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Higher excited states of acceptors in cubic semiconductors
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For the first time, higher excited states of shallow acceptors up to the 8S and 5P states are calcu-
lated, using a method based on the Baldereschi-Lipari theory including the cubic correction. The
eigenvalues and eigenvectors of the effective-mass Harniltonian for shallow acceptor states were ob-

tained by the finite-element method. The resulting sparse matrix is diagonalized by a newly

developed method based on Arnoldi's algorithm. Except for the lowest n, each hydrogenlike state
nL splits into two levels when spherical "spin-orbit" coupling increases from 0 to 1 ~ This results in

crossing and repulsion of levels with different n. The spectra are thus shown to have totally dif-
ferent structure in the real acceptor regime p-0. 6 in contrast to exciton spectra for which p-0. 1.
The calculated spectra are in agreement with available experimental data, especially in the case of
higher excited states for which central-cell correction is negligible. The spectra of the shallow ac-
ceptors in Zn Te, CdTe, and InP are calculated and compared with the experimental ones.

I. INTRODUCTION

The effective-mass approximation for shallow impurity
states is well established since more than 35 years ago. In
the case of donors associated with spherical conduction-
band minimum, the spectra are hydrogenlike series and
this is well tested by experiments. ' In the case of accep-
tors, the degeneracy of the valence band prevents an
analytical solution of the effective-mass equation, and one
has recourse to variational methods, which give only the
ground-state, and at best, a few low-lying excited states.
Baldereschi and Lipari ' have proposed a new approach
to the acceptor problem. They split the Luttinger Hamil-
tonian into two terms, one of spherical symmetry and the
other of cubic symmetry, and show that in most cubic
semiconductors, the spherical term is dominant and the
cubic term can be considered as a perturbation. Though
their approach allows a systematic classification of accep-
tor states, the coupled radial differential equations are to
be solved variationally, and this suffers the same
shortcoming as the older tour de force variational
methods.

Recently we have succeeded in solving the Balderschi
and Lipari radial equation non variationally. Our ap-
proach is based on the finite-element method and
Arnoldi's algorithm for diagonalizing resultant sparse ma-
trices and allows one to obtain simultaneously several
eigenvalues and eigenvectors. The method of resolution,
together with the numerical solution of the Hamiltonians
described in Sec. II are presented in Sec. III. The acceptor
Hamiltonian and the radial equations which describe ac-
ceptor states of various symmetries are presented in Sec.
II. In Sec. IV we compare our results with the experimen-
tal ones. This leads to an interesting discussion: Around
typical values of p, for which the crossing of levels are for-
bidden, the corresponding acceptor wave functions are

very different from hydrogenic wave functions. In Sec. V
we discuss some possible extensions and summarize main
results. For convenience, we give in the Appendix the
mathematical detail of the method that we have used to
diagonalize the sparse matrices.

II. ACCEPTOR HAMILTONIAN

According to Baldereschi and Lipari, in the diamond
and zinc-blende structure, the acceptor Hamiltonian in the
effective-mass approximation is written as the sum of a
spherical term and a cubic correction

+s +P+d, sph+ ~Hd, cub ~

Here

H, = ——,H = — (P' 'J' ')P 2 1
s ~2 & dsph

+ [p(2) ~ J(2)](4)

is the cubic term with

P —(6V3+ V2)~5V) l3 (l 3 V2)~V) (4)

In (I), p, is the strength of the spherical spin-orbit interac-
tion and 6 measures the cubic contribution. Energy and
length are expressed in units of effective rydberg Ro and
Bohr radius ao,

are the spherical terms in the notation of Baldereschi and
Lipari and

[p(2) ~ J(2)](4) + ( ~7O[p(2) ~ J(2)]41

35 687 1987 The American Physical Society



688 M. SAID, M. A. KANEHISA, M. BALKANSKI, AND Y. SAAD 35

e mp
4

Ro
2A'ep'y,

A epyiao=
e mo2

(5)
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This formulation yields a meaningful classification of
the acceptor states and reduces the eigenvalue problem to
simple radial equations. If we limit our study to the ac-
ceptor states with I =0 and I = 1, only the P5/2 states are
affected by the first-order cubic coupling. As a result we
find the following systems of differential equations for the
radial wave functions f (r) and g (r):

d 2 d 2 2 d 5 d 3
2+ + 2+ —E —p 2+ +

dr r dr r r dr r dr r

1 d—p dr2 r dr
L

d 2 d2+—
dr2 r dr

6 2+——E
2 y

(7)

for S3/2 states. For PF states (F= —,, —, ), one has

d~ 2 d 2 2
aF + + +

dr~ r dy r

d' 3d 3
'F 2+ d+ ~dr r r r

d 7 d 8

dr r dr y f(r)
d 3 d 12 2

6F 2+ + 2 + ——E
dr r dr r r

(8)

where (QF bF cF) ale ( 1
g p 1 + g p 5 p) fol P3/2 and ( 1 + —,p+(24/25)6, 1 ——,p —(68/175)5, (2V 6/5)(p ——,

' 6)) for
P&/2(I 7), finally, (1+—,

'
Iu, —(12/25)5, 1 ——,

' p+(34/175)5, (~6/5)(2p+ —,
' 5)) for Pq/2(I s)

Following Baldereschi and Lipari, we shall consider the coupling between the P3/2(I s) and P&/2(I ~), one obtains the
radial Hamiltonian,

r

H( —', ) v'6X

~SX' H( —,', r, )
(9)

where H( —', ) is the Hamiltonian for P3/2 and H( —, , I s) is the Hamiltonian for P&/2(l s) given by (8), and the coupling
matrix X is

2@6 d 2 d 2+
dr2 r dr r~

18 d~ 7 d 8

175 dr~ r dr r~+ — +

2~6 d 3 d 3

175 dr~ r dr r
22 d 2 d
175 dy r dr

+— 12

r 2

(10)

Until now, these equations have been solved only by
variational methods and only 1S, 2S, and 2P states have
been calculated. Before going into the numerical solution
of Eqs. (7), (8), and (9), we shall examine the properties of
coupled equations using the perturbation theory. Beyond
n=2 (where n is the usual hydrogenic principal quantum
number), Eq. (7) gives for p=O degenerate hydrogenous
states (3S,3D), (4S,4D), etc. For p~O these states split
into two states each, that we write for small values of p in
the form 4), b ——/I P, +Bgd, where P, and Pd are the S and
D degenerate initial hydrogenic functions. 2 and B are
given by

)
1/2 (V, )'"

and B =
(V +V )1/2 (V, + V, )'"

where

d 5 d 3
2+ — +

&dr r dr r

and

5 d 3
2 ——P d 2+ d

+ 2 s
dr r dr r

The corresponding energies are E, b Eo +)I2,Q( V~ V2 ). ——
As a result, we find for n=3, E, b

———,'(1+1/~10) and
3 =B =1/V 2. We shall denote, hereafter, the upper lev-
els associated with E, and which are of "bonding" char-
acter, by S3/2 The lower ones, associated with Eb and
which are of "antibonding" character, will be denoted by
S3/2b Note that E, increase and Eb decrease when p in-
creases; this result will be exploited in the following sec-



35 HIGHER EXCITED STATES OF ACCEPTORS IN CUBIC. . . 689

tions. The above Hamiltonia. n will be numerically solved
in Sec. III.

III. METHOD OF SOLUTION AND RESULT

Up to now, there was no systematic method to calculate
higher excited states of (7), (8), and (9), only variational
methods ' which give the lowest states, or a coarse empir-
ical relationship have been employed. We shall solve the
coupled radial equations by the finite-element method.
The same method was used by Mattausch and Uihlein to
calculate the fine structure of P excitons in CuBr. The
main idea of the finite-element method is to approximate
the differential operators occurring in the eigenvalue
equations by finite difference expressions using the values
of the wave function at neighboring equidistant points.
For this purpose the argument of the radia1 functions is
regarded as a discrete variable running through equidis-
tant points within an interval given by the origin and a
cutoff radius. The origin has to be excluded as one of the
discrete values of the variable», because of the singulari-
ties of the differential equations occurring there. We re-
strict ourselves to the first-order term in the development
of the differential operators. Then the differential opera-
tor

V)

CD

CO

0. 1 12

Here h is the distance between the points. The choice of
the number of points n and the cutoff radius depends on
the state to be computed. As an example, to compute
5P&~2(I s) we take the cutoff radius value 70ao.

In order to diagonalize the resulting matrix, we use
Arnoldi's method. The principle of this method is the
following. To compute the desired eigenvalues and eigen-
vectors of our n )&n matrix, we begin by constructing a
basis of dimension m &&n; we project our matrix on this
basis and we obtain a H matrix. The diagonalization of
H gives the desired eigenvalues and eigenvectors. The
detail of this method is explained in the Appendix.

In typical cases, to compute 12 eigenvalues and their
eigenvectors, it takes about 3 min on a NAS 9080 com-
puter. We have checked that the n law is satisfied for
the hydrogen case (@=0,5=0). Degenerate states are
correctly calculated. A good agreement has been obtained
for small p (0 & p &0.06) between numerical solutions and
the perturbation theory, as shown in Fig. 1. For all p we
obtain good agreement in 1S, 2S, and 2P states with Bal-
dereschi and Lipari. '

QLL' d ALL'

2 + +
d» » d» »

0.1i ]

where, for L,L'=0,2,

CD

CD 0. & &0

aLL'=
2 5 0

~LL' 0

0.02 0.03
I

0.04

and for L,L'=1,3, Cb)
~ ~

.r. ~ '' - C.55
~ ~

a
)Q

QLL = 2 7 —2 8

3 2 ~ ~LL' 3 12
0
I

—0.50

are now replaced by the n Xn matrix approximating DLL ~

which is given by
I

0.00 0.0 i
I

0.02
I

0.03

~ +~6

I
0.04

- 0.45

1
(DLL );; = (5;; )+5;;+)—25;; )

~ll'
+ (5i,i —1 5ii'+ 1' ) + 7. ,ii,2»h ' '

»

FIG. 1. (a) Calculated 3S3/Qg and 3S3/2$ energies using the
numerical method (solid curve) and perturbation method theory
(dashed curve). The energies are in units of the effective ryd-
berg Ro. (b) s-norm contribution to the 3S3/2 and 3S3/2$
eigenvectors using perturbation theory (solid curve) and numeri-
cal results, dotted curve for 3S3/p and dashed curve for 3S3/2$ ~
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TABLE I. Energies of the first eight S3/2 acceptor states as functions of the parameter p. The energies are in units of the effective
rydberg Ro. Because of the level crossing for larger p (see Fig. 2), the entries are presented here in order of decreasing energy.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

0.9998
1.0021
1.0089
1.0205
1.0372
1.0596
1.0886
1.1250
1.1706
1.2274
1.2984
1.3800
1.5029
1.6537
1.8580
2.1478
2.5885
3.3375
4.9091

10.122

0.2500
0.2509
0.2535
0.2580
0.2644
0.2728
0.2835
0.2968
0.3131
0.3331
0.3558
0.3880
0.4265
0.4762
0.5426
0.6355
0.7750
1.0082
1.4830
2.9142

0.1111
0.1131
0.1156
0.1189
0.1231
0.1282
0.1345
0.1421
0.1521
0.1623
0.1758
0.1924
0.2132
0.2400
0.2756
0.3253
0.3992
0.5218
0.7669
1.4713

0.1111
0.1095
0.1081
0.1069
0.1056
0.1042
0.1028
0.1013
0.0999
0.0986
0.1047
0.1150
0.1281
0.1448
0.1671
0.1981
0.2444
0.3208
0.4726
0.9060

0.0624
0.0640
0.0658
0.0681
0.0709
0.0743
0.0784
0.0832
0.0890
0.0958
0.0967
0.0953
0.0944
0.0986
0.1128
0.1338
0.1654
0.2177
0.3216
0.6179

0.0624
0,0611
0.0598
0.0586
0.0574
0.0561
0.0548
0.0544
0.0585
0.0633
0.0691
0.0760
0.0844
0.0902
0.0901
0.0966
0.1192
0.1572
0.2328
0.4491

0.0397
0.0409
0.0424
0.0441
0.0461
0.0471
0.0507
0.0534
0.0520
0.0507
0.0516
0.0549
0.0611
0.0693
0.0800
0.0880
0.0914
0.1189
0.1764
0.3414

0.0394
0.0383
0.0371
0.0356
0,0356
0.0414
0.0411
0.0415
0.0423
0.0433
0.0483
0.0490
0.0483
0.0520
0.0602
0.0718
0.0853
0.0934
0.1381
0.2682

The energies of the first eight S3/2 states are given in
Table I as a function of p. Figure 2 shows the energy
spectra of these states except for the ground state 1S3/2
already reported by Baldereschi and Lipari. We can see
from this diagram that, except for n =2, each hydrogen-
like state nL splits into two levels (S3/2 S3/2Q) when
spherical "spin-orbit" coupling increases from 0 to 1, and

0.60

p.5p--

0.40--
D

Q))
O
CD

0.30™

.c 020
C:

0. 1Q-

0.00 0.9p p.4p

09

p.ho 0.10 P

FIG. 2. Calculated acceptor energy spectrum of nS3/2
(n =2, 3, . . . , 8) states as function of the parameter p. The en-
ergies are in units of the effective rydberg Ro.

the nS3/2 states increase with p while the nS3/2b decrease
with increasing p. This gives rise to the possibility of lev-
el crossing, but these crossings are forbidden because the
states have the same symmetry. This leads to a totally
different structure of the spectra in the real acceptor re-
gime p=0.6 in contrast to exciton spectra for which

p =0.1. It is also clear from Fig. 2 that, if we always con-
sider the first eight states, then for p &0.20, three states
(the 3Sq/zb, 4Sq/zq, and 5S&/zq states) are of antibonding
character. For 0.20 &p &0.68, only two states remain
with antibonding character (the 3S3/pb and 4S3/pb states),
while for 0.68 &p &0.86, only the 3S3/pb state is left with
antibonding character. For p~0.86 all the first eight
states are of bonding character. One should note, howev-
er, that for the values of p for which the level repulsion
occurs, the wave functions deviate considerably from hy-
drogenic wave functions. Among the states represented in
Fig. 2, let us now consider, for example, those represented
by the dashed curve. We can see that, for p &0.46, the
state represented by this curve is the 4S3/2, state, while it
becomes the 3S3/2b state for 0.46 &p & 0.68, and the
6S3/2 state for p) 0.68. This clearly shows the gradual
disappearance of the antibonding character, and proves
that p is an important parameter for determining the na-
ture of the various states and subsequently the transitions
associated with them. We have also computed the norm
(magnitude) corresponding to each S3/2 The contribu-
tion to the magnitude coming from f (r) is noted s norm,
and the contribution coming from g (r) is noted d norm.
The normalization procedure is identical to the one
described in Ref. 3. We note that, except for particular
values of p (p=0.45 and @=0.60) for which the 5S3/2
state has a predominantly d character (d norm=0. 9), the
difference between the s and d norm (=0.2 or less) for
each S3/p state is not sufficient to predict the predom-
inant character of the state.
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1.20

1.00'

0.80

0.60

0.4O
C:

So much for the S states. Let us now turn our atten-
tion to the P states which, apart from the shallowest three
(n =2), have not been reported previously either theoreti-
cally or experimentally. The energies of the first nP
(n &6) for typical values of 5 (5=0.05 and 5=0.15) are
tabulated as a function of p in Tables II and III, respec-
tively. The corresponding spectra are given in Figs. 3 and
4. We note that nP(I s) increase more rapidly than
nP(I 7) when 5 increases; this causes crossings between
these states. Unlike the case of the S states, however,
crossings here are allowed because of the difference in
symmetry. In Fig. 4, the first crossing between 3P&/z(I 7)
and 4P3/2(I s) is for p =0.66, the next between 2P5/2(1 7)
and 3P3/p(I s) is for p=0.71 and another one between
3P5/2(I 7), and 4P5/z(I &) is for p=0.86. However, there
is no crossing in the region (0.00 & p &0.86) in the case of
5=0.05, as is shown in Fig. 3.

0.20

0.00 0.00 0.40 0.60 oho p

1.20

1.00-

(D

~ 0.80
CD)
O
Q)

0.20-

0.00 0.20 0.40 0.60 o.so p

FIG. 4. Same as Fig. 2 but for a cubic coupling parameter
5=0.15. The energies are in units of the effective rydberg Ro.

FIG. 3. Calculated acceptor energy spectrum of nP
( n =2, 3, . . . , 4) states as a function of the parameter p and for
a cubic coupling parameter 6=0.05. The energies are in units of
the effective rydberg Ro.

IV. COMPARISON WITH EXPERIMENT

In this section, we compare our calculated values with
the given experimental ones. A considerable amount of
experimental data now exists for acceptor centers in II-VI
and III-V compounds, particularly in ZnTe, CdTe, ' and
nP, " where luminescence, infrared absorption, and Ra-

man spectroscopy have been used to measure the ground
and excited states. Let us focus our attention on Li- and
P-doped ZnTe (for which detailed experimental data

5,9, 12 —15
a a are

avatlable ' '
) since it is known experimentally that Li

and P are shallow acceptors and hence the influence of the
central-cell correction is expected to be negligible for ex-
cited states. We have calculated some values of excited
states using the values of p and 6 proposed by Venghaus
et al. ' (p =0.57, 5=0.12), or by Nakashima et al. '

(p =0.61,5=0.15). These values of p and 6 do not lead to
a perfect agreement between the measured and the calcu-
lated energy values. Better agreement is found if we use
the values of p and 6 proposed by Herbert et al.
(p=0.58, 5=0.12). Furthermore, the latter authors have
supposed that in p-type ZnTe the 5S3/2 and the 8S3/p
states are of predominantly d character. The results of
our calculations on the S states do not contradict this sup-
position, especially since the value of p (p=0.60) which
we have reported for ZnTe in a previous publication (Ref.
15) falls nicely within the range (p =0.45 and p =0.60) for
which we established here that the 5S3/2 state has consid-
erable d character, but this is not so significant for the
8S3/2 state for which we found d norm =0.65. It is
worth noting that this value of p (p=0.60) is distinctly
different from any value for which level crossings may be
encountered.

All the proposed values of p and 5 give the same classi-
fication for the acceptor states which were proposed by
Venghaus and Dean for ZnTe:As spectra, where phonon
and electronic spectra are widely separated. This classifi-
cation shows that 3S3/p is higher than 2P5/2(I 7) and
necessitates a reinterpretation of the Zn Te:Li and Zn Te:P
spectra given by Nakashima et al. ' The P and As cases
show the effect of the central-cell correction that one can
isolate by considering the difference between the measured
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and the calculated ground-state values. In Table IV we
give a comparison between our calculated values and the
experimental results of Refs. 5 and 9—13 corresponding to
the shallowest acceptor in each case. For the values pro-
posed by Nakashima et al. ,

' we compare the experimen-
tal and theoretical data to within a constant (3.1

meV= Eg v,„Eg—N, ), where Eg v,„and Ez N, are the en-

ergy gap of ZnTe proposed by Venghaus and Dean and
Nakashima et al. ,

' because their experimentally deter-
mined energy gap is incorrect. ' It should be noted that in
our calculation we have used the values of p and 6 which
were proposed by the authors of the above-mentioned
references. In the case of the II-VI compounds we note
that, using these proposed values of p and 6, the agree-
ment between experiment and theory is not very satisfac-
tory. However, in the case of the III-V compounds, such
a comparison between theory and experiment for higher
acceptor excited states is not as easily possible because
such states are known to be difficult to be measured ex-
perimentally.

V. CONCLUDING REMARKS

The comparison between our energy levels using the
proposed p and 6 values and the experimental ones is
satisfactory. However, these parameters are determined
only from the few low-lying excited states that are easily
affected by the central-cell effect and are therefore ap-
proximate. We have shown in the case of ZnTe (Ref. 15)
that these values of p and 5 can be determined more accu-
rately if we take into account the higher excited states.
This will also apply to other compounds as well. These
higher excited states are worthy of further attention.

In Fig. 2 we have shown that some levels may change
their character (for example bonding to antibonding) when

p varies. This implies that the corresponding transitions
to these levels may or may not be detected. For example,
in the case of ZnTe Herbert et al. report that they have
not seen the transitions corresponding to the 5Sq&2 and

8S3/2 states because these states are of predominantly d
character. Furthermore, it is perhaps worthwhile giving
further attention to the study of D states, since we have
shown in the case of p-type Zn Te the existence of, for ex-

ample, a 3D,&2(I 8) state between the 2P&&2(I 7) and

3P3/2 states (Ref. 14). To our knowledge, such D states
have not been treated in the literature. We hope to treat
these questions in the near future.

In conclusion, we have shown that excited acceptor
states associated with a degenerate valence band can be
obtained almost as systematically as donor excited states.
Our new approach will allow the exploration of experi-
mental results so far discarded because of the lack of nu-

merical calculations. To make reliable predictions, our
comparison between experimental and theoretical data in
the case of p-type ZnTe (Ref. 15) leads to new and better
Luttinger valence-band parameters y~, y2, and yq that, up
to now, had been given by variational methods. Our
method shows that more observed spectra must be reinter-
preted with closer attention to higher excited states for
which more crossing may or may not be possible depend-
ing on the state symmetry.
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APPENDIX: INVERSE POWER METHOD

To partially diagonalize the resulting matrix, we use the
Arnoldi method. The principle of this method used to
compute the eigenvalues and eigenvectors of a matrix 3 is
the following: One starts with an initial vector v& and at
every step compute AU; and orthogonalizes it against all
previous vectors to obtain U;+ &. At step m, this will build
a basis V =

I U; I; &
of the subspace K spanned by

V =
I v&, A ~, . . . , A 'U, ). By projection onto this

basis, the original n Xn matrix A is then reduced to an

m)&m matrix, where m &&n. The restriction of 3 to E
is represented in basis I U; I by a Hessenberg matrix H
(H = V A V ). The eigenvalues of 8 will provide ap-
proximations to the eigenvalues of 2, and eigenvectors z;
of 3 in K areobtainedof H onesy; by z;=V y;.

In some cases, the Arnoldi method necessitates more
steps to ensure convergence of the process, and this be-
comes expensive and impractical. In order to avoid the
shortcomings of the iterative performance, we use it in
conjunction with the inverse power method' (Arnoldi in-
verse power method) that is equivalent to Arnoldi's
method applied to the operator B+ ——Re(A —crI)
where Re stands for the real part of (A —oI) and o is a
complex number that we call shift. It is desirable to work
with the shifted and inverted operator B+ in order to
enhance the eigenvalue separation and improve efficiency.
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