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Maximum-overlap Jastrow wave function for liquid He
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The maximum-overlap Jastrow wave function is computed for real liquid He and for a model
Bose Quid interacting with a realistic pair potential, the so-called HFDHE2 one. We propose a
method for obtaining information on the interparticle interaction starting from the radial distribution
function g(r) and maximum-overlap Jastrow wave function. The method is tested by use of the re-
sults for the Lennard-Jones and HFDHE2 systems.

I. INTRODUCTION

The variational method based on minimization of the
expectation value of the Hamiltonian is a standard ap-
proach to the study of dense quantum fluids such as the
helium liquids. Complementary to this, another varia-
tional principle has been recently applied to quantum
fluids, ' one based on the maximization of the overlap in-
tegral (g,d ~

go) between the exact ground state fo and a
model wave function g,d. The extremum condition
leads to a certain equality between correlation functions,
the simplest of which is the radial distribution function
(RDF) g (r) of the system and of the model.

Use of a second variational principle is justified by two
main reasons. First, a variational wave function is in-
teresting not only for the computation of the quantity on
which the variational principle is based, the energy, for in-
stance, but as the starting point for computation of other
observables of the system, such as the momentum distri-
bution or the correlation functions. Comparison of such
quantities derived from different variational principles
gives an indication of how good the family of trial wave
functions used is. Second, the variational principle based
on {P,~ ~

Po) requires, in a certain approximation, only
knowledge of the true g (r) of the fluid and this can be ob-
tained from the experimentally known structure factor
S(q). No assumption is needed for the form of the Ham-
iltonian of the system. This opens the possibility that
from the maximum-overlap computation we can obtain
information on the interatomic interaction.

In this paper we study the case of Bose fluids, for
which it is known that a Jastrow function

QJ( Ir, I I
&)= Q e

represents a rather good approximation of the ground
state when the Jastrow pseudopotential u (r) has been
suitably chosen. We compute the maximum-overlap Jas-
trow pseudopotential u(r) for liquid Helium starting from
both the experimental S(q) and from the g (r) obtained

from exact simulations ' of a Bose fluid interacting with a
realistic pair potential, the so-called HFDHE2.

It is clear that the Jastrow pseudopotential mirrors, in a
certain way, the interatomic potential. In the ideal gas
u (r) = 1 and deviations from unity are caused by the in-
teraction. In a dense fluid, as in liquid helium, many par-
ticle effects are important and it is known that certain
features, such as the long-range tail of u (r), are
specifically related to collective effects. On the other
hand, energy-variational computations ' give good evi-

dence that the short-range structure of u (r) is dominated

by two-body effects through the interatomic interaction.
Suppose we have two quantum fluids, 3 and 8, which
have a slightly different interaction. Since the collective
effects should be very similar in the two systems when the
density is the same, we can expect that the difference
uz —u& between the two Jastrow pseudopotentials reflects
essentially the difference v z —vz between the two intera-
tomic potentials. The observation is not very useful if uz
and u~ are derived from an energy computation, since
this requires already the knowledge of the potentials. The
situation is different if u z and uz are obtained from a
maximum-overlap computation which requires as input
only the radial distribution functions g~ and gz. Then, if
for the 2 system we know both vz and gz but for the B
system only gz, there is the possibility of obtaining infor-
mation on vz —v z from uz —u z . In this paper we test
this idea using two maximum-overlap pseudopotentials;
the first is the one we obtain here for the model Bose fluid
interacting with the accurate HFDHE2 pair potential for
He and the second is the u (r) already computed for a

Lennard-Jonnes (LJ) Bose fluid.
The contents of the paper are the following. In Sec. II

we discuss our method for obtaining the maximum-
overlap pseudopotential starting from a given RDF g(r).
In Secs. III and IV we present the results for a Bose fluid
interacting with the HFDHE2 potential and for liquid
He, respectively. In Sec. V we investigate to what extent

the difference between the pseudopotentials for the
HFDHE2 and Lennard-Jones potentials reflects the
difference of the relative pair interactions. Our con-
clusions are contained in Sec. VI.
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II. MAXIMUM-OVERLAP JASTROW
PSEUDOPOTENTIAL

It was shown by one of us' that the normalized Jastrow
function PJ( [ r; I l

u) which has the maximum overlap
with the exact ground state ito of a Bose fluid is obtained
from that pseudopotential, which we call u(r), for which

corresponding to any chosen g(r). The RPA, in general,
is a reasonable but not very accurate approximation, so
that (6) is not taken as the final prediction of u. Instead,
(6), which now we call u "', is used only as a first estimate
of u. With this pseudopotential u '", we compute the
"exact" RDF with a Monte Carlo simulation. Then (5)
can be used again, with u "' replacing u ' ', and the
scheme can be repeated, giving

go(») =g .d(»
l

u ) . (2) u "(r)=u I' "(r)+5" (r),

go(r) is the RDF corresponding to the probability distri-
bution ito, and g „d(r .

l
u) is the RDF corresponding to

the suitably normalized product toit J(u ). It has been
verified empirically on the basis of Green-function Monte
Carlo (GFMC) computations that a Jastrow function is
closed enough to 1to that the difference go-i(J can be treat-
ed as a perturbation to linear order. In this case

go(») =2g~„d(»
l
u) —gJ(»

l
u)

gJ(r) is the RDF corresponding to Pq(u). Use of this re-
lation in (2) gives the approximate maximum-overlap con-
dition

go(»)=gJ(» lu)

i.e. , u(r) is such that it leads to a RDF which coincides
with the exact one. Formally, this is equivalent to the
solution of the so-called inverse problem for classical
Auids, i.e., the determination of the pair interaction which
reproduces a given RDF. This equivalence simply follows
from the identity of 1tJ([r; I u), with the probability dis-
tribution in configuration space of classical particles at
temperature T interacting with a pair potential
v*(r) =ks Tu (r), where T is an arbitrary temperature.

In paper I (Ref. 2) we solved the functional equation (4)
with an iterative predictor-corrector method. For the
predictor' we used either the random-phase approxima-
tion (RPA) or the modified hypernetted-chain (MHNC)
equation. The RPA states that, given a pseudopotential

)

where

5RPA(r)(;) 1

p(2~)

X fd'k e'"'[SJ '(k
I u ' ")—So '(k)] . (9)

The MHNC equation (Ref. 9) states that the so-called
bridge function E (r

l
u) remains unchanged for small

variations of u (r) and this leads to

and

g =
I
gJ("

I

u '
) —go(r

b.;S = SJ(k
l

u")——So(k)

"(»)+5MHNC(»)

5MHNC(») 5RPA+ ln[gJ(» l

k ' '
) ~go(r) ]

+gJ(»
l

u' 'I) —g, (r),
where 5RPA is the same functional form as in (9).

A typical computation proceed as follows. As starting
u' ' we take a pseudopotential obtained from some previ-
ous variational computation of the energy for a pair in-
teraction similar to that of the system under examination.
We have verified' that the choice of u' ' is not crucial.
Then a number of iterations are performed, first comput-
ing the correction to the previous pseudopotential, either
by (11) or by (9), and second, running a MC simulation
with the new pseudopotential. The cycle is repeated until
the differences

5c (r) =cJ(r
l

u '+5u) cj(r
l

u' ) = —5u (r)—, (5)

S (k) is the structure factor

S(k)=1+pfd'r e'"'[g(r) —1]

where cJ(r
l

u ' ') is the Ornstein-Zernike (OZ) direct
correlation function corresponding to gJ(r u' '), and
5u (r) is an arbitrary (small) variation of the pseudopoten-
tial. Use of (5) with 5u =u —u' ' with the OZ relation

g (r) —1 =c (r)+p f d r'c (r')[g (
l

r —r'
l

) —1],
and use of (4) leads to the RPA result

u RpA(r) = u (r)

fd'k e'"'[SJ '(k
l

u' ) —So '(k)]1

p(2'�)

(6)

are below a set of standard errors; for instance, the statist-
ical error associated with the MC simulation. In order to
obtain good accuracy in u, it is important to control the
deviations both in r and k space since this allows one to
discriminate between small systematic deviations in r
space and those of random nature. Of the two predictors,
the MHNC one is known to be very accurate at short dis-
tances in the region of the core. On the other hand, the
MHNC predictor is more affected by any noise contained
in go or gJ due to the presence of the logarithmic term in
(11). The RPA predictor is less affected by the noise, but
it is accurate only for the slowly varying components of
the pseudopotential. In order to optimize the result, we
usually start with some cycles with the MHNC predictor
until the short-range part of go(r) is well reproduced, and
then we switch to the RPA predictor to obtain full con-
vergence. Since the successive u" have a tendency to os-
cillate around the solution, in the later cycles we add only

p ~RpA or
p ~MHNc to the previous pseudopotential. Both
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6RPA and 6MHNC require knowledge of gJ(r) and SJ(k).
With simulation, gz(r) is obtained only up to a maximum
distance L/2, where L is the side of the simulation cube,
so that S~(k) cannot be obtained directly by a Fourier
transform of this gJ(r), but the RDF must be extended to
larger distances in order to avoid truncation errors. It is
not known how to do this exactly and various approxima-
tions have been proposed. We have used a method found
satisfactory with GFMC computations: The RDF is
fitted in the tail region r ~ L /2 with the function
Re[Jr 'exp(zr)] with respect to the complex numbers 3
and z, and the resulting function is used to represent the
RDF for r ~L/2. This method of extension introduces a
certain error in the deduced pseudopotential, but this er-
ror can be minimized if the same method of extension is
used for both gj and go.

III. MAXIMUM-OVERLAP PSEUDOPOTENTIAL
FOR THE HFDHE2 FLUID

The maximum-overlap pseudopotential for the LJ fluid
at liquid-helium density has already been computed in pa-
per I. Here we compute u (r) for Bose particles interact-
ing with a potential which is more realistic for He, the
HFDHE2 (Ref. 6) potential (see Fig. 1). Results of a
GFMC computation are available for this potential, as
well as a computation of the properties at finite tempera-
ture based on a path-integral method. Both computa-
tions are supposedly exact.

We have started our computation with go(r) from the
GFMC computation. Unfortunately, this go(r) is rather
irregular, with fluctuations from one point to the next on
the grid in r space which are much larger than the results
of the similar GFMC computation" for the LJ potential.
We have tried to perform some smoothing of go(r), but

OO
LA

the large amount of noise did not allow the determination
of a reasonably stable result with respect to the parame-
ters of the smoothing function. The RDF of the path-
integral method is more regular and we have used the
go(r) computed at the lowest temperature, T= 1.176 K, as
the "exact" RDF of the ground state. This temperature is
small enough that essentially no rotons are excited. Due
to the small size of the system used in the path-integral
computation (64 particles), also long-wavelength phonons
cannot be present, so that this finite-temperature RDF
should represent a very good approximation of the ground
state.

In our MC simulation we have used the same number
of particles and both go(r) and gJ(r

~

u") have been ex-
tended at r &L/2 with the same algorithm. In order to
achieve good precision, we have performed very long MC
runs of 15 000 moves per particle at each iteration.

The trend of the computation turns out to be very simi-
lar to that of the LJ fIuid. After three iterations the basic
structure of go(r) and So(r) is well reproduced and after
another five iterations one gets convergence to the level of
the MC noise: The deviation g;(r) is less than 0.5% when

go ~0.2 and less than 4% in the inner-core region. The
deviations AS;(k) are less than 1%, with an average value
of 0.3%. The pseudopotential at convergence is shown in
Fig. 2, together with that of the LJ quid. The shape is
rather similar, a sharp rise at short distances followed by
a structure in the intermediate range 4—7 A. The local
maximum at 5.3 A is very close to the position of the
minimum of g(r) and this structure is slightly more ro-pro-
nounced than in the case of the LJ potential. In particu-
lar, the minimum at -7 A is more pronounced for the
HFDHE2 potential, but this distance is close to L/2, so
that this result might be affected by the extension of the
RDF.

It is interesting to compare u with the pseudopotential
obtained from an energy computation. The best Jastrow
pseudopotential obtained from the Lagrange-Euler equa-
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O
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FIG. 1. HFDHE2 pair potential (solid line) and the LJ one
(dashed line). Notice the change of scale.

FIG. 2. Maximum-overlap Jastrow pseudopotential for the
HFDHE2 potential (solid line) and for LJ (dashed line) at the
equilibrium density of He. Left-hand scale is up to the first zero
of u (r) and the right-hand scale is beyond.
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C)
C3

tion in t e HNC approximation' is shown
' F 3.

is result is for an infinite system and it has built in the

ong-wavelength phonons. This contribution is absent in
gp(r) as well as in our computation due to the finite size
of the s stem. We hy . have estimated u for an infinite system
by addin to theg computed maximum-overlap pseudopo-
tential the missing phonon contribution evaluated by

5 h(r)=p '(2n. )
' Jd k e'"'[S '(k) —So ' k lt (12)

where Sp(k)=6k/2mc, c being the sound velocit f
„and So(k) =So(k) for k ~ k, . k, is the crossing

point between Sp(k) and the Feynman form Ak/2mc ap-
propriate for small k. At short distances, u(r) is rather
similar to the energy variational pseudopotential, and both

e e same basic structure at intermediate distance.
This structure hohowever, is much more pronounced in
u(r), where a well-defined maximum andm an minimum ap-
pear. This is similar to what was found for the LJ fl d.

0
I- (A)

FIG. 3. M x3. Maximum-overlap pseudopotential (solid line) and

optimum pseudopotential from energy computation (Ref. 12)
(open dots). Solid dots represent go(r) (Ref. 5).

ed' from the measured S(k); g(r) is truncated at the dis-
tance r =L/2=7. 15 A corresponding to our simulation
cube. This truncated g (r) is extended at r & L /2 with the
algorithm discussed in Sec. II. A F ' f
of thi

ourier transformation
o this extended g (r) gives a structure factor h' h
a e as p . As expected, this Sp(k) diff'ers significantl

at small k; for instance, Sp(0) =0.07 in

'
can y

S(0)= k TK =0 ' '
pres

'

it bu
=p ~ T =0.04 (KT is the isothermal compres b 1-=0 pressi i-

i y), ut at larger k the difference between So(k) and the
measured one becomes small. For instance, it is leuc at
the main maximum of S(k).

As our starting pseudopotential we have used u com-
puted for the HFDHE2 potential. After five iterations a

average eviation ofreasonable convergence was reached ' d
2% in g(r) and S(k)], and in view of the uncertainty in

) we have not pushed the computation further. The
resulting pseudopotential, shown in Fig. 4, is rather close
to that of the HFDHE2 potential and this is not surpris-

RDF computed with the HFDHE2 potential and the ex-

trend of the maximum-overlap pseudopotentials of the LJ
and HFDHE2 flan 2 fluids, but u (r) is rather irregular at short-
er istances, where gp(r) 50.2. Presumably, this reflects
the uncertainty in the deduction of the radial distribution
unction at short distances startin fr trom a structure actor

which is known onlh h y over a finite range of wave vectors
(0.8 —6.7 A ' in the present case).

V. INVERSE PROBLEM IN BOSE
QUANTUM FLUIDS

The short-range behavior of the Jastrow pseudopoten-
tial reflects close encounters of pairs of particles. If the

ver close
inter erence eftect due to the presence of a thirdo a ir particle
very c ose by can be neglected (at typical liquid-helium
density, the probability of such three-body collisions is

7 8
very small), then the Jastrow factor ex [ —u (r)/2
pec e ' to be close to the solution of the two-bod
Schrodin er eg quation at some characteristic ener . It '

e wo-oy
gy. is

IV. MAXIMUM-OVERLAP PSEUDOPOTENTIAL
FOR REAL LIQUID 4He

In this computation we have used, as input, the mea-
sured S(k) by neutron scattering' at the equilibrium den-
sity and at the lowest temperature, T=1 K. As already
discussed in the preceding section, this temperature is low
enough that S (k) should essentially coincide with the
ground state Sp(k), apart from the very-small-ky-sma - region.
n is rst computation of an exploratory nature, we

wanted to use the same number of particles (64) as in the
previous computations for model systems. For this
reason we cannot use directly the measured S(k), but
rather we must subtract the contribution coming from
iong-range correlations. These are estimated as follows:
We start from thee RDF, which has been already comput-

C3
C3

I I & i i i I I I I I i I

3 C C' 7

FIG. 4. Same as in Fig. 2. For th HFDHF2e potential (solid
line) and for real He (dashed line).
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u„(r)= W„(r)+Z„(r), u~(r) = W~(r)+Zq(r) . (13)

The pair Jastrow factors

not obvious a priori how far in the distance r between the
pair of particles this similitude will hold, but energy-
variational computations have shown that this similitude
extends over a significant range of distances, i.e., up to a
distance of order of the position of the first peak of the
RDF. The effect of the presence of the other particles is
taken into account by introducing a boundary condition
exp[ —u (d)/2]=1 at a characteristic healing length d.
On the other hand, the optimal Jastrow pseudopotentials
coming from energy or from maximum-overlap computa-
tions show a structure at intermediate distances which is
not present in the solution of the two-body Schrodinger
equation. The position of this structure depends on densi-
ty and it roughly scales like p ', so that it must be a
collective effect. ' ' At larger distances the pseudopoten-
tial goes over smoothly to the r tail, again a collective
effect. "

Before we can try to extract information on the pair in-
teraction from the maximum-overlap pseudopotential, we
must separate —in u (r)—the collective contribution from
the two-body one. We are not able to do this, in general,
because we do not yet have a theory of the intermediate-
range structure of u (r). However, we can do this approx-
imately if we know the pseudopotential of a system with a
pair interaction close to that of the system under examina-
tion. Let us call v„(r) and v~(r) the two pair interactions
and u„(r) and ua(r) the corresponding maximum-overlap
pseudopotentials. Let us split the u into a pair term W(r)
and a collective contribution Z(r):

Hwa(r) = —'u 'a+ —'(u 'w ) + —u 'z

B+4(u B) + u g pu gu g i

2

Kg~(r)= (u„' —u s)W„'(r),
2m

(18)

(19)

where u'=du (r)/dr and u"=d u (r)/dr .

Suppose that we know, for the system 3, both the pair
interaction v„(r) and the RDF go" (r), from which we can
obtain u„(r). For the system B, we know only g„' (r)
and the relative uz(r). Then, Eq. (17) gives us the un-

known pair interaction v~(r). There is one problem in us-

ing (17): The term H„s can be computed from u~ and

uz alone, but the term Ezz also requires knowledge of
the pair contribution W„' (r), which is only a part of u „.
Explicit calculation shows that the Kzz term is much
smaller than H ~z, so that it makes essentially no
difference if K~z is approximately by

K„~(r)=R /2m(u '„—u ~)u '„(r) . (20)

Equation (17) for va(r) relies on two approximations,
namely that the collective terms for the two systems are
the same and that the pair term W(r) is a solution of Eq.
(15). ln order to test if these approximations are accept-
able, we have used the computed maximum-overlap pseu-
dopotentials for the LJ and HFDHE2 systems. As refer-
ence system 3, we use the LJ fluid and we compare
v~ —v „as given by (17) with the known difference be-
tween the two potentials. As shown in Fig. 5,
H„(rs)+K„~(r) is very noisy, but the basic trend of

l (r)=exp[ —W (r)/2], a= A, B (14)

are assumed to be a solution of the two-body Schrodinger
equation'

$2 Q2
+v (r) l (r)=0, a= A, B

fpz Q p

with the boundary condition l (d) =1, 1' (d) =0 at a suit-
able healing length d. The collective effects enter u in two
places, directly in the Z(r) term and indirectly in W(r)
via the healing length. If the two pair potentials vz and
vz are similar and the density is the same, we can assume
that to a first approximation the collective effects in the

two systems are the same, so that

Z~(r)=Z~(r), d„=da . (16)
2. 0

I

3.0
r- (4)

vz(r) = v z (r)+H zz(r)+K&&(r), (17)

Taking the difference of Eq. (15) for A and B, expressing
l in terms of W, and using (13) and (16), we can obtain
v~(r) in the form

FICx. 5. Difference between the HFDHE2 and LJ potentials
(solid line) and the quantity H(r)+K(r) as given in Eqs. (18)
and (19) computed with the maximum-overlap pseudopotentials
for the two systems. o and + are the results of the last two
iterations of the computation of u (r).
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vz —vz is reproduced. The level of the noise, however,
does not allow one to give a definite answer on the level of
accuracy of(17).

This noise has two sources which are of comparable im-
portance. On one hand, some noise is introduced in our
computation of u by the simulation stage of the iterative
method. The deviations between H,&z+Kzz computed at
two successive iterations of u [the MHNC predictor (11)
was used] give an idea of this effect. The differential
operations performed on u required to build Hzz+Kzz
amplify enormously any noise, and this is particularly
significant at short distances, where g (r) 5 0.1. Either
longer simulations in computing gJ are required or a
method of solving the functional equation (4) which does
not use simulation is. Notice that in computing
H»+K» we have used the u ~ and u& as given by the
predictors (9) and (10), and no smoothing has been ap-
plied to u or gJ.

A second source of error is due to the RDF go used as
input. These come from computations of the quantum
problem which are exact but statistical in nature. There-
fore, go is affected by some noise. In paper I we applied a
five-point spline smoothing to the function go(r)exp[u (r)],
where u (r) is the McMillan pseudopotential. ' The
weights attributed to the different points change smoothly
from 1% for r &o =2.556 A to 10% for r &o.. The pre-
cise value used for the smoothing parameters has a small
but significant effect on the smoothed g„(r) and this leads
to a variation in the resulting H&z+Kzz which is of the
order of the oscillations present in the result given in Fig.
5. We suspect that the origin of the short-wavelength os-
cillations present in Hzz+K&z are due to the smoothing
procedure. Clearly, this problem will be avoided when we
will have available results of exact simulations of quantum
systems with a lower level of noise.

VI. DISCUSSION

We have computed the maximum-overlap Jastrow
pseudopotential u for the HFDHE2 fluid and real liquid
He at the equilibrium density. The two pseudopotentials

turn out to be rather similar and there is a small but
significant deviation from the pseudopotential of the LJ
fluid.

We have explored the possibility of deducing the
difference between the pair interactions of two slightly
different systems from the difference between the relative
maximum-overlap pseudopotentials. The LJ fluid is used
as reference and we have tried to deduce the HFDHE2
potential starting from the exact RDF of this system. The
algorithm is based on the assumption that the pseudopo-
tential contains a part of collective origin which is weakly
dependent on the detailed shape of the pair interaction,
and that the remaining part of two-body origin is solution
of a Schrodinger-like equation. The extracted potential
has the basic feature of the correct one, but the level of
noise is too large to reach a quantitative conclusion. In
order to decrease the amount of noise, we need a better
way of solving the functional equation (4) for u, so that
the result is less affected by the statistical noise of simula-
tion and that the exact simulations of the quantum fluid
increase the accuracy of their RDF. It is also important
to perform computations on systems larger than the
present ones is order to minimize the effect of the exten-
sion of the RDF.
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