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Quasiparticle spectrum of the Hubbard model
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We study the quasiparticle spectrum of the Hubbard model by using a projection-operator formal-
ism of the Green s function. In the weak-electron-correlation regime, we obtain the exact results up
to second order in the intra-atomic interaction. For strong electron correlations, the quasiparticle
spectrum consists of two bands. For each band, the quasiparticle energy is obtained exactly up to the
first order in the transfer integral. We also propose a semiclassical approximation which gives the
above-mentioned exact results in proper limits.

I. INTRODUCTION

Because of its simplicity and richness, the Hubbard
model has been extensively studied to investigate the mag-
netic ordering and metal-nonmetal transitions in narrow-
band systems. ' The exact solutions of the model are of
fundamental interest because if we can solve it exactly, we
can establish some minimal requirements for the existence
of magnetism and metal-nonmetal transitions. The pur-
pose of this paper is to obtain exact results for the quasi-
particle spectrum in weak and strong correlation regimes
and propose a semiclassical approximation which can give
these exact results in proper limits.

We obtain the quasiparticle spectrum by using a
projection-operator formalism of the Green's function.
This formulation has been developed by Fedro and Wil-
son for the single-particle Green's function. Here we use
its generalized version proposed by Kishore for the
many-particle Green's function. The quasiparticle spec-
trum is analyzed in the limiting case of weak- and
strong-electron correlations. For weak correlations, we
obtain the quasiparticle spectrum exactly up to second or-
der in the intraatomic interaction. For strong correla-
tions, the quasiparticle spectrum splits up into two bands.
The quasiparticle energy in each band has been expanded
exactly up to first order in the transfer integral. In addi-
tion to these exact results, we propose a semiclassical ap-
proximation for the damping part of the quasiparticle en-

ergy. This approximation gives the above-mentioned ex-
act results in the proper limits.

In Sec. II we give a brief outline of the projection-
operator formalism and describe the Hubbard model. ' In
Sec. III we study the quasiparticle spectrum in the weak-
and strong-correlation regimes. In Sec. IV, a semiclassi-
cal approximation for the damping part of the quasiparti-
cle energy is proposed. Finally a brief conclusion is given
in Sec. V.

Green's function'

B (r) eiHtBe —iHt eiLtB (2)

where H is the Hamiltonian of the system, B=B(t=0),
and for any arbitrary operator 7 the Liouville operator L
is defined as

LX=[H,X] (3)

The square brackets correspond to a commutator for
g= —1 and an anticornmutator for g=+1, the angular
brackets denote the ensemble average, and the system of
units is chosen such that %=1.

For the sake of convenience, we work with the Fourier
transform of the Green's function

G~it(ttt) = f G~It(t)e ' 'dt,

which, after substituting the expressions for G„~(t) and
B(t) from Eqs. (l) and (2) and then performing the in-
tegration, takes the form

G„atm)=( B,

where @~0+. Just for brevity, hereafter we shall omit e
by understanding that co —i@ is replaced by co. If we mul-
tiply both sides of Eq. (5) by co and rewrite to/(to L) as—
l+[L/(co L)], we ge—t

s)G ~„t m ) = ( [ B]„)B+
(

L
N —L

J 7J

G (t) =i B(r) & [W,B(r)]„),
where B(t) is the Heaviside unit step function, and A and
8 are any scalar or vector Heisenberg operators. The
time dependence of the operator is given by

II. GENERAL FORMULATION

We first describe the projection operator formalism of
the Green's function. Let us consider the retarded

which is just the Fourier transform of the equation of
motion of the Green's function G„~(t).

The essence of the projection operator formalism is to
break up the operator 1/(co L)Bas—
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where P is the projection operator. We define it by

y„8(m)=( A, L 1
(1 P—)LB

co —(1 P—)L

PX=B&[A,B]„) '&[A,X]„) . (8) x &[A,B]„&-' (18)

where

A, L(1 P) — 81

'

r/

(9)

II „s= & [A,LB)„)& [A,B]„) (10)

It is easy to show that the operator P is a projection
operator, namely P =P. Replacing the operator
I/(co L)8—in Eq. (6) by Eq. (7), we get

coG „ll (co ) = & [A,8 lg ) +0wa G„s(cg )

The above Eq. (17) is the matrix version of the expres-
sion for the Green's function obtained earlier by the
present author. In deriving this equation, it is implicitly
assumed in the definition of the projection operator that
the matrix & [A,B]~) is not a null matrix. Hereafter, Eq.
(17) of the Green's function Gzz(co) will be our starting
point for all further calculations. As a concrete applica-
tion of this equation, we shall study the quasiparticle
spectrum of the Hubbard model, described by the Hamil-
tonian

Now we shall try to relate the third term of the right-
hand side of Eq. (9) to the Green's function Gzz(co). It
can be done by using the operator identity

1 1 + PL
1 1

co Leo ——( 1 P)L —co —( 1 P)L cg—L—
Multiplying the above identity by the operator (1 P)—
from the left and by the operator B from the right, we get

and

~e =g &ij ai Gaj G i

IJCT

HU ——Ug nn;

H=H, +HU,
where

(19)

(20)

(21)

(12)(1 P) —B=(1 P) — P 8 .
co —L co —( 1 P)L co L— —

In obtaining Eq. (12), we have used the relation

(1 P)B =0, — (13)

1+ (1 P)L—
co —( 1 P)L—

and using the property of the projection operator

which follows from the definition of the projection opera-
tor P. Rewriting co/[~ —(1 P)I ] as—

a; and a; are the annihilation and the creation operator
of an electron of spin u at the site i; e;J is the transfer in-
tegral associated with the sites i and j; U represents the in-
traatomic correlation; and n; —=a; a; is the number
operator corresponding to site i and spin o. . We assume
that the system described by the Hubbard Hamiltonian
(19) is translationally invariant.

The quasiparticle spectrum is obtained from the Fourier
transform Gi, (co) of the single-particle Green's function

(22)

P(1 P) =0, —

Eq. (12) becomes

(14) The Fourier transform Fl, (co) of any function Fl (co) is
defined as

(1 P) 8= — (1 P)LP 8 —.1 1 1

co Lco—( 1 —P)L —co L—(15)

(1—P) 8 = (1 P)LB—1 1Lco—( 1 P—)L—
Now, by using the definition of the projection operator for
P[1/(cu L)]B, we can r—elate the right-hand side of Eq.
(15) to the Green's function G~ll(co) as

(23)

where N is the number of lattice sites. The Green's func-
tion G;, (co) can be obtained from Eq. (17) by choosing
A =—I a; I and 8 —= I ai I as N component vectors. If we
denote the projection operator P as P for a fixed o., the
definition (8) of the projection operator P and the Eq. (17)
for the Green's function G~z(co) can be written as

x &[A,B]„) 'G„s(~) . (16)

and

P X=+a, & [a),X]+),
J

(24)

Substituting Eq. (16) in Eq. (9), we get a closed equation
for the Careen's function y[~~il +ilG ril (~)]G1j (~) ~ij

I

(25)

where

where the damping term y „s(co ) is given by n, l =&[a;,La,t ]+&, (26)
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and

rn )~)=( a;„,L )) P)L—a;
1

1 —( 1 P—)L

On taking the Fourier transform of Eq. (25), we get

(28)

ant, ( n; ) must be independent of the site i. Therefore,
hereafter we shall write (n; ) =n . We should note
that we could obtain the quantity A;& exactly, but the
damping term y;i (co) is still written in terms of the quan-
tity y;J (co). In general, it is not possible to obtain it ex-
actly. However, in the next section we shall try to obtain
it exactly in the limiting cases of weak and strong correla-
tions.

where Qk and yk (co) are the Fourier transforms of II;i
and y;& (co), respectively. Equations (26) and (27) can be
simplified by using the following identities

III. QUASIPARTICLE SPECTRUM IIV WEAK-
AND STR(3NG-CQRREI. ATION REGIMES

L,a,.=g e„a. , (29) A. Weak-correlation regime

L, Uaj u Unj —~aj e

(1 P)a~ =—0, (31)

The quasiparticle spectrum ~k corresponding to the
wave vector k and spin o. , obtained from the poles of the
Green's function (28), is given by

([a, , (1—P )X] ) =0, (32) ~k. =&k.+yk. (~k. ) . (37)

and for any Xand Y

([X,LP] ) = —([LX,Y'] ) . (33)

Substituting the Fourier transform of 0;& and y, &
(co)

from Eqs. (34) and (35), respectively, in Eq. (37), we get

(35)

where

y;i (ai)= a; n;
1

P )L tT I —cT lo'(1 P)n a—
CT

, +

(36)

Since the system is assumed to be translationally invari-

Here L, and LU are defined by Eq. (3) for the Hamiltoni-
an 0, and HU, respectively. By a simple and straightfor-
ward algebra, the application of the above identities
(29)—(33) in Eqs. (26) and (27) gives us

(34)

cuk~ ——ek+ Un ~+ U yk~(cok~),

where ek and yk~(cok ) are the fourier transforms of e;&

and y;i, respectively.
The weak-correlation regime can be considered of

academic interest because the Hubbard model does not
apply to real physical system if the correlation is not
strong. In this regime for the extreme limit of zero in-
traatomic correlation (U =0), the quasiparticle spectrum——Ek and, therefore, the right-hand side of Eq. (38) can
be expanded in ascending powers of U. An expression
which is exact up to the second order in U is given as

~k ~k+ Un — + U [yk (~k)]U=o

The quantity [yk (ek)]~ 0 can be calculated exactly from
Eq. (36). It is given by

[ y~k&()k]U=o= g e a;n,
1

(1 P)n~ a&—
ek —1 P)L, — (40)

If we transform the operator a; as

1 ik R;
ai~ = — ak~e (41)

Eq. (40) can be rewritten as

1
[) k Ek)) )D= Up g ( k k k+ka a a (1 —P )a a a~

kg —cr k4 —o. k+- k4 —k3(7

ki, k2, k3, k4

The awkward presence of the opertors P and L, in Eq. (42) can be destroyed by using the following easily verified iden-
tities

(
k — ak — ak —k —k k — k — k+k —k ~ k — k — ) k k, k (43)

[( )L ] ( P ) k — k — ak+k —k ( k ~k+k —k ~k„) ( P )ak — ak —oak+k —k

Using the above identities in Eq. (42), we get
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1 1
[yk.(&k) ]U =o =

N kl k2 k3 k4 ~k+~k4 Ck3 k+k4 —k3

j+ ( [ak, ak — ak+k —k — (ak — ak — ~ak3 — ak — i k, k i k+k —k l+ & (45)

Since for U=O the Hamiltonian (19) is quadratic in k space, we can apply the Wick's theorem" for the ensemble aver-
ages in Eq. (45) and get

(1 nk — )+(nk — nk — )nk+k —k
[yk (&k)]U=o=, XN kl k k+ 6k I ~kg ~k+ kl —k2

(46)

where

n« —=a k~a« . (47)

+
( [a ia n i ar —Laj (J ]+ )

&ij o- = (51)

It should be mentioned that the expression (39) with ex-
pression (46) for [yk (ek)]U o can be obtained from the
quasiparticle spectrum, obtained by Chao et aI. in weak
correlation regime. However, their expression also con-
tains terms of higher than second order in U.

B. Strong-correlation regime

and

+f,g'o(Cc7 ) =

L
a; n;, + (( —P (La&

)cu —( 1 —P —)L

(52)

Gk (~)=Gk (io)+Gk+ (~), (48)

In strong-correlation regime for an extreme case of zero
bandwidth (ek ——0), the Hubbard model is exactly soluble. '

In this case the quasiparticle spectrum consists of two en-
ergy levels at cok ——0 and cok ——U. Because of this two-
level structure of the quasiparticle spectrum, it is not pos-
sible to apply the expansion procedure of the previous sec-
tion for small ek. We have avoided this diSculty by con-
sidering the Green's function Gk (co) as a sum of two
Green's functions Gk (co) and Gk+ (~o) such that, for zero
bandwidth, the quasiparticle spectrum of Gk (co) and
Gk+ (co) consists of only one level at cok ——0 and cok ——U,
respectively. This procedure has been erst suggested by
Hubbard. ' Following him, we write

respectively. In Eq. (52), the projection operators P are-
de6ned as

P X= —g a)t ( [a& nJ*,X]+ ) .n-—a j
(53)

Eq. (50) shows that the quasiparticle spectrum consists of
two types of elementary excitations whose spectrum is
given by

+ + + +
~k IIk + Yk (54)

The quantities Qq~ and yk (co&~) can be calculated from
Eqs. (51) and (52). Using the identities (29) and (30) in
Eq. (51), it is easy to see that

where Gk (cu) are the Fourier transforms of the Green's
functions

Qk ———(I+ I)+e-„.U
2

(55)

1
GJ (ra( a; n;, a((

). +
(49)

To calculate the damping terms yk (cok ), we use the fol-
lowing identities

with n;+ =n; and n; = 1 —n; . If we choose
2 =

I a; n;+ I and B—= [a~ I as N component vectors in
Eq. (17), the Green's functions Gk (co) become and

(1 P)L,a& ——0— (56)

Gk (co)=[co flak y—k (co)—] 'n* (50)
([LUa; n; , (1 P )X]+)=0——— (57)

where n — =—(n; ), Qk, and yk (co) —are the Fourier
transforms of in Eq. (52) and get

—Ik-(R; —R ]
cok —( 1 P )L——

o' o' +
n

(58)

Further simplication of yk (cok ) is difficult because of the presence of the operator (1 P )L in the de—nom—inator of the
right-hand side of Eq. (58).
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Now, to calculate the spectrum cok, we substitute Eqs. (55) and (58) in Eq. (54) and observe that, in extreme limit of
strong correlation (ek ——0), cok ——( U/2)(1+ I ). It shows that the spectrum of each elementary excitation can be expanded
in power of the Fourier transform of the transfer integral ek. Up to first order in ek, we get

~ka= —(1+1)+&k+)'ka,
U
2

where

(59)

—+
'V t~=— (1 P+ )L—~ai—

1 —ik (R; —R~ ) + 1L eaiani a~-
n —~ (I —j) —(1+1)—(1 P )L—ii—

2

(60)

By using the identities

(1 P )L, ~a—, =—U[n —
—,'(1+1)]a (61)

and

n

[(1 P )Lti]"(—I P— )Ltiaj—=— (1+ 1)(1 P )Liia"— —
U go (62)

Eq. (60) can be further simplified to

y ka ——+ + g e ' ' ( {L,a, n; , [ni —
—,'—(1+1)]a )+ ) .

n —CT 1 —J
(63)

With the help of a little lengthy but straightforward alge-
bra, we can rewrite Eq. (63) in a more recognized form

j.e.,

[H„H~]=0 . (67)

—+
7 k~= —& —~&k— (64)

where

Bk ——g e ' '([L,a; n;, (1 P)n a —]+) .
(I —j)

We shall call it semiclassical approximation in the sense
that in classical mechanics H, and HU commute each
other.

The calculation of the commutator of Eq. (67) shows
that this semiclassical approximation is equivalent to the
condition

A detail form of Bk is given by Fedro and Wilson. Sub-
stituting Eq. (64) in Eq. (59) we get the spectrum mk as

U
k k+q k+qa ka q —a

where

(68)

U + &k~
oak ———(1+1)+n — e-„—

n
(66) 6'q ——g n; e'q (69)

Thus we see that in strong-correlation regime, the
quasiparticle spectrum consists of two bands of elementa-
ry excitations. The quasiparticle energy of each band,
given by Eq. (66), is exact up to first order in the transfer
integral. This form of the quasiparticle energies of the
bands represents the Esterling-Lange-type result in its
more complete form.

IV. SEMICLASSICAL APPROXIMATION

An approximation, which can be applied throughout
the range of electron correlations with reasonable
confidence, is of a great value in absence of an exact solu-
tion. The reliability of the approximation depends on
how well it reproduces the rigorous results in the limiting
cases. In this section we propose a semiclassical approxi-
mation for the damping term yk (cu) of the quasiparticle
spectrum. In calculating this damping term we assume
that the Hamiltonians H, and HU commute each other,

Equation (68) shows that this approximation can be ex-
pected to give reliable results for narrow bands
[(E'k —Ek+q) -0] and weak-correlation regime ( U -0). In
addition to this it can be a good approximation for para
and ferromagnetic states, where (nq ) = (6'o ) 6q.o and
(nq —(nq) )-0.

The assumption (67) can also be written as

[Lti,L, ]X=0,
which in turn gives

([A,L,B]„)= —([L,A, B]q)

(70)

(71)

([A,L B]„)= —([L A, B]„). (72)

Equations (71) and (72) follow from the cyclic invariance
of the trace implied in the ensemble averages. For
+=ak, Eq. (70) gives us
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[LU, L,]a-„=(e-„—L, )L Ua-„

which is possible only if

LUa kyar fkaakcr (73)

where fk is a real constant because the Hamiltonian HU
is a Hermitian operator. By using the above relations
(70)—(73) and the definition (24) of the projection operator
P, it is straightforward to show that

The Fourier transform yk (to) of Eq. (77) can be directly
obtained by the procedure used to calculate [yk (ek)]U
in Sec. III A. We simply need to replace ek in Eq. (40) by
co —U(1 —n ). It also immediately shows that this ap-
proximation reduces to exact results of Sec. III A in weak
correlation regime because [yk (ek)]U o obtained from
Eq. (77) is exactly equivalent to that of Sec. III A.

For strong correlations, if we expand the term

[(1 P)LU—, (1 P)L,—]+=0 . (74)
to —U( 1 —n ) —( 1 P)L—,

This commutativity of the operators (1 P)L—U and
(1 P)L, e—nables us to calculate yk (co). In addition to
Eq. (74), if we use the following identities

as a power of (1 P)—L, and retain only the terms up to
the first order in I „we get

and

(1 P)nt at———(nt —(n( ) )at (75) U ([a; nt, (1—P )nt at ]+)
co —U(1 —n )

[(1 P)LU—]"(1 P~)nt —at~

= [U(1 n)]"(1 —P)nt —at (76)

U ([L,LUa;, (1 P)LU—at~]+ ~

+
[to —U(1 n—)]2

(78)

in Eqs. (35) and (36), we get

y ;t~(co)=U a; n;2 1
'

co —U( 1 n) —(1—P)L, — P L,(1 P)LUat ———0 . (79)

In deriving Eq. (78) we have used the relation (71) and the
identity

X(1—P In, a„) .

, +
(77) Substituting Eq. (78) in Eq. (38), the quasiparticle spec-

trum is given by

e ~ ([L,LUa;, (1 P)LUat~]—+)
(i —j)

co(co —U) = [co—U(1 —n )]uk+
to —U(1 n)— (80)

which up to first order in ek gives two roots cok given by
Eq. (66). Thus we see that the present approximation
reduces to the exact results in both weak and strong
correlation regimes.

V. CONCLUSION

We obtained the rigorous results for the quasiparticle
spectrum in weak- and strong-correlation regimes and

proposed a semiclassical approximation for its damping
part. We have not analyzed the full implications of this
approximation. But it does contain the promise of a
reasonable solution of the Hubbard model throughout the
range of electron correlations. We hope that a detailed
analysis of this approximation should tell us how the
Hubbard model would really behave.
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