a model of interacting spin-
half-fermions moving in a random potential and study
some combined effects of disorder and interaction on the
response properties of the system at zero temperature. A
number of significant consequences of this interplay of
disorder and interaction are already known. A very gen-
eral consequence of impurity scattering is to change the
plane-wave motion of a quantum-mechanical particle into
a random-walk-like motion so that the particle-density
fluctuation is diffusive on length scales larger than the
mean-free path. Diffusing particles spend more time to-
gether and hence the mutual interaction effects are
enhanced so much so that one finds, in one and two di-
mensions, significant departures from the normal Fermi-
liquid-theory results for the quasiparticle lifetime, the
electrical conductivity and the specific heat, for example.

In a spin-half-fermion system with short-ranged in-
teractions. an important role is played by the spin-density
fluctuations and so we should like to study the effect of
disorder, in particular of localization, on its nature and
also on the magnetic features that follow —such as the
spin-wave instability. By being able to carry their spin
bias to nearby regions, moving fermions, because of the
interaction, bring about spin correlation in the system
which can lead to the collective (spin-wave) mode. Clear-
ly a system of ultralocalized fermions (i.e., single-particle
excitations with a localization length g, of the order of the
elastic mean-free path l) cannot support long-range order.
It would be interesting, then, to understand the effects of
localization on the spin-wave stiffness both in the weakly
localized regime and close to the mobility edge (where
(»l).

At the static level, disorder is known to enhance mag-
netic fluctuations as seen in experiments on Si:P in which
a large growth of the magnetic susceptibility was observed
at low temperatures. Fukuyama has shown, within a
self-consistent renormalized theory of spin fluctuations
with disorder, that the critical interaction strength is re-
duced. Similar results were found by Finkelstein and by

Castellani et al. who showed that the effective triplet
coupling constant scales to infinity (in a renormalized per-
turbation theory). These results have led to speculations
that, in weak coupling, the system might develop local
moments.

In this paper we want to study localization effects near
the ferromagnetic transition. We make use of a general-
ized ¹ rbital model within a 1/N expansion technique to
study these aspects in a consistent and systematic manner.
Within this approach the maximally crossed diagrams of
localization are of order 1/N whereas the ladder diagrams
involving impurity lines (giving rise to the diff'usion mode
in particle-density fluctuations) are of order 1 just as are
the ladder diagrams involving interaction lines (giving rise
to spin fluctuations). Thus, the method is well suited to
systematizing various pieces of physics. The use of 1/N
as an appropriate expansion parameter was first demon-
strated by Wegner and Oppermann and Wegner for the
noninteracting problem and later by Oppermann' and
Ma and Fradkin" for the spinless interacting case. Op-
permann' has studied a random matrix model with a
Heisenberg interaction within this scheme. As we show
below, the ferromagnetic transition is accessible in the
N~op limit. However, the mobility edge is not. The
metal-insulator transition, within this scheme actually ap-
pears in a nonperturbative manner. "

We have evaluated the spin, charge, and current
response functions of the system both in the paramagnetic
and ferromagnetic phases. From the spin susceptibility
one is able to obtain the Stoner criterion for the ferromag-
netic transition. In the N~ oo limit only ladder diagrams
with impurity and interaction lines are kept and this ap-
proximation thus neglects localization and treats interac-
tion only at the mean-field level. The results are, there-
fore, appropriate for a three-dimensional system in the
metallic limit. We obtain, as expected, typical Fermi-
liquid behavior' (generalized to the ferromagnetic phase)
with two diffusion constants —one for charge and one for
spin.

We have also studied some of the physics at the 1/N
level. We have evaluated the correction to spin-diffusion
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constant coming from the maximally crossed diagrams of
localization. The effect of magnetization on the Cooper
propagator (both with parallel and antiparallel spins) in
the ferromagnetic phase has also been studied. We find
that the localization correction to conductivity is
unaffected by magnetization. On the other hand, there
are no singular localization contributions to the static sus-
ceptibility and to the stiffness constant of the spin-wave
mode. This indicates that the system can exist in a fer-
romagnetic Anderson insulating state with localized Stoner
excitations and long-range ferromagnetic order.

II. THE MODEL

We consider a generalization of the model introduced
by Wegner by adding spin-dependent, short-ranged in-
teractions. The N species of fermions interact with each
other via two Hubbard-like interactions. One is a
density-density interaction between fermions of opposite
spin which are scattered into their respective species chan-
nels. The other term is an exchange interaction in which
the species indices of the two fermions of opposite spin are
exchanged. The Hamiltonian (for a jellium model) is:

H= f d r g (r)( ——,
)V' )P (r)

—e p(r)g (r)gp (r)

g, (r)g„(r)gp, (r)Pp) (r)

P I e p(r) I=, exp —f d r e„p(r)/y
(2~y)'

(e.p(r) ) =O

(e p(r)e p(r')) =y6'(r —r')(6 6pp+6 p6p ) .

(2)

In the N~ oo limit there are two terms which contrib-
ute to the self-energy (Fig. 2). The impurity-averaged
one-particle Green s function is obtained by solving the
Dyson equation self-consistently:

G (k, co)=G (k, cu)+G (k, co)[X(,)(~)+X(p)]G (k, co),

where

For a spin-symmetric system the coupling constants U]
and Uz must be equal. In this case we have the full SU(2)
spin symmetry of the Hubbard model. In the pure limit
(y~0) and with U) ——U2 ——U one obtains (in the N~ oo

limit) the same results as for the Hubbard model' solved
in the generalized Hartree [or random phase approxima-
tion (RPA)] approximation. '

Appropriate factors of 1/&N and 1/N are pulled out
to keep the energy density finite in the N~oo limit.
After impurity averaging the scattering off impurities
leads to an effective elastic scattering between fermions.
The various scattering processes at work are shown in
Fig. 1 ~

III. ONK-PARTICI, K GREEN'8 FUNCTION

g )(r)Pp, (r)Pp)(r)P )(r)
U~

where repeated indices are summed, o. labels the two
spins t and t and a,P label the orbital species. e p(r) is
the local random potential with a white-noise probability
distribution of width y given by:

G (k, co)=
k

co — +i sgn(co)
2

X(,)(co)=y 3
G (k, co),d k

(2m )

X[b]=n U

p
kI-q

k2

UI

N

k2-q

kI k2
QJ

P
U2
N

The Green's function is independent of the orbital index
and so it has been dropped. A straightforward extension
of de Rennes's method' to include the spin-dependent
shift in energy from the Hartree term leads to the result:

1
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[q (cu) —k ]/2
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FICx. 1. Fermion scattering processes of the model. Density-
density (a) and exchange (b) interaction vertices, and e8'ective im-
purity scattering vertices (c) and (d).
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FIG. 2. Self-energy contribution in the N~ ~ limit.
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q (~)=i /2i+sgn(co)[2(co+IIF) —o b. ]'

(1m[2(co+A~) ob—, ]'t. )0) .

Impurity scattering thus leads to a finite mean-free path
1=~/y 6.= —(n ' n—l)U is the relative band shift and
IIF —o (b, /2) is the distance of the bottom of the o. band
from the Fermi energy which is chosen to lie at zero of
the energy scale. 6 and AF are determined by solving
self-consistently the equations for spin density n ' —n '=—m
and the particle density n '+ n ' =n. n is related to the
Fermi momentum in the pure, noninteracting system by
n =kF/3n . From Eq. (4) we obtain the density of states:

N (cu) = [2(co+IIF)—ob. ]'
2~2

and the particle density:

The self-consistency equations are, then:

kF =N(0) .
Q~o 27T

2 (8)

This is the Stoner criterion for the onset of ferromagne-
tism. In the N~ ~ limit the critical interaction strength
U, =1/N(0) is thus seen to be independent of disorder
strength y.

IV. TRANSVERSE MAGNETIC SUSCEPTIBILITY

n ' —n '=m =6/U
n '+ n ' =n =kF /3'

Using Eq. (6) we find the condition for a nonzero solution
for 6 is:

n = f des N (co)

(2IIF —oh) i
6~

(20~ )'

6~

1

16 20F + ~ ~ ~

3 6 3
1 —o.— +—

2 2BF 8 20F
3

2

(6)

In order to study the spin response of the system we
evaluate the transverse magnetic susceptibility. A singu-
larity in the static susceptibility indicates an instability of
the ground state of the system. Furthermore, in as much
as the inelastic scattering cross section [which effectively
measures the willingness of say, a neutron, to lose energy
in (q, co) mode] is related to the imaginary part of the sus-

ceptibility, one can obtain information about the spin exci-
tations in the system by looking at the peaks in Im+(q, co).

The transverse magnetic susceptibility for fermions in
orbital a is given by the Kubo formula

(rt;r't') = pie(t —t')(4z
~
[a, (r, t)a, (r, t), a&, (r', t')a&, (r', t')]

~

4'~ )
P

i (ql~
~

Ta, (r, t)a~, (r', t')att, (r', t')a, (r, t)
~

0'~) . (10)

After impurity averaging we can Fourier transform spa-
tially as well as temporally and obtain:

The retarded, two-particle Green's function of interest
here can be obtained from the following time-ordered
two-particle Green's function:

d'k
)J (q, cu;co, )=f,G (k, , co, )G (k~ —q, co) —co) .

(2~)'
(14)

The susceptibility is independent of the orbital index a
and so it has been dropped. %'e now evaluate I''(q, co).
Using the expression given in Eq. (4) for the Green's func-
tion in the ferromagnetic phase we obtain

i 1 q&(~1)+q l(~1 ~)+qJ''(q, co;co&)= —ln
2~ q q, (~~)+q~(co& —~) —q

(15)

To leading order [0(1)] in the N~ co limit only
ladder diagrams involving U2 interaction and impurity
lines contribute to the impurity averaged two-particle
Green's function. In order to sum the diagrams it is con-
venient to group them as shown in Fig. 3 ~ The transverse
susceptibility can be written in a form identical to the
RPA susceptibility of the Hubbard model. '

In performing the co, integral in Eq. (13) we divide it into

t~' t

where

I"(q,co)

1 —UI''(q, co)
(12)

(b)

dao] J ' '(q, co, co] )I''(q, co) =i
2w 1 —yJ''(q, ~,.~))

(13) FIG. 3. Diagrams contributing to the transverse magnetic
susceptibility in the Ã~ ac limit.
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kF q2 4kF /I1i( 0)
777- /2k' 1+4k' I

(16)

where

three regions —(i) coi &0, (ii) coi &co, and (iii) 0&coi &co.
In regions (i) and (ii) the sign functions in q, (coi) and

q, (co i
—co) are the same whereas in region (iii) they are op-

posite. We extend the method used by de Gennes' to the
ferromagnetic phase in performing the co& integral in re-
gions (i) and (ii). The contributions from regions (i) and
(ii) are essentially found to give the static part, I"(q,O)

[an O(co ) term has been neglected]. Up to the quadratic
term in q we find

(q ~)
I iii 2~'Vr Dq —i (co 5—)

(20)

)
+F Dq +l 5
2' Dq + l 6—l CO

(21)

Substituting this in Eq. (12) we obtain the transverse mag-
netic susceptibility:

where a=I /3~ is the bare diffusion constant. Neglect-
ing the q term in the static part I"(q, O) given in Eq. (16)
and adding it to the frequency dependent part given
above, we obtain:

kF'/2~ = [(2QF + b, )'~ +(20F—b, )'~2]/4m~

=2nF/2~2
N(0) D.q'+i~.

X +(q, co) =
1 —UN(0) D q +id, ico—

(22)

is the spin-averaged density of states at the Fermi energy.
In the paramagnetic phase 6=0 and fIF ——co~(=kF/2)
Substituting Eq. (16) into Eq. (12) we obtain the static
susceptibility from which we can determine the spin-
correlation length g . We find

1 UN (0)
i/12kF 1 —UN (0)

' 1/2
2kFI

( 1+4k 212) i/2

Apart from the enhancement term [UN (0)/1 —UN (0)]'
due to correlation we find the length scale is set by the in-
verse Fermi momentum in the pure limit (kFl »1) and
by the mean-free path in the dirty limit k~1 && 1). We can
now write down an expression for the free energy of the
form

F= d r —,'AM r + —,'BM r +C V'M r

provided we make the following identifications:

(18)

B U

4kF2l 2

B 12QF 1+4kF (

1

N (0)

The frequency-dependent term in I"(q, co) comes from
region (iii) in the coi integral [Eq. (13)]. In the limit of
small co/20F and b, /2I)tF we obtain

where N(0) =aF/2vr . is the spin-averaged density of states
at the Fermi energy in the ferromagnetic phase.
D =[1—UN(0)]D is the renormalized spin-diffusion con-
stant and b, =[1—UN(0)]b, is the renormalized band
shift. If we identify the factor 1 —UN(0) with the Fermi-
liquid constant 1+F' (where F' is the antisymmetric
Landau parameter) then we obtain essentially the same
Fermi-liquid description of the spin response of a dirty
metal as in Ref. 13 but one which is generalized to the
ferromagnetic regime as well.

In the paramagnetic phase b. =O, N(0) =N(0) and
~F ——kz and then Eq. (22) reduces to:

N(0)
(q ~)

I Para=
1 —UN (0)

(23)

which was first arrived at by Fulde and Luther' via a
small 1/kF I-type perturbation theoretic method which
generates the same diagrams as our 1/N expansion in the
N ~ oo limit. The nature of spin fluctuations is thus
diffusive on a scale larger than the mean-free path and
this leads to a T -like contribution to the electronic
specific heat. '

(ii) We consider now the limit when b, »qlcF and
co && 4 to study the effect of disorder on the spin-wave in-
stability' in the system. The frequency-dependent part of
I''(q, co) given in Eq. (19) is

J"(q,~)=
27Tq

ln

—+ +qI VF

1 co —6—+ —qI ~F

I ii( )
I

ico J"(q,co)
I
iii=

2m 1 yJ«(q, co)
(19)

; IcF = (2QF )
'

I"(q,co) ~;;;= 2~
(24)

2

I"(q,~)= 1+—— (25)

which is quite independent of disorder strength. Together
with the static part, I"(q,O) we obtain

We study the frequency-dependent part of I "(q,co) given
in Eq. (19) in various limits now.

(i) In the limit of small frequency (cor « 1), small mag-
netization (b,r «1) (here r—=1/IcF) and long wavelength
(1/q »1) we obtain by keeping terms to first order in cow,

A~, and I q:
1 —UI "(q,co) =0 .

Using aF/2m=1 /U from Eq. . (8),.we obtain

(26)

where g=4vzl /(1+4IcFl ) contains the only effect of
disorder (up to the N ~ oo level). In the pure limit
(KF I » 1 ) the factor g approaches 1. The condition for
spin-wave instability is obtained from Eq. (12)
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co ='gA
12~F

(27)

as the equation for the spin-wave mode. The stiffness
constant of the spin-wave mode is thus proportional to the
factor q.

This discussion generalizes Fermi-liquid theory for a
dirty system to a ferromagnetic phase. The expression
found here for the stiffness constant is valid in so far as
the spin-correlation length, g is smaller than the localiza-
tion length. This is the case in the weakly localized re-
gime. However, as the localization length grows shorter,
magnetic fluctuations will be enhanced. This effect is dis-
cussed in Sec. VEI.

U I (q, ~)
e6

1 —U I (q, co)I (q, ~)
(31)

1 —U I (q, co)I (q, co)
(32)

order contribution to the direct term involve effective in-
teractions (which are sums of bubble diagrams) with ver-
tex corrections (Fig. 4). In the spin-diagonal case we get
the exchange term as well which involves impurity
ladders. From their diagrammatic representation in Fig.
4 we obtain the following expressions for the effective in-
teraction, U, s. (q, co) between diffusing fermions and the
vertex correction I (q, co, co~)

U. DENSITY CORRELATION FUNCTION
(q, co, co)) =

1 —yJ ' (q, co;co, )
(33)

The response of an electronic system to an external sca-
lar potential &P'"'(r, t) is contained in the retarded density
correlation function:

II & (r, r;r', r')= iB(r ——r')(%N

where I ' (q, cu) is given by an expression similar to Eq.
(13) and J ' (q, co) is given in Eq. (14). We obtain:

II (q, co)= g II p (q, co)
p, o'

X[n (r, t), n~ (r', t')]
~

0'~) (28)
—U I (q, co)[I ' (q, co)] I ' (q, cu)—

1 —U'I ' (q, ~)I ' (q, cu)

via linear response theory:

5(n (r, t))
dt' d r' H ~ r, t;r', t' e "' r, t' (29)

UI ' (q, co)I ' (q, co)

1 —U I ' (q, co)I ' (q, cu)

I ' (q, co)[1—UI (q, co)]
1 —U I ' (q, co)I ' (q, co)

(34)

(35)

The retarded density correlation function can be obtained
from the following time-ordered two-particle Green's
function

In the paramagnetic phase I ' (q, co) is spin independent
and so we obtain from Eq. (35)

i(+~
~
Tg (r, t)@g (r, t')P (r, t)fg (r', t')

~
+~) . (30) II(q, co) =— I(q, co)

1+UI(q, co)
(36)

After impurity averaging and Fourier transformation we
find that in the N~ oo limit diagrams which give leading In the limit of long wavelength (1/q»1) and small fre-

quency (cur && 1), I(q, co) has the diffusive form:

CT, o
Ul eff
N

I(q, co) =N (0) Dq 2

Dq —i cu
(37)

with D=1 /3r. Substituting Eq. (37) in Eq. (36) we ob-
tain the density correlation function in the paramagnetic
phase:

N(0)II q, co)=
1+UN(0) L) q2

(38)

cr~~ c7
Ucr, cT

I eff

-cr,'c7 + . cr," & +---
UL Ul

(c)

where Dz ——[1+U N( )0]D is the renormalized diffusion
constant for charge. From the definition of density corre-
lation function we know that the rate of change of fer-
mion density with change in chemical potential ( a static,
uniform electric field) is given by:

tT~~ (T = 0~ 0 +
UcT, -cr

U
I eff I

(d)

6X = —II(co=0,q~O)
6p

N (0)
1+UN (0)

(39)

FIG. 4. (a) The density correlation function in the X~oo
limit involves the effective ( Ul ) interaction and vertex correction
(b); the effective dynamic interactions (c) and (d).

If we identify 1+UN(0) as a Fermi-liquid constant via
1+UN (0)= 1+F' where F' is the symmetric Landau pa-
rameter, then the effect of interaction can be absorbed in
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this definition and we can write the density correlation
function in the familiar Fermi-liquid form:

VI. CONDUCTIVITY

)
N(0) Dpq

1+F' D
(40)

The conductivity can be obtained from the current-
current correlation function

In the ferromagnetic phase one obtains essentially the
same expression for the spin-averaged density correlation
function as in Eq. (40) with N(0) replaced by aF!2~, the
spin-averaged density of states (to order 6/2IIF) at the
Fermi-energy in the ferromagnetic phase.

[R„(co)] —[R„(0)]o.„„(co)=g

where

(41)

d k) d k2 d~) d~p, (~)[R„(co)] =g i f f k ~k z ( G '(k~co]cra, kzcozcr'P;k&co& co—cra, kzcoz+cocT'P) ) .
(2m) (2n)' 2~ 2' (42)

Because of the integration over the two momentum vertices k", and k z, the only nonvanishing contribution to [R, (co)]
(in the N~ m limit) comes from the disconnected piece in the exchange series (with cr =o.). Hence we obtain essentially
the same result as for the noninteracting case:

k ] dc'~
crp~(co ) =, k ]k'jG (k], co~ )G (k~, co& —co)

~
~ de&e„de„t &z„&(2n)3 27r

N (0)D
1 —l C07

cT„„(co)=5„N(0) D
1 —l co%

(44)

which can be written in the Fermi-liquid form as:

N(0)
cr~~(~ ) =

1+UN(0) 1 icur—

where N (0) is the density of states of the spin cr band at
the Fermi-energy [Eq. (5)]. The spin-averaged conductivi-
ty (to order b, /2QF ) is thus

A. Paramagnetic phase

Since we are concerned here with the correction to the
diffusion constant, we consider only the frequency-
dependent part of I "(q,co) which comes from the
0 &co& &co region of the cu& integral. In this interval

1 —y1"(q,co;co)) =r(Dq ice) «—I

so that J"=1/y. If we replace JTl by 1/y in the first
term in Eq. (46), the series can easily be summed to yield:
1/y(1 —yJ'' —yL ''). Therefore

5p 1 —l Q)7
(45)

I"(q,co) I "(q,0)=i-
r(Dq i co) yL "— —

VII. 1/N CORRECTIONS: LOCALIZATION EFFECTS
ON FERROMAGNETIC FLUCTUATIONS

In order to see the effect of localization on the spin-
diffusion constant we need to include the maximally
crossed diagrams of order 1/N (Fig. 5) when evaluating
I"(q,co) [see Eq. (12) and Fig. 3]. If we perform a resum-
mation in which maximally crossed diagrams separated
by impurity ladders are summed up, we get

(47)

The static part L ''(0, 0) vanishes due to an exact cancella-

L~ ~'=

dc']I"(q,co)=i f—oo 27T

1 „1
J T l

I

. c ) J

+[I
c

c I

+ 1
L Tl

y JTl 0 0+ Nj
'o,b,o'

+ ~ ~ ~ (46)
FIG. 5. Maximally crossed diagrams of order 1/N.
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tion which is a consequence of particle number conserva-
tion. '' So does the term linear in co and one is left with:

d'
L "(q,co) =4mN (0)Dq () r') J (2'�) Dq i—~

(48)

J (Q, co, b, ;co') = —ln
2m. Q i co —(o —o')b, /2+

l KF

(54)

i co —(cr —cr ')b, /2+ +Ql KF

I"(q,co) I"(—q, 0)=N (0)
D '(co )q i cu—

where D'(co) is given by

(49)

D (co)=D 1+ 1

4~ N(0)DL,
1/2

quasi-2D

Substituting this in Eq. (47) we see that the diff'usion con-
stant acquires a correction due to localization effect.

As is obvious, in the parallel spin channel (cr =o'), the
Cooper propagator is going to be independent of (small)
magnetization m ( = 6, /U). Therefore, the localization
correction to conductivity remains essentially un-
changed. Up to this level of approximation it then ap-
pears that the ferromagnetic system can undergo a metal-
insulator transition and the system can exist in a fer
romagnetic Anderson insulator state. The Cooper propa-
gator in the antiparallel spin channel is, however, not in-
dependent of magnetization and we obtain

1 CO=D 1+
2~'N (0)D

—const 3D . (50) Cd( ~) ~f d Q 1

(2n. ) DQ i (co —b, )—
Here it is understood that co is to be replaced by the in-
frared cutoff, 0, as cu~O. I, is the size of the quasi-2D
system in the z direction. If we express I"(q,O) as
I''(q, O)=N(0)[1 —O(q )], then from Eq. (49) it follows
that (for co & II, )

I "(q,cu) =N (0)
Dt' 2

D g —lM
+O(q ) . (51)

Substituting this in Eq (12) w. e obtain the transverse mag-
netic susceptibility:

r

N(0) Daq
Y q, co

1 —UN(0) D'q' —j~

where D' = [1—UN (0)]D'. In the small-frequency
(cur « 1, co& II, ) and long-wavelength (1/q &&1) limit the
spin fluctuations are thus diffusive with a spin-difFusion
constant which involves (up to this level) the Fermi-liquid
renormalization factor, 1 —UN(0) and the diffusion con-
stant, D' for the noninteracting problem.

We see that as cu~O, the band shift 6 acts as the infrared
cutoff. The scale dependence which comes in through the
lower limit of Q integration is, therefore, removed provid-
ed 6)0, .

The maximally crossed diagrams (Fig. 5) give only a
contribution of order q and so in view of Eq. (25) we ex-
pect a correction to the spin-wave stiffness constant.
However, because of the presence of b, in Eq. (55) this
correction is not singular and scale dependent unlike the
correction to conductivity discussed earlier. This indi-
cates that while the conductivity vanishes at the mobility
edge due to localization, the stiffness constant does not.
The system can thus exhibit long-range magnetic order
even in the insulating state.

We now discuss the Stoner excitations in the system
which involve spin-flip transitions between the two spin
bands. The excitation spectrum for Stoner excitations has
a gap equal to 6 and therefore we are interested in fre-
quencies close to h. If co=A then in Eq. (55) we see that
C«(co, b, ) is going to become singular. In fact a straight
forward extension to the ferromagnetic phase of the dis-
cussion in Sec. VII A leading to Eq. (51) results in

B. Ferromagnetic phase

We have also studied the efFect of magnetization on the
Cooper propagator by evaluating the contribution from
maximally crossed diagrams in para11el and antipara11el
spin channels using (jrreen's functions in the ferromagnet-
ic phase. The relevant integral is

c'( ~)= Q rdd

(2~)" 1 —yJ (Q, co, b„co')

I"'(q, co, 6)=N(0)
D '( co 6)q i (co 6—)——

From Eq. (50) we see that for co=5„ the diff'usion con-
stant associated with Stoner excitations has exactly the
same localization correction as does the dc conductivity.
In view of their lifetime (=1/D'q ) we then conclude
that the Stoner excitations in the system become localized
as the mobility edge is crossed.

co )O, co —co (0 (53) VIII. CONCLUSION

It is of interest to evaluate this integral because the locali-
zation correction to conductivity and transverse suscepti-
bility would involve C (co) and C» (co), respectively.
From Eqs. (15) and (4) we obtain, in the limit of small
co/2QF and 6/2AF:

The main purpose of this paper is to study the effects of
disorder, particularly. of localization, on the properties of
a system of fermions with spin-dependent, short-ranged
interactions in the vicinity of the ferromagnetic transition.
In the N~oo limit we find typical Fermi-liquid-like be-
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havior (generalized to the ferromagnetic phase) with two
diffusion constants. Fluctuations in spin and charge den-
sities diffuse with their respective diffusion constants. The
stiffness constant of the spin-wave mode is found to ac-
quire a correction due to disorder. The critical interaction
strength for the ferromagnetic transition is independent of
disorder in this limit. Enhancement of interaction effects
due to disorder are believed to cause a lowering of the
critical interaction strength. When localization physics is
included we find that there is a localization correction to
the spin-diffusion constant associated with spin fluctua-
tions and Stoner excitations. As the mobility edge is ap-
proached spin fluctuations and Stoner excitations become
more and more localized. This indicates the development
of local moments in the system. While the dc conductivi-
ty in the ferromagnetic phase also acquires the same local-
ization correction, the spin-wave stiffness constant is
found not to. Therefore, it appears that the system can
exist in an insulating state and exhibit long-range magnet-
ic order —a ferromagnetic Anderson insulating state.

An analogous situation is found in a dirty superconduc-
tor. ' Superconductivity can persist even in the Anderson
localized regime and the ground state can have phase
coherence even though the single-particle excitations are
localized. In fact, quite generally, thermodynamic proper-
ties of a system (e.g. , magnetism, superconductivity,
superfluidity) are decoupled to some extent from the
dynamical response properties (e.g. , conductivity).

In a recent paper Ma, Halperin, and Lee have studied
the properties of a localized superconductor and showed
that they can be understood in terms of a simpler model:
a random anisotropic spin one-half Heisenberg model

with a random field. For our problem a similar argument
can be devised. However, since the interactions are repul-
sive and the impurity scattering is spin independent the
effective Heisenberg model does not couple to a random
field. Thus all one is left with is a quantum spin one-half
model with (time independent) random exchange con-
stants. Thus, at finite temperature, one expects itinerant
ferromagnets with nonmagnetic impurities to behave like
random ferromagnets. Since the specific-heat exponent, a
is negative the Harris criterion implies that the critical
properties of the finite temperature transition will not be
affected by this normal disorder even in the limit when all
states are localized. Fluctuations, however, are enhanced
resulting in a lowering of the critical temperature and an
enhancement of the critical region.

In this paper we have studied exactly the N~ ~ limit
and localization corrections of order 1/N to the response
properties of the system have been included. There are
other important corrections to appear already in order
1/N to the spin diffusion constant and the critical interac-
tion strength U, for example. We expect that U, will be-
come smaller due to disorder induced enhancement of in-
teraction. These efFects are currently being studied.
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