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We study the effects of spin polarization on the collective and single-particle properties of a model
Fermi liquid—a model which is designed to simulate liquid *He. The study is based on an approxi-
mate theoretical scheme of Singwi, Tosi, Land, and Sj6lander. Using this scheme, we have calculated
the Landau parameters F,,- as a function of polarization for various densities, the so-called polariza-
tion potentials, the compressibility and magnetic susceptibility, and the zero-sound dispersion. This
study of a model system may provide some guidance for future experimental and theoretical works
on a more realistic system such as partially polarized liquid He.

I. INTRODUCTION

In a previous paper,! hereafter referred to as I, we have
carried out a detailed study of a model system of Fermi
liquid whose particles interact via a hard-core potential
and an attractive tail. The model is constructed to simu-
late liquid *He. In I we have calculated various static and
dynamic properties of the model system within the ap-
proximate STLS (Ref. 2) (Singwi-Tosi-Land-Sj6lander)
scheme, which was originally proposed for the study of
electron liquids. A qualitative agreement was found be-
tween the calculated and the experimental results.! In
another paper,’® using the same theoretical scheme, we
have considered the case of a fully polarized model Fermi
liquid and have compared some of its properties with
those of an unpolarized model liquid. In this paper, we
extend our model and the theory to investigate the corre-
sponding system of a partially polarized model Fermi
liquid, which is a subject of considerable interest because
of the recently opened possibility of experimentation* on
partially polarized liquid *He. The behavior of liquid *He
as a function of polarization is not yet known experimen-
tally. The aim here is to study the effect of polarization
on various properties of our model system in the hope
that it can provide some guidance for future experimental
and theoretical works on more realistic systems.

II. LONGITUDINAL RESPONSE FUNCTIONS
IN THE STLS SCHEME

We shall characterize a polarized system by two param-
eters: ¢ =agkp, which measures the density of the sys-
tem' and 8=m /n, where m and n are the magnetization
and particle densities of the system, respectively. ag is the
radius of the hard-core potential and kr is the Fermi
wave vector of the unpolarized system. The polarized
system is assumed to be stabilized by a constant magnetic
field B.

We apply a spin-dependent weak external potential
®Z,(r,2) on the system. The induced density fluctuation
i, in the system in linear-response theory is given by

A, (q,0)=3 Xye(q,0)P%(q,) , (1)
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where X,,(q,w) is the density-density response function
between the two spin components o and o’ of the system.

In the STLS scheme,>* the density fluctuations are as-
sumed to be given by a generalized RPA-type (random
phase approximation) equation:

q)gxt(q)w)+ z Vgg

o'

f,(g,0)=X§(q,») (g, (q,0) |,

()

where X§(q,w) is the noninteracting polarizability of the
spin-o component and the V¢ (q) are the static effective
interactions between particles with spin ¢ and o’. The
latter in the STLS scheme are given by

der)

Coo(r)dr 3)

where V(r) is the bare potential and g,.(r) is the pair-
correlation function between the o,0' spin components of
the system. The pair-correlation functions g,,(7) are re-
lated to the static structure factors S, (q) through

()1 d%q_,iqx, 4
8oo'(r)—1 ngo (217')3e Voold) (4a)
where n,, =(n,n,)"? and
Yool@)=850'(q) =854 . (4b)

The static structure factors are, in turn, related to the
response functions defined in Eq. (1) by the fluctuation-
dissipation theorem:
1
Soolg)=—— [~

Roo

iaiIm)Qm (q,@

), (5

where the response functions X,,(q,w) are determined by
solving Eq. (2) with the following results:

[1— q)Xo 7,0)1X§(q,0
= 6
Xoolg,0)= Algo) (6a)
and
X3(q,0)X5(q,0)VZ (q)
_ = 6
X,5(q,0) Ago) ) (6b)
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where G = —o and
Alg,0)= [1—=V @)X §(g,)[1—V &(g)X(g,0)]
— Vi@ XN g,0)Xi(g,0) . ¥

Equations (3)—(7) constitute a set of self-consistent equa-
tions for V% (g), which, in general, can be solved only
numerically. In the limit §—0, X§(¢g,0)=X3(q,») and
Egs. (3)=(7) reduce to two decoupled sets of equations
describing the density and spin response of the system. In
thllszcsase the density and spin response functions are given
by”

Xolg,w)
X(q,0)= , (8a)
I—V';ﬂ‘(Q)XO(qyw)
Xolg, )
X, (g0 o4 (8b)

T 1= Vi(giXolgw)

Xo(g,w) being the usual Lindhard function and
w(N=3VEP+VE®], (92)
(N=1VEFr-VEMmr]. (9b)

In the limit 8=1, X{(g,0)=0 and we have

Xig,0)
X' q,w)= , (10
P T X i) )

where only the density fluctuation of the spin-up com-
ponent is present.® In the general case of arbitrary polar-
ization, density and spin fluctuations are mutually cou-
pled and one needs to solve the three coupled equations
for Vk(q), V'ik(q), and Vi(q) simultaneously.

Our model is characterlzed by a bare potential of the
form

Vo(Vo—)OO), r<ay
V(ir)=1{—eg, apg<r<a; (11)
0, a;<r.

We have studied two cases: (i) e=0 (pure hard-core po-
tential) and (ii) €40 (hard core plus an attractive tail). In
the latter case, values of € and a; are fixed by requiring
that the zeroth and first moments of the attractive part of
the bare potential be equal to the corresponding moments
of the Lennard-Jones potential for liquid 3He.! Taking
ay=0.90,, where o0y=2.556 A for ’He, we get
a;~2.05a, and €~0.46€; €~10.22 K is the depth of the
Lennard-Jones potential.

Using Eqgs. (3) and (11), the effective interactions

9¢'(g) can easily be shown to be

4r( V0+€)
e

8oo'(ag)[sin(gay)—(gay)cos(gay)]

—4—7ngwl(a1)[sin(qal)—(qal)cos(qal)] ,
q

TAI KAI NG AND K. S. SINGWI 35

where the parameters (Vy+¢€)g,,(ag) and g, (a;) are
to be determined self-consistently to determine V%2 (g).
With Eq. (12), Egs. (4)-(7) constitute a set of 6 X6 non-
linear matrix equations for the above parameters. We
have solved this set of equations in the limit Vy— o (see I
for details) using Newton’s method for several different
densities and polarizations. The results are given in
Tables I-III.

In Table I we give the results for the three parameters
Vo8oo(ap) for the case e=0 for two densities ¢ =1.5 and
1.7, and for several values of polarization. The parame-
ters are measured in units of E2(c), which is the free-
particle Fermi energy for the unpolarized liquid with den-
sity parameter ¢. Corresponding results for the €40 case
are shown in Table II, where results for ¢ =1.9 are also
given. Notice that we have only an accuracy of ~5% in
our numerical calculation because of a limitation in com-
puter time and also because our model is, anyway, of
qualitative value only. In Table III we show a more com-
plete set of results for the fully polarized (§=1) case with
€e£0. Note that in this case there is only one response
function, X''(g,w), and one effective interaction, V!}(q),
to be determined.

In all cases our results show that the effective interac-
tions are rather insensitive to the degree of polarization
for a given density [except perhaps the attractive part in
Vii(g)]. It seems that this is a consequence of the very
strong hard-core repulsion which dominates over the ex-
change effects at high density. Another important point
which needs to be pointed out is that the results of the
self-consistent solution are rather sensitive to the input pa-
rameters € and a; (Ref. 1) of the bare potential. As a
consequence, our results can be trusted only qualitatively.
This is especially true for the case of spin response’ in the
unpolarized system because the difference of V%{(g) and

9¢'(g) enters in the determination of ¥%i(q).

TABLE I. Solution of the STLS equations for a pure hard-
core potential expressed in units of the Fermi energy (see text).

) Vogu(ao) Vogm(ao) Vog:i(ao)
c=1.5
0.0 25.3 25.3 27.8
0.2 25.3 25.2 27.7
0.4 25.1 24.8 27.4
0.6 25.3 24.8 27.4
0.8 25.1 24.6 27.3
1.0 25.2
c=17
0.0 38.4 38.4 40.3
0.2 38.0 38.1 399
0.4 38.0 37.7 39.7
0.6 38.2 38.0 40.0
0.8 38.0 379 39.7
1.0 379
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TABLE II. STLS solution for the hard-core with attractive tail potential, expressed in units of the

Fermi energy (see text).

3 (Vo+¢€)gri(ao) (Vo+€)g,,(ap) (Vo+e€lg,(ay) €grilay) eg . (a) €g.(ay)

c=1.5
0.0 23.0 23.0 26.4 1.11 1.11 1.54
0.2 23.0 22.7 26.3 1.19 1.01 1.54
0.4 23.0 22.4 26.3 1.25 0.85 1.53
0.6 22.9 21.7 26.2 1.30 0.61 1.51
0.8 23.2 20.0 26.2 1.32 0.13 1.46
1.0 23.3 1.34

c=1.7
0.0 36.5 36.5 39.0 0.79 0.79 0.97
0.2 36.4 36.3 38.8 0.82 0.73 0.99
0.4 36.7 36.1 38.9 0.83 0.65 0.98
0.6 36.5 35.8 38.8 0.86 0.49 0.98
0.8 36.4 34.4 38.5 0.87 0.18 0.96
1.0 36.5 0.87

c=1.9
0.0 30.3 30.3 32.0 0.59 0.59 0.67
0.2 30.1 30.1 31.8 0.61 0.58 0.67
0.4 30.1 30.1 31.9 0.60 0.51 0.68
0.6 29.9 30.0 31.9 0.61 0.41 0.69
0.8 29.6 29.0 32.0 0.62 0.18 0.69
1.0 29.3 0.62

III. RESULTS AND DISCUSSIONS
(FOR LONGITUDINAL RESPONSES)

A. Effective interactions

As mentioned above, the effective interactions are quite
insensitive to the change in polarization. However, they
have an interesting density dependence in the 40 case.!
The attractive part of the bare potential is found to be less
important as density increases, which can be seen from
the fact that the ratio r =eg(a;)/(Vy+¢€)g(ay) decreases
with increasing density. An interesting consequence of
this is that a “dip” occurs in the small-g region of V% (q)
at low density similar to what is found in the Pines-
Aldrich polarization potentials.® However, this structure
vanishes at high density. Examples of V¢ (q) are shown
in Figs. 1 and 2 for §=0.4 and ¢ =1.5 and 1.9, respec-
tively, where the disappearance of the “dip” at higher
density is obvious. The corresponding effective interac-
tions V'{(q) for the fully polarized system are also shown

TABLE III. Solution of the STLS equation in the fully polar-
ized liquid expressed in units of the Fermi energy (see text).

C (Vo+e)gii(ao) egi(ay)
1.3 12.1 1.93
1.4 14.4 1.61
1.5 233 1.34
1.6 33.5 1.08
1.7 36.5 0.87
1.8 33.8 0.73
1.9 29.3 0.62

in Fig. 3. It can be seen that qualitatively these effective
interactions are similar for the same density. The change
in magnitude is due mainly to the change in the density of
states N,(0), N, (0) c kf o (14+08)'7.

In order to get some quantitative feeling of the results
of our model calculation, we have shown in Fig. 3 the
effective interaction, marked by crosses, as calculated by
Krotscheck ez al.” for a fully polarized liquid *He at nor-
mal density. It is seen that our effective interaction for
¢ =1.5 (for an explanation for the identification of ¢ =1.5
with normal-liquid-3He density, see the section on Landau
parameters) is indeed qualitatively very similar to the one
calculated by these authors. Note that in making this
comparison we have taken ¢(=2.56 A and Ep(6=0)~5

Cc=L5
6:=04

[Ny 0N, (o)]"zv.',‘f( Q

40

20

1
0.0 1.0 20 30 40 50 60|

qa,
-20
FIG. 1. Spin-dependent dimensionless effective interactions

[N,(0)N,(0)]'2V3¢ () vs ga, for c =1.5 and 6=0.4.
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FIG. 2. Spin-dependent dimensionless effective interactions
[N,(O)N,(0)]'?V (q) vs ga, for c =1.9 and 6=0.4.

K for our model system for ¢ =1.5. With this choice
and using the fact that N,(0)=(k})*/47°E} and n,
=(k})}/6m?, the conversion of units can be done easily.
This has been used to convert the numbers of Fig. 4 of
Ref. 7 to our dimensionless units.

B. Landau parameters

The calculated Landau parameters F,,=N,(0)V (g
=0), F,,=N(0)Vit(g =0), and

F, =[N,(0O)N(0)]'"?V (g =0)

are shown in Figs. 4 and 5 as functions of polarization for

c=15
5.0F x

T T T U
2.0 Qo 4.0\ 6.0 80

'

n
o
—

100}

00

T T
20 qa, 40 6.0 80
-5.01

FIG. 3. Dimensionless effective interaction N,(0)V!i(q) vs
qa, for two densities ¢ =1.5 and 1.9 in the fully polarized case.
Crosses are representative points of the effective interaction as
obtained by Krotscheck er al. (Ref. 7) for fully polarized liquid
3He at normal density.

1 1 1
04 8 06 0.8 10

FIG. 4. Landau parameters F,,
c=1.5.

]
00 02

vs polarization for density

the case €40 for two different densities. It is seen that in
both cases F,, increases smoothly as polarization in-
creases, whereas F |, and F,, stay rather flat at low polar-
ization but drop rapidly to zero in a narrow range of §
close to unity. Such a behavior is a consequence of the
characteristic change in the density of states N,(0) as a

200

150

100

50

1 1 1 1

00 02 04 0'68 0.8 1.0

FIG. 5. Landau parameters F,, vs polarization for density
c=1.9.
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function of polarization. A similar behavior is also found
for the case e=0, except that in this case the Landau pa-
rameters are larger in magnitude and the difference be-
tween F,, and F,, is larger in the unpolarized case! (i.e.,
more magnetic).

In Fig. 6 are shown the Landau parameters F,, for the
fully polarized case as a function of density. The latter
is measured with respect to a reference density ng !
=(47/3)a} for the sake of convenience. The Landau pa-
rameter Fy=F, +F, in the unpolarized case is also
shown for comparison. Qualitatively, the density depen-
dence of both these parameters is very similar, except that

¢ is larger than F, in agreement with the predictions of
other authors.®® In order to get a feeling to what extent
one can trust our predictions for Fj and hence for Fy, we
have made a comparison of the calculated F§ with what is
actually observed in liquid 3He. In making this compar-
ison one has to decide on the choice of the value of the
parameter ¢ for the model system. In making this choice,
we have been guided by the consideration that the static
structure factor S (gq), which is a microscopic quantity, for
the model system should resemble as closely as possible
(in particular, the peak height) the observed S(g) in *He
at normal density. This led us to the value ¢ ~1.5. The
crosses in Fig. 6 are the experimental values of Greywall'”
for three different densities. For higher densities as the
system approaches the solidification point the theory can-
not obviously be trusted.

It is interesting to note that the absolute value of the
compressibility k remains rather constant throughout the

X
400
unpol F;
300+
200 pol Fyy
1001~
1 1 1
0.0 05 10 15 n/n

FIG. 6. Landau parameters F,, (fully polarized) and F}§ (un-
polarized) vs density n/n,. Crosses are the experimental values
of Greywall (Ref. 10).
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whole range of polarization in our calculation. This is
true for all values of density we have considered. The
compressibility as a function of polarization is shown for
different densities in Fig. 7 for the case e£0. Variation of
compressibility with polarization is more pronounced in
other theories.!!

The magnetic susceptibility is shown in Fig. 8 as a
function of polarization for different densities for the case
0. The drop in susceptibility as polarization increases
is a characteristic feature of a paramagnon-type theory.
This is in sharp contrast to the results obtained from an
“almost localized” approach,'? where the susceptibility is
found to increase with polarization when the system is
close to localization. The rapid drop in susceptibility as
8—1 is again the result of a rapid change in the density of
states NV, (0) as 8— 1.

C. Zero-sound dispersion

Zero-sound dispersion for the system is obtained by
solving the equation

Al(g,0)=0 . (13)

Interestingly enough, we find that for all cases we have
considered, the zero-sound velocity is quite insensitive to
the change in polarization, which can also be understood
from the fact that the compressibility « is insensitive to
changes in polarization. We have shown in Fig. 9 the
zero-sound dispersion for various polarizations for the
density ¢ =1.7 in the case €5£0. Similar behavior is also
obtained for the case e=0, except that the sound veloci-
ties are higher.! It is interesting to point out that at low

40}

15

K
30+
20
1.7
1.9
1O
1 ]
00 0.5 $ 1.0

FIG. 7. Compressibility k vs polarization § for three different
values of c¢. The figure is drawn in arbitrary units.
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3.0+

00 05 10
§

FIG. 8. Magnetic susceptibility X vs polarization & for three
different values of ¢. The figure is drawn in arbitrary units.

density (¢ 1.6) there also exists in the zero-sound mode
a region of positive dispersion at small ¢ similar to the one
predicted by Aldrich et al.!’ in the case of unpolarized
liquid *He at normal pressure. However, the dispersion
becomes predominately negative in the high-density re-
gime in our calculation.! This is again a consequence of
the appearance of a “dip” in V¢ (g) at small g at low
density which vanishes at high density. Another point
worth mentioning is that in a partially polarized system,
since the density and spin fluctuations are always mutally
coupled, it should be possible to induce a zero-sound

8o 5=08
b=10 _-0=04
w $=00
Ecng
6.0
c=17
40
20+
i 1 1 1
0.0 10 20 30 4.0
qQ,

FIG. 9. Zero-sound dispersion «/Er(ny) vs ga, for four
different values of polarization, Er(n,) being the free-particle
Fermi energy for the unpolarized light at density n =n,.
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mode by applying a space-time-varying magnetic field
with proper wavelength and frequency.

D. Pair-correlation functions
(structure factors)

Pair-correlation functions g,,(r) and g,,(r) for an unpo-
larized liquid with density ¢ =1.5 are shown for both
€=0 and €540 in Figs. 10 and 11, respectively, in the re-
gion r >a,. A weakness of the present theory is that
g(r)50 for r <a{, which reflects the fact that the present
theory is essentially a pseudopotential-type theory valid
mainly for long distances or small g. However, as can be
seen from Figs. 10 and 11, the pair-correlation functions
have, qualitatively, a very reasonable behavior even for
when compared with the calculations of
Manousakis er al.'' A comparison between Figs. 10 and
11 shows that the attractive part of the bare potential is
very effective in producting substantial changes in g, (7),
as was pointed out in Sec. II. In Fig. 12 we show the
pair-correlation functions (at 7 >a,) for density ¢ =1.5,
€0, and =0.6. Notice the rather large changes in the
three pair-correlation functions as the system gets polar-
ized. However, it is interesting that, despite the fact that
the individual pair-correlation functions g,,(r) for
different o and ¢’ are rather strongly dependent on polar-
ization, the total density-density pair-correlation function
g(r) is very insensitive to changes in polarization. The
change in g(r) is less than 5% over most region of space
throughout the whole range of polarization. This is true
for both e=0 and €540 cases, and remains true also in the
corresponding static structure factors S,,(q). In Fig. 13
we show the static structure factors S(q) for several
different densities in the fully polarized (§=1) case with
€£0. The similarity between these and the corresponding
results for the unpolarized case can be seen clearly by
comparing Fig. 13 with Fig. 17 of I (see also Ref. 11).
Notice that there is a small plataeu in S(g) in the region
of small g for ¢ =1.5. This is another consequence of the
“dip” we find in the small-q region of V'J{(q) at low den-
sity. The plateau disappears at higher density as the
structure in ¥9¢(q) vanishes.!

r—ay

15~ c=15
§=00

05

1 1 1
1.0 20 r/a, 30 40

o}

FIG. 10. Pair-correlation functions g,,(r) and g,,(r) vs r/a,
for c =1.5 and 8=0.0 in the case €e=0 (pure hard-core poten-
tial).
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IV. QUASIPARTICLE PROPERTIES

The self-energy for quasiparticles in an arbitrarily po-
larized Fermi liquid can be calculated approximately us-
ing the following expression:'*

oa

R =T @+ {[Vi “(@PX @1+ VZ (q)

where T 9%(q) is an appropriately averaged T matrix,'*
and

@)= [1-=V X1 —V ix(@)Xi(q)]

—[Via@XH(g)Xi(q) . (15b)
Vi (@) =[Via(@)X'(q) . (16a)
X'(q) is the transverse-spin susceptibility. Vig(q) is an ap-

proximate effective interaction for transverse-spin fluctua-
tion, where'*

Xb(q)
Xig=—itl (16b)
l—Veg(q)Xo(q)
and
t d4 —0
Xi(q)= f—"—(z 880" (P +a) . (16¢)

A previous study of Lowy and Brown'’ on an electron

gas shows that T?9(q) can be identified roughly with
VZf(q). We shall adopt this approximation in our calcu-
lation. However, the transverse-spin response function
and the effective interaction Vig(q) are not derivable
within the STLS scheme. All we know is that in the limit
8=0 (unpolarized), the transverse-spin response function
is related to the longitudinal-spin response function in a
simple way because of isotropy in the spin space;'* and in
the limit §=1, X(¢)=0

In the following we shall study in detail the quasiparti-
cle properties for the case of a fully polarized liquid and

It 1 L

0.0 [Xe) 2.0 3.0 40

r/Qe

FIG. 11. Pair-correlation functions g,(r) and g,,(r) vs r/a,
for c =1.5 and §=0.0 in the case £540.

Q]+ DPXg @1~V
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4

d
Zf Flaghp -2 (14)

where p,q are energy-momentum vectors, g®k) is the
free-particle Green’s function, and

PXg (P ——, (15a)

Alq)

compare them with the corresponding results in the unpo-
larized case. In the second part of this section we shall
consider a simple interpolation scheme for the effective in-
teraction Vig(g) for the case of a partially polarized
liquid. Quasiparticle effective masses for an arbitrarily
polarized system will be studied thereafter.

A. Fully polarized systems

In the fully polarized case only up-spin particles are
present, and Eqgs. (14)-(16) reduce to

4

2p=— [ viaelp - q)T—q)—, (172)
where
Vik(q)
¢2§44)=¢ . (17b)
l—Veﬁ(q)Xo(q)
Equation (17) is very similar to the one used by

Krotscheck et al.” in their calculation of the effective
mass in the fully-spin-polarized liquid He. Spin fluctua-
tions are absent in the latter.

Effective masses and renormalization constants on the
Fermi surface were evaluated numerically in the case €5£0
for several different densities with results shown in Table
IV, where the corresponding results for the unpolarized
system are also shown for comparison. Mathematical de-
tails of the calculation can be found in Appendix B of 1.
Here we shall concentrate on the final results only.

Table IV shows that the effective masses on the Fermi

1 1 1
00 1.0 2.0 30 4.0
r/Q,

FIG. 12. Pair-correlation functions g,,(7) vs r /a, for c =1.5
and 6§ =0.6 in the case €5£0.
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FIG. 13. Static structure factor S(g) vs ga, for three different
densities in the fully polarized case.

surface for the spin-polarized case are significantly smaller
than the corresponding ones for the unpolarized case due
to the absence of spin-fluctuation effects. Also, a spin-
fluctuation contribution is found to be more important at
high density. This is a consequence of the rather rapid in-
crease of magnetic susceptibility as a function of density
in our theory.

It is interesting to point out that we find m*/m > 1 for
all densities in our calculation in the fully polarized case.
This is in contradiction to the prediction by several other
authors®* !¢ and suggests that higher-order Landau pa-
rameters may be important in the polarized system in
liquid 3He in order that the forward-scattering amplitude
sum rule be satisfied.>® The renormalization constants on
the Fermi surface are found to be small in both polarized
and unpolarized liquids, indicating that the single-particle
properties are strongly renormalized in both cases. We
have also performed an ‘“on-shell” calculation of the
momentum-dependent effective mass for ¢ =1.4 in the
fully polarized case. Our results are shown in Fig. 14,
where the corresponding results for the unpolarized case
are also shown for comparison. Notice that the large
peak on the Fermi surface in the unpolarized case disap-
pears for the polarized system due to “freeze-out” spin
fluctuation. The corresponding E-vs-k results are also
shown in Fig. 15, where E, is the “on-shell” quasiparticle
energy. Note that we have renormalized the spectrum so
that E; =0 on the Fermi surface. It is also interesting to
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m,
(k) cela

6.0

50+

aol-

0oF (pol)

20 (unpol )

[Ke)

0.0 0i5 1.10 I.JS 2‘.0

k/ke

FIG. 14. “On-shell” effective mass m*(k)/m vs k/kp for

both unpolarized and fully polarized liquids for ¢ =1.4.

point out that a large “bump” appears in the m* /m (k)-
vs-k curve for k > kp at higher density when the coupling
of single-particle excitations to the zero-sound mode be-
comes important.>!”

We have also calculated the transport coefficients
(thermal conductivity and viscosity) as a function of den-
sity in the s-p approximation for the fully polarized case.
We do not give here any details of the calculation, since it
is quite standard.'® We give the final results which are
shown in Figs. (16)a and (16)b. The general behavior of
the transport coefficients is found to be similar to the one
found by Hess et al.,” except our values are a few times
larger because of the rather different values of the effective
mass we have used. We have also examined the
superfluid transition temperature in the fully polarized
liquid in the s-p approximation and find that our model
liquid stays normal at all densities we have considered, a
result in agreement with the prediction by other authors
on polarized liquid *He.®°

B. Arbitrarily polarized system

To study quasiparticle properties for an arbitrarily po-
larized system, we need to know the transverse-spin
response function X ~ " (g,w) defined by

X~ t(q,0)= fdre’q"fdte””%ch‘(r,t)o*(0,0)) .
(18)

TABLE 1V. Effective masses and renormalization factor on the Fermi surface. (m * /m)'unpol is cal-

culated with full effect of spin and density fluctuations.

fluctuation terms excluded.

(m* /m)*unpol is calculated with spin-

C (m* /m)'unpol (m* /m)*unpol (m* /m)pol Z unpol Z pol
14 1.53 1.36 1.30 0.41 0.57
1.5 1.55 1.36 1.30 0.30 0.39
1.6 1.56 1.36 1.30 0.23 0.29
1.7 1.63 1.37 1.31 0.20 0.25
1.8 1.76 1.40 1.33 0.18 0.24
1.9 1.99 1.45 1.35 0.17 0.24
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Ex/Ee

FIG. 15. Quasiparticle spectrum E; vs k /kg for both unpo-
larized and fully polarized liquids for ¢ =1.4. Dashed curve is
the free-particle spectrum &;. E; and &, are measured in units
of the free-particle Fermi energy Er =#k#/2m.

Since it is very difficult to obtain X % in a microscopic
theory, we shall construct it phenomenologically in such a
way that it satisfies some general exact requirements. Our
aim in this study is to have a rough, qualitative idea of the
transverse-spin response and quasiparticle properties in a
partially polarized system.

In accordance with the generalized RPA structure of
our present theory, we assume X~ "(g,w) also to have a
GRPA (generalized RPA) form, as in Eq. (16), where, for
an arbitrarily polarized system,

—1 Ry —HMiiqu

—_— . (19)
V k Cl)+€k—£k+q—A

X5 t(g)=
Ny, is the usual Fermi-Dirac distribution function for the
o component, €; =k?/2m, and

A=Ep —Eg, , (20

where Ep, is the Fermi energy for the spin component o.
A consists of a sum of two terms, the external field contri-
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FIG. 16. (a) Thermal conductivity kT vs density n /ng in the
fully polarized case. (b) Viscosity nT? vs density in the fully po-
larized case.
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bution 2uB and the contribution from internal molecular
fields arising from the interaction between particles.
In the limit §—0, A—0, and

(@) =V ii(q)—Vig(q) (21)

because of spin isotropy.'*

In the case of arbitrary polarization, ¥V'z(g) should
remain the same when the spin labels 1 and | are inter-
changed. We make the following ansatz,

(@) =2[ViE@)+ V(@) ]—Viglq) , (22)

for an arbitrarily polarized system, where the V9 (g) are
determined in Sec. II.

Notice that Eq. (22) is only one of the many possibili-
ties which satisfy the above two criteria. The uncertainty
thus arising in our results will be discussed at the end of
the section.

The spin-wave dispersion is obtained by solving the
equation

1—Vig(@Xg T(g,0)=0 . (23)

Results for the case e=0, and ¢ = 1.5 for various values
of the polarization, are shown in Fig. 17. Notice that at
qg =0, o=2uB because of conservation of magnetization.
Effective masses on the Fermi surface are calculated using
Egs. (14)—(16). Results for e=0 and for two different
densities are shown in Fig. 18(a). For small &, the change
in m*/m is proportional to §, but has the opposite sign
for t+ and | spin fermions,!” while for large & both
(m*/m), and (m*/m), decrease because of “freeze-out”
of spin-fluctuation contributions. Notice, however, that
the “peak” in (m*/m), is not observable from a specific-
heat experiment which involves both (m*/m); and
(m*/m),. In Fig. 18(b) we show the change in the linear
specific-heat term as a function of polarization, defined by

AC C,(6=0)—C,(8)
v C,(6=0)

(24)

It is clear that AC, is structureless over the whole range
of polarization we have considered.

0.2~

Wepry

0.I5F

moﬁ §-08

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 17. Spin-wave dispersion: /kg(ng) vs gap in the case
£=0 and ¢ = 1.5 for four different polarizations.
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FIG. 18. (a) Effective masses (m*/m), vs polarization in the
case =0 for 2 different densities: (i) ,c=1.5; 1) — — —,
¢ =1.7. (b) Deviation in linear specific-heat term AC, vs polar-
ization in the case e=0 for two different densities c=1.5 and
1.7.

We would now like to comment on the validity of our
choice of the effective interaction (22) and the results
which follow. It is quite obvious from Table I that in the
£=0 case the effective interactions V% (g) are all very in-
sensitive to changes in polarization. Therefore, any
reasonable way of constructing Vig(q) from V% (g)’s
which satisfy the two criteria stated above would leave
Vig(q) very similar. However, this is not the case for
£#0, especially in the small-g region, where the effect of
the attractive part of the interaction is strongest. Vig(g)
depends strongly the way it is constructed and also on the
parameters a; and € which specify the shape of the bare
potential. It is for this reason that we have only con-
sidered the case e=0 in this part of the section.

V. CONCLUDING REMARKS

In this paper we have examined within the STLS
scheme effects of polarization on a number of properties
of a model Fermi-liquid system which is intended to
simulate liquid *He. Because of the intrinsic complica-
tions brought about by partial polarization, such an
analysis is extremely difficult to carry out for a realistic
system or with any other known microscopic theories.
With the model system, the price we have paid is that we
can only offer qualitative answers since we have found
that quantitative properties of the system depend rather
sensitively on the shape of the input bare potential. In the
following we shall examine some of the conclusions we
have arrived at for the model system in relation to the
realistic system of liquid *He.

One rather unexpected result we have obtained is the
insensitivity of the effective interactions V9Z (g) of our
model system to changes in polarization. We believe that
this is a consequence of the hard-core potential, which in-
duces correlations so strong that exchange effects become
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comparatively insignificant. For the same reason, we have
found that the total density response of the model system
is very insensitive to polarization, although ‘‘partial”
density-response functions X,,(q,») depend strongly on
polarization because of the difference in the density of the
two spin components. In the realistic system of liquid
SHe, the interparticle potential is weaker, so we expect
that there will be a stronger spin dependence in effective
interactions and larger changes in total density responses
with change in polarization, although we expect these
changes to be still rather small.

One possible cause for our effective interactions to be
insensitive to the degree of polarization could be that in
the STLS scheme the exchange effects, which enter the
theory via the pair-correlation function g, (r), are not
taken into account properly, although from our previous
experience in the electron-liquid case this does not seem
to be the case. There is, however, a major drawback in
the STLS scheme in that the particle-hole interaction is
local, whereas one knows that the exchange part of this
interaction is nonlocal in character.

In our theory the predicted behavior of magnetic-
susceptibility and single-particle properties is qualitatively
in agreement with the predictions by a number of authors
who have used rather different formalisms.®>!° However,
due to the sensitivity of the magnetic response to the input
bare potential in our theory, our results can be trusted
only in a very broad sense when compared with the realis-
tic system of liquid *He.

A basic weakness of our theory consists of the problem
of incorporating single-particle and collective properties of
the system in a self-consistent manner. The approximate
expression [Eq. (14)] we have used to calculate the self-
energy takes into account effects of multiparticle scatter-
ings and collective motions, but these single-particle re-
normalization effects are absent in the STLS theory which
determines collective motion. As a result, in the static
and long-wavelength limit the expressions for the
compressibility and the magnetic susceptibility in the
STLS scheme do not reduce to the usual Landau form.
The renormalization effects, in contrast to the electron
gas, are found to be strong in our model system, and as a
result one expects strong modification of collective
motion. So far, we have not been able to discover a sim-
ple and physically transparent mathematical treatment
which handles single-particle and collective properties of a
Fermi liquid in a self-consistent manner. Simple, approxi-
mate self-consistent schemes such as replacing the bare
propagators by approximate dressed propagators (see Ref.
20, for example) in the Lindhard function seem to indi-
cate that the single-particle renormalization effects would
be weakened by self-consistency. However, the validity of
such an approach in the present context is not clear.

An as yet unsolved problem in our approach is the
determination of the transverse-spin response in a partial-
ly polarized system. So far, we have taken only a phe-
nomenological approach to the problem. A microscopic
theory for the transverse-spin response is needed to ac-
count fully for the properties of a partially polarized Fer-
mi system.

Finally, one should keep in mind that the present-day



35 ARBITRARILY POLARIZED MODEL FERMI LIQUID

experimentally obtained partially polarized liquid *He is
not really a system in equilibrium. With all these compli-
cations, it is certain that there is still a long way to go be-
fore a quantitative theory of partially polarized liquid *He
can be formulated.
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