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Long-lived droplet fluctuations can dominate the long-time equilibrium dynamics of long-range-
ordered Ising systems, yielding nonexponential decay of temporal spin autocorrelations. For the
two-dimensional pure Ising model the long-time decay is a stretched exponential, exp(—V'7/7),
where ¢ is time and 7 a correlation time. For systems with quenched random-exchange disorder the
spatially averaged correlation decays as a power of time, ¢t ~*, with the exponent x in general being
nonuniversal. For systems with quenched random-field disorder the decay is slower still, as
exp[ —k (Inz)@ =274 =D where k is a nonuniversal number and d is the dimensionality of the sys-
tem. The low-frequency noise from this slow dynamics may be experimentally detectable, as is the
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analogous noise in spin-glass ordered phases.

I. INTRODUCTION AND SUMMARY

The symmetry that is spontaneously broken in the
low-temperature ordered phase of an Ising system is a
discrete symmetry. The low-frequency, long-length-scale
fluctuations in the ordered phase arising from this broken
symmetry are droplets of reversed spins surrounded by
domain walls. Like the analogous Goldstone modes of a
system with a spontaneously broken continuous symme-
try, these droplet fluctuations can dominate long-distance
and long-time correlation functions of ordered phases
with discrete symmetries. Here, for simplicity, we discuss
Ising systems, but the ideas we present apply quite gen-
erally to any system with a spontaneously broken discrete
symmetry.

Droplet fluctuations have not received much attention
in the literature, perhaps because their effect on thermo-
dynamic observables in Ising systems without quenched
disorder is only to produce some essential singularities at
points of multiphase coexistence.! Recently, Abraham?
showed that the anomalous long-distance decay of spatial
spin-spin correlations in the ordered phase of the exactly
solvable two-dimensional Ising model® is due to droplet
fluctuations. Here we extend this work to discuss both
spatial and, especially, temporal correlations in equilibri-
um of d-dimensional ferromagnetic Ising systems without
disorder (Sec. II), with quenched random exchange disor-
der (Sec. III), and with random fields (Sec. IV). The Ising
spin glass has already been considered in a separate publi-
cation,* and here we contrast the results with the fer-
romagnetic systems.

Droplet fluctuations occur only for temperatures, 7,
less than the ordering temperature, 7., where multiphase
coexistence is possible. Figure 1 depicts a droplet fluctua-
tion D. The droplet is a “down” domain embedded in the
“up”-magnetized phase. The domain is surrounded by a
domain wall and contains sites / and j. The free energy of
this droplet fluctuation, Fj, consists of the free energy of
the domain wall and, for systems with random or uniform
fields, the free-energy cost of flipping the interior of the
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domain. In the cases we will be considering the probabili-
ty is very small that there are other nearby droplets
present with which this one would interact. Therefore a
droplet may be treated as a simple two-state system at
temperature 7, either present, with probability
—Fp/T
Pp~= 2 (1.1)
l1+4+e
or absent, with probability 1-pp.

Because it flips the two spins simultaneously, a droplet
fluctuation contributes an amount proportional to
pp(l—pp) to the equal-time correlation between spins at
site / and site j both inside the droplet:

G;=(S:8;)—(S)(S;) .

—Fp/T ?

(1.2)

[Here and throughout this paper the angular brackets
denote an average within the ordered phase being con-
sidered (e.g., the ““up” phase in Fig. 1). This average may
be implemented in the thermodynamic limit either by
boundary conditions that select the phase or by an

t

FIG. 1. A droplet fluctuation of a “down” domain within
“up” phase. The droplet is surrounded by a domain wall (solid
line) and contains sites / and j.
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infinite-time average with an initial condition in that
phase.] One naively expects G; =~exp(—r;; /§), where r;
is the distance between sites i/ and j and & is a correlation
length. Droplet fluctuations do not appear to alter this,
except for introducing a power-law prefactor (see Sec. II)
in any physical dimension for ferromagnetically ordered
Ising systems, with or without disorder. In contrast, for
the Ising spin glass in which droplet excitations are much
more common, we obtained*

(G, [~ri?, (1.3)

where 0<(d —1)/2, and it appears that 0<0<1 for
d =3. The overbar denotes an average over realizations
of the disorder.

The effects of droplet fluctuations on dynamics are
much more dramatic. The droplet fluctuation D in Fig. 1
contributes’ an amount proportional to p,(1—pp) to the
temporal autocorrelation function

Ci()=(S;(0)S:(1)) — (S;)? (1.4)

for spins i within D. The time dependence of this contri-
bution depends on the dynamics of the droplet fluctua-
tion. For a pure two-dimensional Ising model with no
conservation laws constraining its dynamics, we find (Sec.
IT below) a “stretched exponential” decay of C;(1),

[ InC;(t) | ~t'?,

due to the long-lived, large droplet fluctuations. This re-
sult is special to spatial dimensionality d =2; for d >3 the
naively expected exponential decay of C;(¢) does not ap-
pear to be significantly altered by the droplet fluctuations.

For Ising systems with quenched disorder, the domain
wall surrounding the droplet D is pinned to the disorder.
The droplet must evolve continuously by motion of the
surrounding domain wall. The free energy of the droplet
as a function of its volume is shown schematically in Fig.
2. When the droplet is present, with volume Vp, its free
energy is Fp. It is then metastable, with an activation
barrier of additional free energy Bp that must be crossed
in order to remove the droplet. The lifetime of the drop-
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FIG. 2. The free energy, F, of an activated droplet fluctuation
as a function of its volume, V. The metastable state with volume
Vp and free energy Fp is separated from the ground state of no
droplet (¥ =0) by an activation barrier of height Bp.
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let fluctuation, 7p, is therefore activated:

7p ~exp(Bp/T) , (1.5)

and the contribution of the droplet D to C;(z) is propor-
tional to pp(1—pplexp(—t/7p). For long times 7, only
the long-lived droplets with 7, X ¢ contribute significantly
to C;(¢) and thus the long-time behavior is dominated by
rare droplets.

We obtain nontrivial behavior for the average spin-
autocorrelation function C;(¢) for all the cases we consid-
er: For Ising systems with random dilution or random-
exchange disorder (not so disordered that the system be-
comes a spin glass), we find that for long times

Ci(t)~t*1 (1.6)

where the exponent x(7) is generally nonuniversal, de-
pending on the type, strength, and distribution of the dis-
order as well as the temperature. For many systems
x(T)—0 for T—O0, yielding very slow low-temperature
dynamics. If the system has a continuous phase transi-
tion at T =T, we expect x (T) to approach, for T—T,, a
universal value (possibly infinite) determined by the
universality class of that phase transition. For random-
field Ising systems we find an even slower decay,

C_vi(_t_)NeXp[_k(lnt)(d—2)/(1171)] , 1.7
where the number k depends on a variety of properties of
the system. In deriving (1.6) and (1.7) we have tried to
identify the type of droplet fluctuation which is dominant
at long times. If we have failed, the true temporal decay
of the correlations must be slower still, with our results
serving as lower bounds.

For a spin-glass phase, we have previously found

C;(t)~(Inr) 07 | (1.8)

with 0 <8/¢¥ <1, arising from a consistent picture of the
nature of the spin-glass phase and its droplet excitations.*
This result is consistent with the experimentally observed®
1/f low-frequency power spectrum for the magnetization
noise in certain spin glasses. We hope that similar experi-
mental observations of the equilibrium fluctuations in
random-exchange and random-field systems will be con-
sistent with our predictions (1.6) and (1.7).

II. PURE ISING SYSTEMS

Let us first consider droplet fluctuations in Ising sys-
tems without any disorder. The free energy, Fp, of a
large droplet, D, of one phase in the other is just the sur-
face tension, o, times the total area of the domain wall
surrounding the droplet. Here we are discussing droplets
larger than the correlation length, &; these have Fp >>T
and therefore small Boltzmann probability. However,
these droplets are also large and rather long-lived and
thereby dominate long-distance and long-time correlations
in sufficiently low dimension d.

Away from the coexistence curve (i.e., for magnetic
field H=£0 or T > T,), the equal-time spin-spin correlation
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function has the Ornstein-Zernike form at long distances:

Gy~ Ade "/E i@ -2 2.1)

where the amplitude 4 and the correlation length £ are
field and temperature dependent. At coexistence, droplet
fluctuations alter this form for d <2. Only droplets that
contain both sites / and j contribute to G;. For d >2 and
r;; large, the lowest free energy and thus most probable
such droplets are long, thin, and tubelike, in order to min-
imize the total domain-wall area.>® For d > 2, only tubes
with small cross sections contribute, even for large r;;.
Their total contribution to G;; has precisely the Ornstein-
Zernike form (2.1),* with T /£ being the free energy per
unit length of the “tube” and the factor of r;;° @=172 aris-
ing from the reduction of the transverse fluctuations of the
tube due to the restriction that it must run from site i to
site J.

For d =2, the elongated droplets that dominate Gj; at
coexistence consist of two domain walls running roughly
parallel, which can now be widely separated at little ener-
gy cost and much entropy gain. The breakdown of the
Ornstein-Zernike form for T < T, and d =2 is due to this
widening of the droplets.? The resulting form is*?

G;= Ae /r,% .

Thus d =2 serves as an upper critical dimension where
droplet fluctuations begin to alter the long-distance form
of equal-time correlation functions. If we allow ourselves
to consider 1 <d <2, we find that a roughly “spherical”
droplet containing both i and j has domain wall area and
thus free energy proportional to ar,«(jd‘” Such droplets
contribute to G;; in proportion to their Boltzmann weight,

leading to
G ~exp[ —(ry /641

for large r;;, where £ is a correlation length. Thus droplet
fluctuations give rise to nonexponential decay of spatial
correlations for the unphysical dimensionality range
1<d <2. We will now show that the decay of correla-
tions with time becomes nonexponential for 1 <d < 3.

There are a variety of different types of dynamics that
an Ising system can have.” If the system has a conserva-
tion law, then the local autocorrelation function for the
conserved quantity and any other quantity directly cou-
pled to it decays diffusively, as £ ~¢/2. For pure Ising sys-
tems, droplet fluctuations can play an important role in
the low-frequency dynamics only in the absence of an
order-parameter conservation law; that is, for model A in
the classification of Hohenberg and Halperin.” We will
henceforth restrict consideration to such systems.

A droplet fluctuation containing site i contributes to the
spin-autocorrelation function C;(¢) at time ¢ only if its life-
time is of order ¢ or greater. For long times, ¢, the dom-
inant droplet fluctuations contributing to C,(¢) for the
pure system are nearly spherical® (circular for d =2) and
of large radius, r. The domain wall surrounding such a
large droplet with r >>& moves more or less deterministi-
cally in response to its own surface tension, as has been
discussed by Lifshitz.® This motion of the domain wall is
driven by its curvature and leads to a shrinking of the
droplet with time according to

—2rijo/T

(2.2)
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dr 1

it 2.3)
The resulting lifetime of a droplet initially of radius r is
proportional to r2, and the time typically taken to form
such a droplet is of the same order. Thus the minimum
size of droplet fluctuations that contribute to C;(t) is pro-
portional to V't. The free energy of a droplet of radius r
is proportional to its surface area and thus to »'“ 1, so
we see that the maximum Boltzmann probability of a
droplet fluctuation that contributes significantly to C;(z) is
exp[ —(t/7)¥~172], where 7 is a correlation time (that
diverges as T—T.). For 1 <d <3 these droplet fluctua-
tions therefore dominate C;(t) at long times, yielding

C;(t)~exp[ —(t /7)'4=V72] | (2.4)

From (2.4) and (2.2) we see that dynamic correlation
functions are more sensitive to droplet fluctuations than
are static correlation functions. The upper critical dimen-
sion where droplet fluctuations begin to alter the long-
time exponential decay of time correlations is d =3. For
the two-dimensional Ising model with nonconserved
(model A) dynamics, we therefore predict a “‘stretched ex-
ponential”’ decay of the spin-autocorrelation function for
T <T,:

Ci(t)~exp(—V1/7), d=2. 2.5)

This prediction should not be too difficult to confirm with
Monte Carlo simulations. It is noteworthy that this
stretched exponential or Kohlrausch form for the tem-
poral correlation function appears in this simple system,
without glassy behavior, hierarchies, or even activation
barriers playing any role.!®

The above discussion of the shrinking of a droplet only
considers the deterministic part of the evolution (2.3). A
more careful treatment should include the stochastic part
of the evolution. Locally, the domain wall surrounding
the droplet has a random normal velocity due to thermal
noise, in addition to the deterministic, curvature-driven
term in (2.3). The resulting Langevin equation for the
evolution of the droplet radius is

a L 120 2.6)

dt ppd=D2

where I' is a measure of the interface mobility and 7 is
the thermal noise, whose amplitude is independent of r for
large r. The reduction of the effect of the noise on r by a
factor of ¢ ~1V72 is due to averaging over the entire sur-
face area of the droplet. The deterministic lifetime of a
droplet of radius r is proportional to r2, as discussed
above, but there is always the possibility that the droplet
lives much longer than this: The probability of the drop-
let still being present should decay exponentially as
exp[t/74(r)] for long times, ¢ >>r2, where r is the max-
imum size attained by the droplet over its history. We
will call 7,(r) the “stochastic lifetime” of the droplet.

In order for a droplet to live much longer than its
deterministic lifetime, the noise term in (2.6) must, on
average, cancel the deterministic drift term. This requires
n=~Tr'¥=372 which for d <3 is more probable for larger
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r. Thus if we consider a droplet whose maximum radius
is r,, and which has existed for a very long time ¢ >>r2,
its most probable history is one in which over the bulk of
its lifetime its radius is near r,,. The probability of this
occurring decays with time as exp[—t/7,(r,, )], where
7,(r ) ~r3=%4. Thus the stochastic lifetime of a droplet,
7,(r), is, for d > 1, much shorter than the deterministic
lifetime of the droplet. If we consider the contribution of
these extra-long-lived droplets to the autocorrelation func-
tion C;(z), the droplets with 7, ~V't again dominate at
long times for 1<d <3, and their contribution has the
same form as found above (2.4). Presumably a careful
analysis for d =3 would yield interesting, nontrivial
corrections to the exponential temporal decay analogous
to those found for the spatial correlations®? in d =2.

For d > 3, long-lived small droplets, of radius of the or-
der of the correlation length, are found to dominate C;(¢)
at long times, yielding a simple exponential decay. Thus
the large-scale droplet fluctuations become too improbable
to play a leading role in the low-frequency dynamics for
d > 3.

III. RANDOM-EXCHANGE SYSTEMS

In this section we consider droplet fluctuations in Ising
ferromagnets with quenched random-exchange disorder.
We assume the random-exchange disorder is not so strong
as to destroy the ferromagnetic long-range order, so the
average free energy of a roughly circular or spherical®
droplet of radius r is Ay or? =1, where o is the average
surface tension and A, is the surface area of a unit circle
or sphere in d dimensions. However, because of the
quenched fluctuations in the strength of the local fer-
romagnetic coupling, there are rare places where a droplet
of radius r can be formed whose free energy is consider-
ably less than average. This occurs when the domain wall
surrounding the droplet passes through regions of particu-
larly weak ferromagnetic coupling and thus reduced local
domain-wall free energy. Such a droplet, once formed, is
long lived because the domain wall is pinned to the weak-
ly ordered regions and in order to dissolve the droplet the
domain wall must move away from these favorable loca-
tions and cross a large free-energy barrier.

The droplets that appear to dominate the long-time be-
havior of the autocorrelation function C;(¢) have free ener-
gies that are below average by an amount proportional to

r?~1 and also have activation barriers proportional to

=1 For each such droplet, let us denote the ratio of its
actual free energy to the average free energy of a droplet
of the same size and shape as f. In other words, the aver-
age surface tension over the entire domain wall surround-
ing the droplet must be fo. This occurs, for a near circu-
lar or spherical droplet, with a probability proportional to
exp[ —p (/)r¢ —'], where the function p(f)=0 for f=1
and increases as f decreases. For systems with a nonzero
probability for the local domain-wall free energy to be
negative or zero, p (f) goes to a finite, positive value for
f—0. This occurs in systems with either random antifer-
romagnetic couplings present or diluted systems where
isolated, disconnected clusters can occur. If, on the other
hand, there is a positive lower bound on the local fer-
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romagnetic coupling, then p (f) diverges for f < f., where
the local surface tension in the weakest possible coupled
regions is f,o. o

The droplets that appear to dominate C;(¢) at long
times are nearly spherical® and have f <1, i.e., the region
around the surface of the droplet has on average a re-
duced ferromagnetic coupling. Typically, the interior of
such a droplet has average coupling, so the activation bar-
rier for removing the droplet will be b ( f)rd_l, where
b(f) 1is of order o for f =0 and decreases monotonically
with f, vanishing for f—1. Of course, droplets with even
larger barriers occur when the entire interior of the drop-
let has above average coupling, but the probability of this
occurring is of order exp(—#%) and therefore much small-
er than the events we are considering.

The relaxation time for a droplet of radius » and f <1
is 7 ~exp[b (f)r?~'/T]. Only those droplets with 7p, 2 ¢
contribute to C;(¢), and of these, those with 7, ~t are
dominant. For a given f, these are the droplets with

rd_lz Tln(t/t()) , 3.1)
b(f)
where 7y, is a microscopic time. Now the Boltzmann
probability of such a droplet being excited is simply
exp(—fo Ayr®=1/T), so we find that for large times, 1,
the average autocorrelation function is proportional to a
steepest-descents integral:

C*“*i(t)Nfdft—[faAd+Tp(f)]/b(f) ) (3.2)

Thus we find a power-law decay of correlations at long
times,

Ci(t)~t—*TD | (3.3)

with the exponent

x(T)=m}n{[faAd+Tp(f)]/b(f)] (3.4)

being the minimum value taken on by the exponent in the
integral in (3.2). Since b (f)—0 for f—1, the minimum
never occurs at f =1, it is always exponentially rare drop-
lets with f < 1 that dominate at long times.

The actual value of the exponent x(7) will depend on
the temperature and, in general, on nonuniversal details of
the system. However, if there is a critical point, then
x (T) should approach, for T—T,, a value determined by
the universality class of the critical point. If, as occurs in
two-dimensional Ising systems,!! the random-exchange
disorder is irrelevant at the critical point and the critical
point is in the same universality class as the pure system,
then x (T) should diverge for T—T,.. On the other hand,
for systems in which the random exchange disorder is
relevant at criticality, x(7) presumably approaches a
finite, universal value for 7—T7,. This exponent is a new
property of the random-exchange fixed point. It would be
interesting to have an estimate of its value for three-
dimensional (3D) Ising systems, in which random-
exchange disorder is relevant.'?

At low temperatures T <<T,, the functions p (f) and
b (f) are only weakly temperature dependent. If p (f=0)
is finite, then at sufficiently low temperatures the
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minimum in (3.4) occurs at f=0 and we have
x(T)=Tp (f)/b(f)| y—o. Therefore, such systems, which
have regions with antiferromagnetic or zero coupling giv-
ing f =0, have very slow dynamics at low temperatures,

with x(T)—0 for T—0. When x(T)<1, the low-
frequency magnetization noise
Clw)~1/0' T 3.5)

is divergent, becoming 1/f noise as x (T)—0. These re-
sults should apply to diluted or weakly frustrated Ising
ferromagnets or antiferromagnets. In systems with only
ferromagnetic couplings and thus a minimum possible
value, f,, of f, the low-temperature decay exponent will
be dominated by the extreme case f =f, and we expect
x(T)—>f.0A;/b(f,) for T—0. In general, x(7T) in-
creases with 7, but this is not always the case: If, at low
temperature for d =3, f, is sufficiently near unity, then
x (T) will be so large that it must decrease to attain the
finite universal value expected in the limit T—T,.

The form of the equal-time spatial correlation functions
will not be strongly affected by random-exchange disor-
der. However, the exponential decay length of G_,j will be
affected by the disorder. For d >2 an optimization over
the free energy for a long tube of cross section of order
unity, will yield a decay length for G, which is larger
than that for InG;;. In addition, the prefactor will no
longer be of the Ornstein-Zernike form. For d <2, a re-
sult of the form (2.2) will obtain with the decay length
given by a surface free-energy minimization as for the
droplet dynamics. In d =2, as for the pure case,> a more
delicate balance of terms is needed to establish the de-
tailed form of the decay.

IV. RANDOM-FIELD SYSTEMS

In this section we consider the dynamics of droplet
fluctuations in Ising systems in the presence of quenched
random-field disorder. We only consider d >2 and
sufficiently weak random fields, so that the long-range or-
der which occurs in the absence of random fields is not
destroyed.!* For these systems the free energy of a large
droplet excitation consists of a sum of a surface term due
the domain wall and a bulk term due to the random fields
acting over the entire interior of the droplet. The droplets
that appear to dominate the long-time behavior of the au-
tocorrelation function C;(¢) are the thermally active drop-
lets. Such droplets have typical surface free energies that
are almost exactly compensated for by an unusual
random-field configuration, so the total excitation free en-
ergy of the droplet is of the order of the temperature, T,
and the Boltzmann probability of the droplet being excit-
ed is of order unity.

The typical surface free energy of a roughly circular or
spherical droplet® of radius r is again A40r¢ !, In order
to compensate for this cost in free energy to create the
droplet, the net effect of all the random fields in the interi-
or of the droplet must favor the droplet being present.
The typical contribution of these interior random fields to
the total droplet free energy is of order hmr?’/2, where h is
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the root-mean-square random-field strength and m is the
order parameter. Note that in order to have two-phase
coexistence the average value of the random field must
vanish, and we are only considering systems with short-
range correlations between the quenched random fields.
For large r, the distribution of the random-field free ener-
gy is Gaussian for free energies much smaller than hmr¢,
so the probability of the random-field free energy precisely
(to within order 7T) canceling the surface free energy is
proportional to

p~expl—co?r?=2/h*m?) , 4.1)
where ¢ is a number that depends on d and the probabili-
ty distribution of the random fields. This is therefore the
density of thermally active droplets of radius r. These
droplets, which will be excited with relatively high proba-
bility, will dominate the long-time dynamics.

The relaxation time for these thermally active droplets
is determined by thermal activation over the free-energy
barriers that must be crossed in order to produce or re-
move them. These barriers are of order or? ! for drop-
lets of radius r, so the relaxation time of the droplet is
TD~exp(aUrd’]/T), where a, like ¢, depends on the
dimensionality and the distribution of the random fields.
To contribute significantly to C;(¢) a droplet must be of
radius

1/(d—1)
T Int

ao

r2 4.2)

Those droplets satisfying condition (4.2) contribute in pro-
portion to their probability (4.1) of being thermally active.
Those with radii approximately giving an equality in (4.2)
dominate, yielding

(d—2/(d —1)
T Int

ao

—co?
h*m?

C;(t)~exp (4.3)

Note that this temporal decay of the autocorrelations is
slower than any power of time and therefore yields 1/f
noise in the order-parameter fluctuations.

For the experimentally studied random-field system of
dilute Ising antiferromagnets in a uniform magnetic
field,'* the thermally active droplets are those that couple
strongly to the field due to having much more dilution on
one sublattice than the other. They therefore have large
magnetic moments. Thus the long-lived droplet fluctua-
tions enter directly into the fluctuations of the total mag-
netization, even though the magnetization is not the order
parameter for these systems. Thus the uniform, as well as
the staggered, magnetization should exhibit 1/f noise.

The averaged equal-time spatial correlations in
random-field systems will be affected by droplet fluctua-
tions, but for d >3 only the decay length of q will be al-
tered. In the unphysical dimensionality range 2 <d <3,
however, roughly spherical thermally active droplets like
those dominating the dynamics will yield

G_;~exp[—(r,-j/§)d'2] . 4.4)
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V. CONCLUSIONS

We have shown that the long-time dynamics in the or-
dered phase of random systems with a discrete broken
symmetry is dominated by droplet excitations. In all the
systems considered, the behavior of the autocorrelations is
most naturally described as a function of the logarithm of
the time. The average over the system (or over disorder)
is dominated by rare regions with anomalously long relax-
ation times. In random ferromagnets the dominant re-
gions are exponentially rare in In¢, yielding

C(t) ~e —Kn” (5.1)

with y depending only on the nature of the randomness
[y =1 for random exchanges, y =(d —2)/(d —1) for ran-
dom fields] and k on details of the distribution, the tem-
perature, etc. For spin glasses, on the other hand, the dy-
namics is dominated by regions which are only power-law
rare in Int, yielding the decay as a power of In? as in Eq.
(1.8).* For random-field magnets where y < 1, we expect
1/f noise for all T < T, as for spin glasses.

Randeria, Sethna, and Palmer'’ have argued that in the
paramagnetic phase of spin glasses anomalously strongly
coupled regions yield a decay of the form (5.1) with
y =d /(d —1) for a range of temperatures above the phase
transition that they call a “Griffiths phase.”'>!® Exten-
sion of their results to other random magnets yields the
same form with y =d /(d —1) in any part of the paramag-
netic phase where there are Griffiths singularities.'® De-
pending on the distribution of the randomness, the
Griffiths phase either extends from 7, up to a temperature
T¢>T,., or up to infinite temperature. Note, however,
that since the decay in the paramagnetic phase is faster
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than any power of time, this behavior may be difficult to
observe.

We comment, lastly, on the possibilities for experimen-
tal tests of our results in random ferromagnets. If the
randomness is weak, then the asymptotic behavior will
only be reached at long times, so it may be advantageous
to work with a relatively strongly disordered system. A
measure of the strength of the disorder in a diluted fer-
romagnet is the suppression of 7. below its value in the
undiluted system. The disorder is strong for systems
whose 7, is suppressed by, say, 40% or more. For a
random-field system it is likewise preferable to work with
strong random fields. For dilute antiferromagnets,'* the
suppression of T, by a uniform field is a good measure of
the strength of the random field generated. Thus we
would like a system whose zero-field 7, is considerably
suppressed by dilution and then use a field that suppresses
T, well (say, 30% or more) below its zero-field value. Re-
call that for these systems the magnetization and stag-
gered magnetization noise should exhibit similar behavior.

The prediction in Sec. III, that a universal power law of
time should obtain at long times near 7, for 3D diluted
Ising magnets, may be rather difficult to verify since there
will be a crossover from a critical power law to the non-
critical but universal power law at a time 7~ (7T, —T)" %"
with z and v the critical exponents of the diluted magnet.

In all of these systems, there are potential problems as-
sociated with nonequilibrium effects. However, one gen-
erally expects that, provided wt,, >> 1, the behavior at fre-
quency o will not depend much on the waiting time, 7,
for which the system has been equilibrated. This behavior
was found in spin glasses in Ref. 5.
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