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By the use of the quasiclassical theory, the pair potential and the tunneling density of states of a
so-called proximity contact, i.e., a superconducting layer N of thickness a on top of a very thick su-

perconducting substrate S, are self-consistently calculated. Special attention is given to N layers
with a thickness of the order of the coherence length, in which case the pair potential deviates ap-
preciably from a step. Free parameters in the numerical calculation are the film thickness a, the ra-
tio of the Fermi velocities of the two metals, the ratio of their transition temperatures, and a poten-
tial strength that describes possible imperfections of the contact plane. The calculated density of
states is compared with the approximate results obtained from the often-used step model for the or-
der parameter. This model reproduces the rigorous numerical results reasonably well, provided the
parameters of the step are properly adjusted.

I. INTRODUCTION

A variety of phenomena that are caused by the proximi-
ty effect between superconductors have been extensively
studied over the years (see, e.g. , Refs. 1—4). A theorist
willing to describe such systems is confronted with the in-
herent inhomogeneity of the situation, which leads for in-
stance to a spatially varying pair potential. In order to
treat such problems, three different theoretical methods
are available: the microscopic approach based on Green's
functions, the Ginzburg-Landau theory, and the quasi-
classical method. Microscopic Green's functions have
been calculated only in the approximation of a steplike
pair potential. " A large amount of numerical work
would be needed to determine such a Green's function for
more realistic pair potentials. For this reason, no self-
consistent calculations of the pair potential of an inhorno-
geneous superconductor have yet been performed with the
Green's-function technique. On the other hand, the
Ginzburg-Landau approach is very well suited for tack-
ling inhomogeneous systems, but it is only valid near the
transition temperature. The quasiclassical theory based
on so-called g-integrated or quasiclassical Green's func-
tions closes the gap between the different approaches
described above. It is not a microscopic theory, because
its validity is restricted to a length scale that is large com-
pared to the wavelength of the conduction electrons. On
the other hand, it goes far beyond the Ginzburg-Landau
theory. This method does not assume a small pair poten-
tial and is, in particular, valid at all temperatures. The
basic equations of the theory have the character of trans-
port equations and can, in general, be easily solved on a
computer. This makes the theory in many cases more at-
tractive than the microscopic approach.

In this article, I present self-consistent calculations of
the pair potential and the tunneling density of states for
the widely discussed proximity junctions (see Fig. l): a
superconductor N of thickness a in electrical contact to a
superconducting substrate S (following a standard nota-

tion for the layer and the substrate). I study, in particu-
lar, systems with thick layers (a approximatel'y equals
coherence length), where the pair potential deviates appre-
ciably from a step function and standard Green's function
methods ' can no longer be applied. The conduction elec-
trons are described, for simplicity, by a one-band model
with an effective mass rn * and an effective Fermi velocity
u~ as parameters; the Fermi surface is assumed to be
spherical. The values for m* and Uz may be different in
both metals. Imperfections of the contact plane are ac-
counted for by an interface potential with a potential
strength V, .

FICz. 1. Proximity junction C is the counterelectrode, I an in-
sulating layer, N a superconducting or normal-conducting film
of thickness a, and 5 the superconducting substrate.
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Switching from a weak-coupling to a strong-coupling
description is very easy within the framework of the
quasiclassical theory: the quasiclassical equations formal-
ly remain the same, only the self-consistency equations for
the self-energy parts change. Self-consistent calculations
of the pair potential are indeed of comparable ease for
both weak- and strong-coupling superconductors. Calcu-
lation of the tunneling density of states is a bit more in-
volved in the strong-coupling case.

The quasiclassical theory is a convenient method for a
rigorous, quantitative description of real proximity con-
tacts. Previous work based on microscopic Green's func-
tions relied on the model of a steplike pair potential. It
has never been checked how the results change when this
assumption breaks down, as is, for instance, the case for
layer thicknesses a -g. A calculation which is free of un-
controlled approximations becomes important, if the
theory is used to analyze experimental tunneling data for
more basic material parameters such as, e.g. , Fermi veloc-
ities, electronic mean free paths, or Eliashberg's spectral
functions a F(co). ' In addition, tunneling data also
carry information on Fermi-liquid parameters of the con-
duction electrons and on properties of the interface (re-
flection coefficients, roughness ). All these effects can be
incorporated in the quasiclassical formulation without
difficulties.

In Sec. II the basic equations are introduced and a short
analytical calculation of the tunneling density of states for
the simple-step approximation of the pair potential is
given. This calculation demonstrates that the quasiclassi-
cal theory is capable of reproducing familiar results
without much effort. The self-consistent, numerical cal-
culations for the pair potential and the tunneling density
of states are presented and discussed in Sec. III. A special
purpose of this article is to study the influence of self-
consistency on the tunneling density of states. These cal-
culations are done for pure systems in the weak-coupling
limit. For comparison, I include a few strong-coupling re-
sults for the self-consistent pair potential. A summary is
given in Sec. IV.

where the diagonal and off-diagonal self-energies E„(R)
and b.„(R) are determined by the local Eliashberg equa-
tions [see (2.6}]. Within the framework of the strong-
coupling theory, U~ is the bare Fermi velocity, i.e.,
v~=(1+k)vg, where A. is the electron-phonon coupling
constant. The solution of (2.2a) has to be normalized ac-
cording to

[g(p, R;E„)] = vr— (2.2c)

The nomenclature and conventions used in this article are
the same as in Ref. 23. Anyone interested in more details
is referred to the original literature ' and to Refs. 27
and 28.

The proximity system studied here is sketched in Fig. 1.
It is translationally invariant with respect to the x and y
directions, so that the spatial dependence of g reduces to a
variation with z. Since the system carries no current, the
pair potential can be chosen real and positive. Equation
(2.2a) therefore reduces to

[~7.„(z)rq —ib, „(z)~r,g(p, z;c.„)]+i qu(z)p zB,g(p, z; E„)= 0

(2.3a)

with

uF(z) = u~~, —a &z &0 (metal S),
uF&, 0&z (metal S) . (2.3b)

g(p, —a;s„)=g(p, —a;s„) (2.4)

holds with p=p —2z(p z); i.e. , g is continuous along a
classical flight trajectory.

(2) g(p, z;E„) is bounded everywhere.
(3) At the XS interface (z =0),

S (2.5a)

g(p, z;s„) has to fulfill the normalization condition (2.2c)
and the following boundary or matching conditions.

(1) At the specularly reflecting outer wall (z = —a ) the
relation

II. THE BASIC EQUATIONS
1 —R,—l 7T ss1+R,

1 — ds sx ——dsss
277

(2.5b)

The quasiclassical propagator (also called the
integrated Green's function) g(p, R;E„) is connected to the
microscopic Green's function G(p, R;E„)by

must be fulfilled ' with the abbreviations

dk(p~~)=gk(p+ k, O) —gk(P k, O) (k =N, S),
g(p, R;E„)=r& f dg~G(P, K;E„) . (2. 1) (2.5c)

b.„(R)=i Pz Re[A,„(R) ]+r, 1m[A„(R)]], (2.2b)

where R and p denote the position and momentum vari-
ables, p is the unit vector p/

~ p ~, and r, 2 3 are the Pauli
matrices in particle-hole space. (I use 2&(2 Nambu ma-
trices; they are indicated by a hat. } The integration is per-
formed over the energy variable (z ——v~(p —pF) along a
path normal to the Fermi surface. The quasiclassical ana-
log of the Gorkov equations reads

[iE„(R)r&—5„(R),g(p, R;e„)]+iu~pV~g(p, R;En ) =0
(2.2a)

with

~k(p~~) =gk(p+, k~O)+gk(p —,k~O)

P+, k=[P~~+(PF, k P((}
' z]~P'F, k . (2.5d)

The subscripts N and S refer to the left-hand and the
right-hand sides of the interface, respectively. p~~ is a vec-
tor lying in the contact plane (see Fig. 2). R, is the
direction-dependent reflection coefficient. Its specific
form depends, of course, on the chosen model for the met-
als and their common interface. In the weak-coupling
calculations presented below, I assumed a sudden poten-
tial jump due to the different Fermi velocities on both
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In the weak-coupling limit, i.e., for Y.„(z)= (1+A. )E„,
Z„(z)=( I+A, )4(z), Eq. (2.6a) has the simpler form

b(z)= T+gBcs(z) f de(4') 'f(p, z;E, ) . (2.7a)

FICx. 2. Construction of the Fermi momenta that are mixed
by the matching condition [Eqs. (2.5a)—(2.5e)].

sides and an additional 6 potential at the interface. R, is
given by

&(z) =

with

The mass enhancement factor (I+X) is absorbed into
the Bardeen-Cooper-Schrieffer —coupling constant and
into a renormalized Fermi velocity v~ =U~/(I+A. ) and
thus disappears from the theory. The summation in (2.7a)
has to be cut off at an energy of the order of the Debye
energy. Using standard arguments, (2.7a) can be replaced
by a form more suitable for numerical purposes:

2T g f dflp(47r) 'f(p, z;c„)
(2.7b)

ln[T/T, (z)]+ g 1/(n —0.5)

l(UNz US ) +4V ]/[(UNz+ US ) +4V

with

(2.5e) T, (z) = Tq~, —Q (z (0
Tcs~ 0&z . (2.7c)

dA,
&

4~ '
p, z;c (2.6a)

i Y,„(z)= iE„—T g A.(E„—E,z)

dA& 4~ 'g pz c (2.6b)

Uk, =v~1 (p.z) .

In this model, the usual assumption was made, that the
(pseudo) wave functions of the corresponding effective-
mass Hamiltonians and their first derivatives rnatch con-
tinuously at the interface (see, for instance, Ref. 33).

The various momenta involved are shown in Fig. 2.
The matching condition at z =0 mixes those propagators
whose momentum directions lie along flight trajectories.
To illustrate its use, suppose we start on the N side with a
direction p corresponding to a Fermi momentum pF zp.
We then determine the parallel component p~

~

=p~z(1 —z p)p and construct p+ ~ and p+ s. For
p~~&pJ;s, total reflection may occur depending on the
angle of incidence. In these cases, the specular condition
(2.4) must be applied at z =0.

The quasiclassical equation (2.3) together with the set
of the boundary and matching conditions (2.4)—(2.5) and
the normalization condition (2.2c) has finally been comp-
leted by the self-consistency equations for b,„(z) and E„(z),
which are, in the strong-coupling case, the local Eliash-
berg equations,

b,„(z)= T g [k(s„—E,z) —p*(z)]
m

It is important to note that the summations in (2.7b)
can already be cut off at an energy of, say, lOT, . In con-
trast to the conventional formulation, the above stated
form of the self-consistency equation is stable with respect
to a simple iteration procedure. It was first published for
p-wave superfluids in Ref. 34.

In the remainder of this section, I focus on the weak-
coupling case, but a few strong-coupling results will be
discussed in Sec. III.

With the above set of equations, the pair potential A(z)
can be determined by an iterative procedure that needs
only a few minutes (maximum) on a VAX-11 computer.
For b, (z) given, the local density of states, as measured by
a tunneling experiment with specular tunneling charac-
teristics, can be calculated by

NT(E, —a ) = —( I /2~)

&& Im[ Tr[g(p=z, —a, —i(E+i0))] I .

(2.8)
This is the simplest case. In general, the propagator in

(2.8) is replaced by a (weighted) average over the possible
momentum directions. The so-called random tunneling
case, where all directions have equal weight, is most often
quoted. Since I am primarily interested in the influence
of the self-consistency on Nr(E, —a), I restrict myself to
a discussion of specular tunneling.

As a demonstration of the handiness of the quasiclassi-
cal equations, I now calculate the local density of states in
the case of a steplike pair potential, i.e.,

—a &z&0
with b, (z)= .

s 0 (2.9)

f(p,z; s„)= —, Tr[g(p, z; E„)(7t—i7z))

g(p, z;E„)= —,
' Tr[g(p, z;E„)73],

(2.6c)

(2.6d)

In addition, an interface potential

V;„,(z) = V, 5(z) (2.10)
and

A(E„—s,z)= f dna E(II,z)2II/[(E„—r. ) +II ] .

(2.6e)

simulates possible imperfections of the contact plane.
The differential equation (2.3a) can be easily solved in a

region of constant pair potential and leads to the follow-
ing solutions in the N and S regions:
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gN(p+ N, z) = —(iver/SIN)[A l(E„T3—b NT2)+A2(ANT3+E„T2+l QNTl) exp(2hNz/vN, )

+A 3 ( ENT3+ EnT2+l ANT, ) exp( —2hNz /vg; )]

gs(p+, s») = (i—«&s)[(E.T3 ~sT2)+D(ks73+E T2+iAsTl) exp( —2As /us )]

(2.11a)

(2.1 lb)

with QNs ——(E„+AN s)' . gN (gs) denotes the propaga-
tor in the region N (S).

The ansatz [Eqs. (2.11a) and (2.11b)] already includes
the symmetry relation

g(p, R;E„)=—g ( —p, R;E„)=—g (p+, R;E„)

as well as the fact that gq has to be bounded everywhere
and must be normalized. (The first equality is a general
symmetry relation, and the second one is a consequence of
the rotational invariance around the interface normal. )

The four constants A
& 2 3 and D can now be directly cal-

culated. Normalization of gz implies

A l
——[1 R,B—+(B R, )—exp( —4IINa/uN, )]/N,

A2 —— iB(1——R, )/N,

A 3 —A 2 exp( —4QNa /uN, )

D=A, —A, ,

with the abbreviations

(2.15a)

(2.15b)

(2.15c)

(2.15d)

Inserting (2.13) in (2.14b), squaring and using (2.12),
leads to

A ]
——1 —4A~A3,2

and the condition (2.4) leads to

A 3 —A 2 exp( —4IINa /uN )

(2.12)

(2.13)

Use of the matching equations (2.5) yields immediately

B = i E„—(bS —bN ) l(E„+QN QS+ b, N ES),
N = [[1 R,B —(B —R, )—exp( —4QNa/uN, )]

4R, (—1 B) exp—( 4QNa/vN, )]—

(2.16a)

(2.16b)

In the squaring step, one loses the information on the sign
of A&, which is recovered by the requirement A]~1 in
the limit a~ oo.

Having found the quasiclassical propagator, we can im-
mediately calculate the local, direction-resolved tunneling
density of states by an analytic continuation of the upper

nal component of g. Equation (2.9) leads to

(2.14a)D=A3 —A2

and

1 —R,
1+R, [A 1En(~S ~N)+(A2+A3)(En +N~S)]

(2.14b) diago

NT(E, p, —a) = Im[(E/QN )[i(1 R, )(E' DNA—s) sc(o2I—I N/ ag;u)

+ (1+R,)IIN Qs sin(2IIN a lvN, )+i (1—R, )b N (As —~N ) ]

+( [ [l( 1 R )(E ~N~s) sin(20Na/uN ) —( 1+R, )SINQs cos(2IINa /vN, )] 4R QNQs1 ) —]

with

(E' ~N, S )'" ««—& ~N, S,
N, S= . . 2 21/2

l (~N, s E) for E &—ANs. ,

z/E, s

(2.17)

This result is the same as has been obtained by a more
involved calculation using microscopic Green's functions,
and a subsequent averaging over terms oscillating with a
phase pFNa [see, e.g. , Eq. (3.60) of Ref. 4]. In the next
section, the tunneling density of states is calculated for the
exact b, (z), and the result is compared with (2.17).

1.0

0

0— N

0
C

M

III. NUMERICAL RESULTS T ( & i I ( ( ( ( ( ( ( ( I ( ( i ( I l l & ( l

If the X layer is very thin compared to the coherence
length, b, (z) can be well described by a step function.
This situation has been extensively investigated by Ar-
nold, who showed how to approximate the self-
consistency equation in order to get the correct step
height. I present calculations of the pair potential in the
case of a medium or large film thickness, where b, (z) devi-

FIG. 3. Pair potential A(z); T,~ ——0, T=0.15 a = 1.5,
v~ ——1, V, =0; different iteration steps: 0 (start), 1, 4, 13 (self-
consistency).
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ates appreciably from a step function. Subsequently, I
discuss to what extent these deviations influence the tun-
neling density of states. For this purpose, Nr(E) was cal-
culated with the self-consistently determined pair poten-
tial, and the result was compared with the step approxi-
mation given by (2.17).

All variables needed are from now on given in units de-
fined by the substrate as shown in the table below.

Variable Unit

Temperature
Energy

Velocity
Length

Tc5
1.76k&T,s [ = b, s„„~ (kT=0) in the
weak-coupling case]
Us

ks =vs /3. 52k~ Tcs

Note, that gs is not exactly the same as gz„,„, which is
usually used in the literature. My choice of gs facilitates
the comparison of systems with different Fermi velocities.

For simplicity, the calculations assume equal effective
masses on both sides. The case of different masses is dis-
cussed elsewhere in connection with the heavy fermion
systems. We therefore have as input parameters the
tHickness a, the Fermi velocity v~, and the transition tem-
perature T,~ of the N layer, the barrier strength V„and
the temperature T.

Various steps of the iteration procedure for b, (z) are
shown in Fig. 3. After the first iteration, the pair poten-
tial is still far from self-consistency. The iteration pro-
cedure was terminated, if the 6's at subsequent iterations
differed by at most 0.01 at every point. Possible "creep-
ing" of subsequent iterates could be avoided by the aid of
an overrelaxation factor.

In the following calculations, T,& has the value 0.13
corresponding to the combination Al/Nb (unless other-
wise stated).

First, I want to discuss the influence of the layer thick-
ness a. In Figs. 4(a)—4(c), examples with a =0.1, a = 1.5,
and a =3.0 are shown. The interface was assumed to be
completely transparent (vg =1, V, =0), and the tempera-
ture T =0.05 was well below the transition temperatures
of the two metals. In the first case (a =0.1), the pair po-
tential of the X layer was enhanced over the whole region
by a factor of 4 compared with the value of the bulk ma-
terial (dashed line). For thicker N layers [Figs. 4(b) and
4(c)], the overall enhancement is not so dramatic, but still
remarkable. The weakening of the pair potential on the S
side depends, of course, on the layer thickness, but the in-
fluence saturates at thicknesses between one and two
coherence lengths g, . As a contrast to Fig. 4, a typical sit-
uation covered by the investigations of Arnold et al. is
shown in Fig. 5 (a =0.01).

Of special interest is the situation of a temperature
above the transition temperature T,& of the layer, because
in this case the superconducting state of N is induced by
the substrate S and not merely enhanced. This can be
seen in Fig. 6, where, except for T, the system parameters
are the same as in Fig. 4(b). Again, the dashed line
denotes the bulk value b,b„&z &(T =0). There is practically
no difference between the curve at T =0.15 and the one
at T=0.05 in Fig. 4(b); the strong influence of the sub-

strate effectively blocks the pair breaking in the 1V metal.
Let us now investigate the influence of a nonideal inter-

face caused by an "electronic mismatch" ( v~ &I ) and/or
a nonzero interface potential V, . In Fig. 7, several results
with U~ & 1 and V, =0 are presented. The obvious "asym-
metry" of the proximity effect in comparison to Fig. 4(b)
stems from the fact that excitations attending the inter-
face from the lV side are totally reflected, if the angle of
incidence (measured with respect to the interface normal)
is too large. This implies a suppression of the proximity
effect on the Ã side. In the extreme case v& ——10 the criti-
cal angle of incidence is about 6', so that only 0.5%%uo of the
excitations transmit the interface and have the chance of
being scattered by Andreev reflection. In Fig. 8 the situa-
tion is just reversed (vg & 1); total reflection occurs on the
S side. The Fermi velocities were chosen in such a way
that the reflection coefficient for normal incidence,

Ro ——[(1—vq ) + V, ]/[(1+vg ) + V, ] (3.1)

is the same as in Fig. 7.
This "asymmetric" feature is, of course, absent in the

case U~ ——1, V, &0, as shown in Fig. 9. The reflection
coefficients are again the same as in the preceding two
figures.

The self-consistently determined pair potential serves
now as an input for the calculation of the tunneling densi-
ty of states. It is of interest to know how large the results
deviate from those computed under the assumption of a
steplike pair potential [Eq. (2.17)]. I choose As ——1 and
A~ ——b(z = —a) as parameters for the step approxima-
tion, where the value for b, (z = —a) has been taken from
the above self-consistent calculations. The results corre-
sponding to Figs. 4(b) and 4(c) are shown in Figs. 10(a)
and 10(b) (T,~ ——0. 13, T=0.05, vg =1, V, =0, a =1.5
and 3.0). The step approximation is plotted as a dashed
line. The agreement with the numerical result is astonish-
ingly good. The position of the bound state is practically
unchanged compared with the exact calculation. The
main difference is a phase shift in the McMillan-Rowell-
Tomasch oscillations (which are of extremely long wave-
length here) in the continuous part of the spectrum. We
expect the strongest deviation, if X is an ideal normal rna-
terial [b,~(z) =0]; an example is shown in Fig. 11 [A(z)
from Fig. 3]. In this case, the step approximation can still
be improved by choosing a larger effective thickness
a,fr = 1.65 instead of a = l. 5 (see Fig. 12).

In order to show more clearly the shift in the virtual
bound states, an example with the larger layer thickness
a =4 and T,z ——0 is presented in Fig. 13. Apart from the
phase shift, the resonance structure dies out faster than in
the step approximation.

All tunneling spectra presented so far have been calcu-
lated for systems with a fully transparent interface. In the
partly transparent case, the proximity effect is reduced
and A(z) becomes more steplike (cf. Figs. 7—9). In view
of the above results, one does not expect an appreciable
difference between the step approximation and the full
numerical calculation. This can be seen for three different
examples (vg =2, vg =0.5, and Vs ——0.7) in Figs. 14, 15,
and 16.

Finally, I want to present the results of a few strong-
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FIG. 8. Self-consistent pair potential b, (z). T,z ——0. 13,
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coupling calculations. To keep the discussion simplest, I
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FIG. 17. Pair potential for a strong-coupling (upper curve)
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ratio of the dressed Fermi velocities was chosen with

Uz&/Uzq ——1+trpb, where the electron-phonon coupling
constant A, pb had the value 1.SS. The layer thickness
varied between 0.1 and 3.0gs. The pair potential A(z) was
defined as the extrapolation of b, „(z)/Z„(z)
[Z„(z)=E„(z)/E„] to zero energy. For bulk superconduc-
tors, these values agree very well with the energy gaps.
For comparison, the calculations were repeated in the
weak-coupling formalism. The results are shown in Figs.
17(a)—17(c). The upper curves give the strong-coupling
pair potential, and the lower ones are the weak-coupling
results. Deep in the substrate, we just see the bulk
strong-coupling enhancement of 2S%. At the interface, I
found a relative enhancement of more than 40%. It
seems that the proximity effect is less effective in the
strong-coupling case. This might be explained by the
reduction in the coherence length with increasing Matsu-
bara energies. Finally, I would like to point out the effi-
ciency of the quasiclassical scheme: fully self-consistent
calculations of b, (z) as shown in Fig. 17, on a VAX 8600
computer, needed between 4S sec and 1.S min in the
strong-coupling case, and 8—1S sec in the weak-coupling
limit.

IV. SUMMARY

Using the quasiclassical method, the pair potential of a
system consisting of a layer of a normal or superconduct-
ing metal on top of a very thick superconducting substrate
was determined in a self-consistent way. Subsequently,
the tunneling density of states NT(E) was calculated (in
the weak-coupling limit). The results show that a step an-
satz for the pair potential reproduces the exact Nz(E)-
very well, provided the step parameters are properly ad-
justed with the help of the correct self-consistent A(z).
The main difference is a phase shift in the McMillan-
Rowell- Tomasch oscillations.

In addition, results for strong-coupling pair potentials
have been presented. The proximity effect seems to be
weakened in comparison with the corresponding weak-
coupling case.
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