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Calculations are presented for the thermal-boundary resistance in an irregular interface between
solid and liquid helium. The mechanism for energy transmission is due to the strain dynamics of
surface defects which coherently excite in the adsorbed solid He layer phonons that, in turn, decay
into the helium bath via di6'usive processes. The topography of irregular surfaces is modeled by ran-
dom distributions of islandlike defects on a flat substrate, and the energy transmission coefficient is
obtained in general as a configurational average. The transmission coefficient is calculated for a
blackbody source of thermal phonons and for defects of atomic dimensions. The Kapitza resistance
is calculated in general for atomically irregular surfaces as a function of the source temperature, the
surface density of defects, a statistical average of the dimensions of surface defects, and the Debye
temperature of the solid He layer. The magnitude and temperature dependence of the calculated Ka-
pitza resistance compare favorably with measurements in the range (-10 —-2) K. The theory
also accounts for other features of the anomaly such as the pressure dependence, the random yet
bounded magnitude of the measurements, and the independence of these measurements from the
superfluidity of liquid helium.

I. INTRODUCTION

Thermal-boundary resistance was first observed by Ka-
pitza' in 1941. The corresponding heat transmission
across the solid-liquid helium interface was subsequently
attributed by Khalatnikov to phonon scattering in a flat
boundary between the two media. Extensive experimental
and theoretical studies of the effect and of pho non
transmission, reflection, and scattering processes at sur-
faces and interfaces have been made since. For recent re-
views the reader is referred to Refs. 3—5.

Under special conditions of UHV or laser annealing,
nearly ideal surfaces can be obtained and for these sur-
faces the acoustic mismatch model seems adequate for
known ranges of frequency. In contrast many prepared
surfaces do not behave in this ideal manner, and solid-
liquid or solid-solid interfaces deviate significantly from
the acoustic model, and give rise to the well-known Ka-
pitza anomaly ' across the solid-liquid helium interface
and to phonon losses and anomalous high-phonon back-
scattering at solid-solid interfaces. '

Furthermore, experiments where phonon transmission
and phonon reflection are specifically investigated ' "'
show that there exist for nonideal surfaces two channels
for phonon reflection and transmission, one which is spec-
ular in character that conserves the wave vector parallel to
the interface, and another diffusive that accounts for most
of the heat energy transmitted from the solid into the
liquid-helium bath.

The effect of surface roughness on acoustic wave
transmission between a liquid and an isotropic solid was
considered by Lapin' and by Adamenko and Fuks. '

More recently, Shiren' extended these calculations; this
analysis opens up the critical cone and increases power
transmission from one medium to the other, although it
constrains contributions to qg& l phonons in the pertur-

bation calculation. q is the phonon wave vector and g de-
picts the dimensions of the surface irregularities. The
model, furthermore, does not account for scattering mea-
surements that show the thermal-boundary conductance
to be dependent on the coupling of localized surface de-
fects to the strain field of incident phonons. ' The possi-
bility of increased heat transmission due to localized
strain dynamics of surface defects was pointed out some
time ago. ' To account for this observation, Kinder'
considers surface defects as "glassy" centers that form
two-level systems which incident phonons can excite. The
absorption cross section is obtained in first-order perturba-
tion, and within the model assumptions it is a direct mea-
sure of the energy transmission coefficient. This model is
strictly valid, provided the strain dynamics of the defects
can be neglected, and it is not clear if this can be justified
in general for arbitrary frequencies and for high spatial
densities of incident phonons. Its results compare favor-
ably with measurements' in a band of low frequencies
( —30 to -60 GHz), but for larger frequencies, the ab-
sorption cross section is too large for the model approxi-
mations. In contrast, some measurements ' ' ' show that
the enhanced transmission in the Kapitza anomaly occurs
via processes which involve these larger frequencies.

In a recent work by Khater a theory for phonon
scattering from surface defects in thermodynamically
stable irregular surfaces is presented by analyzing the
effect of phonon strain fields on the strain dynamics of de-
fects, for all frequencies and arbitrary spatial densities of
incident phonons. The topography of the irregular solid
surface is modeled by a distribution of defects in the form
of islands of random dimensions and separations on a flat
substrate. The scattering matrix elements that mix the
scalar amplitudes of the longitudinal L and transverse T
phonon polarizations are calculated. The strain field on
the islands is also obtained in exact analytic form, for all
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phonon frequencies.
The purpose of this paper is to present a model for the

Kapitza resistance, which is extensively analyzed, with the
aim of accounting for the measured order of magnitude of
Rz and its temperature dependence, as well as other
features of the anomaly. The proposed mechanism for en-
ergy transfer is assumed to be due to flexure of the de-
fects, that coherently generate two-dimensional phonons
in the adsorbed solid helium layer at the solid-solid He
layer interface, and the incoherent decay of these phonons
into the liquid helium bath at the solid He layer-liquid He
interface.

In Sec. II the strain energy of the harmonic flexure of
an island is calculated using elasticity theory. In Sec.
III the elements of the proposed energy transfer mecha-
nism are presented along with the basic assumptions made
in the model. The energy transmission rate for the irregu-
lar interface involves configurational averages over ran-
dom distributions of islands. This is given in general and
calculated for atomically irregular solid surfaces. In Sec.
IV the heat flux owing to a blackbody source of bulk pho-
nons is calculated, and a formula for RzT is derived. It
is a function of the absolute temperature T of the source,
the Debye temperature of the solid He layer, the density
of islands, and a statistical parameter which characterizes
the atomically irregular solid surface. Numerical applica-
tions are presented in Sec. V, and the theory is compared
to measurements.

II. SURFACE FLEXURE MODES

The topography of the irregular solid surface is
modeled by a distribution of islands on a flat substrate.
The islands are taken to be cylindrical, of random heights

g, and random radii g. The linear separation between the
islands is also a random quantity. In the laboratory
frame the Cartesian x and z axes are oriented, respective-
ly, parallel and perpendicular to the surface. The sub-
strate and the vacuum occupy, respectively, the half-
spaces z &0 and z ~0. The islands are of the same ma-
terial as the substrate, and are considered to be fixed at
their circular base z =0 by bulk force constants.

Let incident and scattered L, T phonons be character-
ized by the source frequency ~ and, respectively, by the
wave vectors qoL ——(QOL, O, qoL), qor ——(QOT, O, qor) and

qL
——(QL, O, qL ), qr =(Qr", O, qr ) Th.e directions of propa-

gation of the incident L, T phonons are arbitrary, and
their polarization unit vectors are in the plane of scatter-
ing. Furthermore, let uoI, uoT denote the scalar displace-
ment amplitudes of the incident L, T phonons, respective-
ly. The islands have an additional degree of freedom of
fIexure about the z axis, absent in an ideally flat surface.
If uF denotes its corresponding scalar displacement ampli-
tude, then it can be shown that this satisfies the condi-
tion

BuF—l
a

Vz—:[—~(qoL ) +(QDL )' —2qoL QQL ] uoL e
CO

UT+ I ~qorgor —&qorgor+l(gor) —(qor) ]I uoTe

& = [( qL )'(Qr )'+(q—L )'(qr )'+2QL QrqL qHIQrqr

The Kapitza and the phonon reflection and transmis-
sion experiments are characterized by L and T phonons
traveling parallel to each other from the source to the
solid-1iquid helium interface, and scattering predominant-
ly in a specular manner, "" since a well-prepared sur-
face has a small density of islands. The boundary condi-
tion uF I, &

simplifies hence from Eq. (l) to the form

U Z
z x —i mt tqor. ~

uF
I .=c= t 4q ot. Q OL u OLe—

CO

2 Ui2, —2(g, r—)
CO x 2

UT CO

Z—itut ~OT~
u oz-e

where vz and UT are the longitudinal and transverse
speeds of sound in the material, and the factors 3 and B
are given by

~ = [(QL )'(Qr )' —(QL )'(qr )'+2QL Qr qL qH Igrqr

Cc)
uF' l.=t-=2

VT
cos(2a)uore '"~ e ' e

where a= sin '(Qorur/cu) denotes the angle of incidence
of the phonons. The boundary condition (5) is a harmon-
ic force in the free circular surfaces of the islands.

The equation of motion for flexure of broad circular is-
lands is given by

This result indicates that the L and T phonons contrib-
ute with different strengths to flexure. In particular, for
phonons traveling near perpendicular incidence to the
solid surface when Qor(ur lou) QOL (uL Ico) 0 the L
phonons hardly strain the irregular surface, whereas the T
phonons do. In the presence of an energy transfer mecha-
nism that couples the flexure mode to liquid-helium exci-
tations, Eq. (4) implies that T phonons lose more energy
than the L phonons when they scatter in the interface.
This agrees with experimental measurements. "' '

Since T phonons are predominant over L phonons as
the carriers of the elastic energy in the solid, Eq. (4) can
be approximated formally to give
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8 u~ (1—v)EI( 8 ui.
2 + 4

=O-
at2 pa~ aZ4

(6)

E and v are, respectively, the Young's modulus of elastici-
ty and Poisson's ratio, of the solid. I~ denotes the mo-
ment of area of the islands about their neutral axes.
These quantities are well known in the theory of flexure of
one-dimensional rods. A& are the cross sectional areas of
the islands.

The strain energy of harmonic flexure for the islands,
W(g, g), is calculated using Eq. (6) and the appropriate
boundary conditions at z=0 and at z=g from Eq. (5).
For broad islands of atomic heights a good approximation
is obtained in the form

with

W(g', g) =4 p (UT(' cos (2a )Are,
V

p, = [p~, Z(1 v)FI, ]—"4 .

V is the volume of the solid bulk. p is its density.

III. ENERGY TRANSFER MECHANISM
IN THE SOLID-LIQUID HELIUM SURFACE

The helium atoms adsorbed onto the solid surface form
a solid layer which supports two-dimensional (2D) pho-
nons ' in the temperature range (0.01,2) K. This is the
range in which the Kapitza resistance has been extensively
measured. The layer is thermodynamically stable with a
crystallographic structure that is incommensurate, in gen-
eral, with that of the solid surface.

The hypothesis we make for the proposed energy
transfer mechanism on the islands of an irregular solid
surface comprises the following processes.

(i) The harmonic flexure of an island coherently gen-
erates 2D phonons in the solid He layer capping the is-
land. This is reasonable from the measurements in Refs.
24 and 25 and the strong van der Waal's contact between
He (layer) and solid atoms.

(ii) The 2D phonons on the solid He cap decay in-
coherently into the liquid He bath at the step edges
x =+(', z =g. The relatively weak contact between He
(layer) and He (liquid) atoms, makes this a reasonable as-
sumption.

where 7 is the lifetime of 2D phonons on the island. This
can be calculated as

4 v
(10)

where v is the speed of sound of 2D phonons in the heli-
um layer. It is significant to note that, for atomically ir-
regular solid surfaces, r of Eq. (10) and the frequencies co

of thermal phonons at low temperatures satisfy in general

cc)7 (( 1

This result underlines the incoherent nature of the pro-
posed energy transfer mechanism, in contrast with the
coherent acoustic mismatch theory. In particular, the
proposed mechanism conserves neither co nor the com-
ponent of the bulk phonon wave vector that is parallel to
the surface. These properties are experimentally observed
for phonon transmission in the diffusive channel '" (see
Fig. 1).

The energy transmission coefficient 7& across the area
of the interface due to the proposed mechanism in-

volves configurational averages over random distributions
of islands in the irregular solid surface. For a phonon of
energy Ace incident at an angle a, this is given by

X,(co,a)= —J f N(g, g)dgdg (12)

where N(g, g) denotes the surface distribution of islands
having heights g and radii g. J, identifies the diffusive
channel in the present model. There is another transmis-
sion coefficient Xz(co,a) that identifies the acoustic
mismatch channel from the flat parts of the solid surface.
Since the energy transmission in these two channels

flux of heat across the interface. This implies that 2D
phonons are excited in excess of their thermal equilibrium
density, and following process (ii), that the return to equi-
librium is governed by the decay of these phonons into
the liquid He bath. The rate of energy transmission from
a given island can be given consequently in a first-order
approximation by

d
dt

The hypothesis is consistent with recent experimental re-
sults of Klitsner and Pohl. ' See Sec. V for details.

The strain energy 8'q of the solid He cap on an island
under flexure is calculated using W(g, g). The repartition
of the strain energy between the island and the cap is ob-
tained, following process (i), in the form

—+ —d W(g, g) .
1 8 E'

E

Ballistic
channel I~

2D phonons

Oif fusive
channel

Solid helium layer

/ / / / ! ' / / / !

Solid L, T phonons

E' is Young's modulus of elasticity of the solid He layer,
and d is the layer thickness. Note that E' «E.

For the isolated system consisting of the solid and the
adsorbed layer only, the 2D phonons are in thermal equi-
librium. ' In an Rz experiment, however, there is a net

FIG. 1. Schematic representation of the ballistic and diffusive
channels. The diffusive mechanism consists of flexure of the is-
land, excitation of the 2D phonons in the solid helium layer, and
their annihilation into liquid helium excitations.
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occurs simultaneously with no interference effects,
then the total transmission coefBcient can be written as
the sum

can be hence written as

oo v/2
X&(co,a)n (ro)D(co)d~ —,

'
Ur sina cosa da,

0 0
X(~,a) =X,(a, a)+X,(co, a) . (13)

(20)
To calculate g, (co, a), g and g are recast in terms of the

solid lattice constant a,

/=ma, j=na (14)

m =/3n' . (15)

This form is the simplest that satisfies the necessary con-
dition that m =0 when n =0, for the scaling factors P& 0
and s &0. The scaling (15) folds the double distribution
X(g, g)dgdg into a single dimensionless one. Substituting
(7)—(10) and (14)—(15) into (12) yields X,(co, a) explicitly:

P, (co, a)=sP CE'cos (2a)fico f '" P(n)y(n)dn, (16)
1

where P(n )dn is the normalized probability of finding an
island with height n, and radius m following (15). The
limits of the integral, 1 and n „, depict minimum and
maximum island heights that are available in the irregular
solid surface. c is the surface density of islands. The fac-
tor y(n ) is given explicitly by the expression

2 —3$

y(n)=d
3 —4$

a a
(17)

C is a product of constant terms and y(n ) is dimension-
less.

For well-prepared solid surfaces, as those obtained by
cleavage or electropolishing, it is reasonable to suppose
that the irregularities consist mostly of monatomic step is-
lands on a local flat substrate. ' The normalized proba-
bility is consequently approximated in these surfaces by
the form

P(n )dn =6(1)dn (18)

Substituting (18) into (16) yields

X~(co,a)=up (1+8p ')CE' cos (2a)fico . —
a

(19)

It should be noted that the final expression for X, (co, a) is
not very sensitive to the choice of a particular form for the
normalized probability distribution, nor to the scaling ap-
proximation (15).

IV. HEAT CONDUCTION AND THE KAPITZA
RESISTANCE

When a thermal source provides the heat flux Q in an
experiment, the phonons that travel to the solid-liquid
helium interface have a blackbody spectrum. ' The heat
flux across the interface due to the flexure of the islands

m and n denote the number of atomic layers correspond-
ing, respectively, to the radius and height of the islands.
For any prepared solid surface it is a reasonable approxi-
mation to suppose that the surface treatment introduces a
configurational scaling between m and n. With no loss of
generality this is considered as

where n(co) is the Bose-Einstein factor and D(cu) is the
Debye density of states of the solid bulk phonons. T pho-
nons carry most of the elastic energy in the Q field, and
the calculations are restricted to their contribution.

Substituting for X&(co,a) from Eq. (19) and integrating
gives

Qi =sP (1+8P ')CT E'd . (21)

C is again a product of constant terms. T in Eq. (21)
refers to the temperature of the thermal source.

The mechanical and thermal properties of the solid He
layer can be related. In particular, the Debye temperature
of the solid layer is nearly that of the solid helium bulk at
the same interatomic separation in the respective solid
phases. E' can thus be recast in terms of the Debye
temperature Oz of solid He. With some algebra Eq. (21)
becomes hence

= eP (1+8P ')CT~O& d, (22)

where C is a product of constant terms given in final form
by

2/3

C= 4m mUG(v') p k'
180 9 (1—v')E a A'

(1—2v')(1+ v') 2(1 —v')

(1 —v') (1—2v')

(23)
3/2 2/3

m is the mass line density of the helium solid at a given
molar volume, v' is the Poisson's ratio for solid He, and k
is Boltzmann's constant.

The form for the heat flux owing to flexure, given by
Eq. (22), depends on the density of the islands and on the
parameter p characteristic of the statistical properties of
the irregular solid surface. The condition c~O corre-
sponds to an ideally flat surface, and it is straightforward
to show that the heat flux due to the proposed mechanism
goes to zero in this limit,

1

Lim =0, as c~O . (24)

In this case the energy transmitted reduces to the acoustic
mismatch heat flux Qz!A since the corresponding
Xq(co, a) persists for the flat interface, which result is con-
sistent with Rz measurements in nearly ideal surfaces.

The heat flux Q, /3 also depends on the Debye temper-
ature of the adsorbed solid He layer. The molar volume
of this solid layer is not well known since the state and to-
pography of irregular solid surface are generally un-
known. Nevertheless, the molar volume should fall be-
tween maximum and minimum allowable values for solid
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He. This point is significant because it allows one to treat
8& in Eq. (22) as a random variable for different surfaces.
At sufFiciently low temperatures O~ varies with tempera-
ture; ' 8h ——8i, (T) is then one of a family of curves
bounded by loci that correspond to the minimum and
maximum molar volumes.

The Kapitza resistance due to the proposed mechanism
can be obtained using Eq. (22) in the form

P'(I+8P ')
2eCd(28„+ T8„r)8„yt)T )

(25)

provided Qt ~&Q2, which is satisfied for reasonable values
of c. and P. The acoustic mismatch contribution should
be retained, otherwise, to yield the corresponding thermal
boundary resistance.

1 P 1

E(1+8P ') (28~s+TO t)8 /rjT)
(26)

A reasonable theoretical estimate for well-prepared sur-
faces is E-l%%uo, and the statistical parameter is taken as
P—10 from low-energy electron diffraction measurements.
The temperature variation of 8i, (T) for the hcp solid-
helium phases are also known, "' at different molar
volumes.

In Fig. 2, plots are presented for the thermal-boundary

V. NUMERICAL ANALYSIS AND CONCLUSIONS

The constant terms of Eq. (25) are calculated, using Eq.
(23) for C, by taking values typical of a material solid, and
of solid helium: p = 3 g cm ', v=0. 34, E = 10'
dyn cm, v'=0. 31, U =4.2 X 10 cm sec ' (for the
predominating transverse 2D phonons), m =7.4&&10

g cm ', and its variation with molar volume can be
neglected, d=2&(10 cm for the solid He layer, and
a =3 & 10 cm for the lattice constant of the solid.

Substituting these values in Eqs. (23) and (25) yields

resistance for a solid-liquid He interface. The molar
volume of the He layer is taken in the dense phase of
11.42 cm mol '. p=10 and 8=1%. At sufficiently low
temperatures the Debye temperature tends to a constant
value, and we have taken T-0. 1 K to be where this
occurs. The upper plot that corresponds to the pressure
of 1 psi is calculated for a helium layer thickness
d =2&&10 cm in Eqs. (25) and (26). In our model the
higher pressure of liquid helium results in an increase of
the layer thickness with no change in its molar volume.
The lower plot in Fig. 2 is consequently obtained from the
upper plot by increasing the layer thickness to
d = 3.2& 10 cm, to correspond to the higher pressure of
395 psi. There is good agreement in both cases with the
experimental measurements of Anderson et al.

In Fig. 3 is presented the plot for the thermal boundary
resistance for a solid-liquid He interface. The molar
volume of the He layer is taken in the dense phase of
12.23 cm mol '. p=10 and c, =1.8%. At sufficiently
low temperatures the Debye temperature tends to a con-
stant value, and we have taken T-0.06 K to be where
this occurs. The points are the experimental data of An-
derson et al.

The effect of surface preparation on the Kapitza resis-
tance has been measured in a series of reproducible exper-
iments by Johnson and Anderson between copper and
liquid He. In Fig. 1 of the above reference, curve B is for
a machined surface mechanically lapped to optical fiatness
and then electropolished. Curve C is for a similar surface
which was also annealed under high vacuum as a final
step. It is reasonable to suppose in this instance that the
surface density of defect islands is greater for B than for
C. The plots marked B and C in our Fig. 4 correspond to
putting E=1% and 0.33%, respectively, in Eq. (26) where
other terms are unchanged from our Fig. 1 for a solid-
liquid He interface. The theory compares well with the
experimental measurements of Johnson and Anderson for

300 ( I I 1 I I I 1

150 I I 1 I I 1 I

1psl ~

395psl o

200—
100—

P4
E

CL
100—

CV
E
LJ

50—

0

10

I I I 1 I I I I

Temperature T(K)

0
10

j t & I

10-1

Temperature T(K)

FICs. 2. Plots of R& T' with temperature for a solid-liquid 'He
interface at two difterent pressures. The molar volume of the
solid He layer is 11.42 cm mol '. f3=10 and a=1%. The
points are the experimental measurements of Anderson et al.
(Ref. 33). See text for details.

FIG. 3. Plot of R&T' with temperature for a solid-liquid He
interface. The molar volume of the solid He is 12.33
cm mol '. P=10 and e=1%. The points are the experimental
measurements of Anderson et al. (Ref. 33).
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200—

0
10

I 1 I I I I I I I

10-'
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20

FIG. 4. Plots of R& T' with temperature for a solid-liquid 'He
interface at two different surface densities of the defects, c= l%%uo

for curve B and c, =0.33&o for curve C; all other terms are the
same as in Fig. 2. The points are the experimental measure-
ments of Johnson and Anderson (Ref. 34). See text for details.

their B and C surfaces.
In Fig. 5, plots of R& T with temperature are presented

for a solid-liquid He interface in the range 0.1 to 1.9 K.
The 1, 2, and 3 plots correspond, respectively, to the mo-
lar volumes 11.42, 15.29, and 19.05 cm mol ' of the hcp
solid He phase. E= lgo and /3=10, in the irregular solid
surface. Similarly, in Fig. 6, plots of RzT' are presented
for a solid-liquid He in the same temperature range. The
1, 2, and 3 plots correspond now, respectively, to the mo-
lar volumes 12.23, 16.90, and 20.93 cm mol ' of the hcp
solid He phase. c and /3 are the same as in Fig. 5.

The present theory accounts for the random and
bounded variation of the thermal-boundary resistance
with surface preparation, since in Eq. (26) the quantities E,

/3, and 8q are all random yet bounded variables. Also,
the phonons emitted into helium by process (ii), assumed
for the transfer mechanism in our model, have random
directions consistent with the observed cosine law. The
theory accounts, furthermore, for the known observation
that Rz is independent of the superAuidity of He II. The
heat flux Q, /3 calculated for the diffusive channel in Eq.
(22) depends on the mechanical properties of the solid
helium layer. These properties, for both solid He and
He, are independent of the superfIuid character of liquid

helium. The model accounts for why the heat transmis-
sion is similar for thin He films and solid He. In solid
He, as in the liquid under high pressures, the affected lay-
er in which phonons are excited is larger than that in thin
films.

The processes (i) and (ii) proposed for the transfer
mechanism in our model can be generalized. In (i) it is
sufhcient to define a region of adsorbate atoms surround-
ing the defect where adsorbate phonons are excited by the

I I

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Temperature T(Kj

1000
I I l

200

P4
E

100
I—

hC

20—

I I I I I I I

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Temperature T(Kj

FIG. 6. Plots for R&T with temperature for a solid-liquid
He interface in the range 0.1 to 1.9 K. The 1, 2, and 3 plots

correspond, respectively, to the molar volumes 12.23, 16.90, and
20.93 cm mol ' of the hcp solid He phase. /3=10 and e=1%.

FIG. 5. Plots for R&T' with temperature for a solid-liquid
He interface in the range 0.1 to 1.9 K. The 1, 2, and 3 plots

correspond, respectively, to the molar volumes 11.42, 15.29,
19.05 cm mol ' of the hcp solid He phase. /3=10 and e=1%.
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flexure dynamics of defects. The notion of a solid adsor-
bate layer is not a prerequisite but the manner of variation
with temperature of the elastic properties of the adsorbate
atoms in this region is needed. Also, in (ii) the scattering
of excited adsorbate phonons need not be limited to the
scattering of 2D phonons at the step edges of the defects
but may occur generally via the structural irregularities
within the adsorbate films. There is evidence for su "h
diffuse scattering, ' with limits of a few hundred
angstroms. The order of magnitude of ~, the relaxation
time for process (ii) given above by Eq. (10), is unaffected
by this generalization.

The transmission coefficient 7& for the diffusive channel
obtained in approximate form in Eq. (19) varies linearly
with the energy of incident phonons Ace. This approxima-
tion is adequate for thermal phonons from a blackbody
source at low temperatures, and for defects of atomic di-
mensions. The detailed theory for phonon scattering in
irregular surfaces gives, however, physically appropriate
limits for scattering when co~0 and co~ oo. In these lim-
its qg«1 and qg»1, respectively, and the correspond-
ing phonons are shown to scatter effectively from flat sur-
faces without exciting flexure on the defects. I'& of Eq.
(19) here contrasts with t

~
of Eq. (1) in Ref. 18. In

Kinder's work the transmission coefficient and the model
are strictly valid, provided the strain dynamics of the de-
fects are neglected. In our work this problem is
specifically investigated. The energy transmission is
shown to be due to the flexure of defects in the solid sur-
face that coherently generate phonons in the adsorbed
helium layer, and to the diffusive decay of these phonons
into the liquid helium bath. The energy transmission
coefficient is given in general and calculated for atomically
irregular surfaces. The theoretical results for the Kapitza
resistance compare favorably with measurements.
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