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The theory of charge imbalance in tunnel junctions is adapted to describe the low-voltage resis-
tance R, (T) of low-resistance superconductor —insulator —normal-metal (SIN) tunnel junctions. R, is

shown to be very sensitive to the pair-breaking effect of supercurrents. Numerical calculations for
hypothetical SIN junctions illustrate how one can obtain information about the magnitude and tem-

perature dependence of electron scattering rates, coherence factors, and the density of superconduct-

ing electrons from measurements of R, in the presence of supercurrents either applied directly with a
current supply or induced with a magnetic field applied parallel to the superconducting film. Such
measurements should yield information similar to that obtained from other nonequilibrium tech-
niques like NMR and ultrasonic attenuation.

I. INTRODUCTION

A great deal of work, both theoretical' ' and experi-
mental, ' has focused on charge-imbalance phenomena
in tunnel junctions involving superconducting films. Ex-
perimental results near the superconducting transition
temperature have been generally in good agreement with
theoretical expectations. Data at lower temperatures often
differ from theor'y. Despite the discrepancies, it is clear
that in addition to their intrinsic interest, charge-
irnbalance phenomena offer the possibility to measure
quantities such as the electron-phonon scattering rate,
quantities that are difticult to measure in other ways.
This possibility is the motivation for further work.

Several experimental studies' ' have dealt with a
three-film, two-junction geometry in which the supercon-
ducting film to be studied is sandwiched between two oth-
er films. One junction is biased at a relatively high volt-
age to generate a charge imbalance in the superconducting
film. The other junction detects the imbalance. This
geometry has the favorable feature that the charge imbal-
ance is generated with one junction and detected with
another. However, it would be dificult to use with super-
conductors that either do not grow on another metal film
or do not form good tunnel barriers. The problem of
junction alignment would make measurements on
quench-condensed films, for example, very hard.

More recent work "' has demonstrated that
charge-imbalance effects can be observed in a single
superconductor —insulator —normal-metal (SIN) tunnel
junction if the resistance of the junction is small enough.
The single junction serves as both generator and detector.
Bias voltages are very small to avoid heating. This is a
convenient geometry for study of diverse materials. We
presently are using this geometry to study superconduct-
ing films. We have observed that the resistance RJ of a
SIN junction is reduced by supercurrents, either applied
directly with a current supply or induced with a magnetic
field parallel to the S film. In the present paper, we wish

to lay the conceptual groundwork for later data analysis.
In particular, we focus on how to extract information
about electron-scattering rates, coherence factors, and the
density of superconducting electrons from these measure-
ments. Because of complicating effects such as intrinsic
anisotropy in the order parameter, we will present our
data elsewhere, and consider only simple, ideal, situations
here.

The basic idea of how charge imbalance affects the
resistance of tunnel junctions is the following. ' In any
SIN junction, a small bias voltage generates a current,
which in turn generates a quasiparticle charge imbalance
whose amplitude is linearly proportional to the voltage
and to the charge-imbalance relaxation time ~&*. The
quasiparticle charge associated with the imbalance leaks
back into the normal-metal film, reducing the total
current across the junction. Experimentally, this is inter-
preted as an additional "nonequilibrium, " resistance R&~
that is very nearly proportional to ~&*. If the intrinsic
resistance R & of the junction is large, then R

&
* is negligi-

ble, and the familiar "equilibrium" resistance R,q(T) is
observed. If R& is small enough, then R&* is observed in

addition to Rpq Thus the relaxation time 7 g+ which de-

pends on the interesting coherence factors and scattering
rates, can be studied via the junction resistance R~ ( T).

Of primary interest in this paper are the effects of pair-
breaking supercurrents. These either are applied directly
along the length of the S film from a current supply or
they are induced with a magnetic field parallel to the S
film. The effect of the currents is to shorten ~&*, and
hence reduce R~(T) in a characteristic manner that allows
a determination of the relevant electron scattering rate.
The decrease of ~&* with application of a supercurrent
has been observed in the three-film geometry. ' The phys-
ics is analogous to the determination of the dephasing rate
of electrons in disordered metals from magnetoresistance
measurements.

For illustration, we consider numerical results for two
hypothetical SIN tunnel junctions and treat the results as
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if they were measured data. Electron-phonon scattering
in the S film is included in one junction and neglected in
the other for comparison. The intrinsic resistance Rz of
the latter junction is chosen to be smaller than in the first,
so that the total inelastic-electron-scattering rate at T„
which includes the proximity-effect coupling between S
and N, is the same for both. Treating the calculated
curves as data, we show how the general features of R
yield information about the relevant scattering rates,
coherence factors, and density of superconducting elec-
trons. To include a realistic, albeit small, amount of pair
breaking in calculating quantities such as the supercon-
ducting density of states, the parameters for S were
chosen to correspond to Sn.

The results of this paper are based on the Careen's-
function theory of charge imbalance in tunnel junc-
tions, ' ' ' rather than the simpler Boltzmann-equation
theory, ' to include the effects of pair breaking on the or-
der parameter, density of states, and coherence factors in
the superconductor. Some approximations are made to
simplify calculations, as discussed below. In regard to the
effects of pair breaking, we note that pair-breaking effects
due to intrinsic processes such as electron-phonon scatter-
ing are typically small, so the two theories give nearly the
same results. In such cases, pair-breaking effects become
important only when the pair-breaking rate due to applied
supercur rents and magnetic fields is large. In other
cases —for example, superconductors containing magnetic
impurities —pair-breaking effects due to the intrinsic rate
may be important.

We restrict the discussion to include the effects of
electron-phonon scattering, the proximity of the normal-
metal film to the superconductor, and applied currents
and magnetic fields. Relaxation associated with intrinsic
anisotropy in the order parameter can be significant, ' '

but is omitted here for simplicity. Electron-electron
scattering, scattering from magnetic impurities, ' and
the pair-breaking effect of supercurrent fluctuations may
also be important under some circumstances, but they are
similarly omitted.

To clarify the experimental geometry and some of the
assumptions inherent in the theory, the discussion begins
with some considerations associated with choosing experi-
mental parameters.

5n
SIO
Cu/Pb

rf
ID

FIG. 1. Schematic sample configuration for measurement of
the low-voltage resistance of a Sn/Sn-oxide/Cu SIN tunnel junc-
tion. I and V are the current and voltage in the junction; I, is a
supercurrent Aowing along the S film.

300 pm, superconducting film thickness 300—800 A,
normal-metal thickness 4000 A, SiO thickness 500 A, and
intrinsic junction resistances from 4 pQ to 4 mQ. Con-
siderations that go into choosing these values are as fol-
lows.

(l) The intrinsic resistance Rz of the junction should be
chosen so that the proximity-effect tunneling rate' '
1/~,„„is about one-tenth of the rate of interest.

(2) The length of the superconducting strip actually in
the junction should be much larger than the distance,
X&~ ——+Dr&*, that a quasiparticle diffuses in a charge-
imbalance relaxation time ~&*. D is the electron-diffusion
constant. This condition ensures that the charge imbal-
ance is essentially uniform across the entire junction area,
decay to zero in a length A, &~ near the edge of the junc-
tion.

(3) The superconducting film should be much thinner
than both A.&* and the Ginzburg-Landau coherence
length, so that the charge imbalance and the order param-
eter 6 are uniform through the thickness of the film.

(4) The normal metal must be thick enough that a su-
percurrent cannot How through it from the Pb film on top
to the S film. However, it should be thin enough that its
resistance is much less than the junction resistance.

(5) The resistance of the junction should be measured
with the smallest, easily measured, voltage, typically a few
hundred nanovolts. Over this range, current I is propor-
tional to voltage V, so the resistance R (T)= V/I is well
defined. Heating is avoided.

II. EXPERIMENTAL CONSIDERATIONS

A simplified experimental configuration is shown in
Fig. 1. The superconducting film is deposited on a glass
substrate, oxidized lightly, and masked with insulating
SiO films. Then the normal-metal electrode is deposited
to complete the junction. The normal-metal film is coated
with a superconducting film with a relatively high T„
such as Pb. The normal-metal film is thick and/or dirty
enough that any superconductivity induced by the Pb film
decays before reaching the junction insulator. The Pb
film and the superconducting film form equipotentials so
the current density through the junction is as uniform as
possible.

Convenient parameter values that we have used are
junction area 300)&300 pm, superconducting film width

III. NUMERICAL RESULTS
AND GENERAL ANALYSIS

It is useful to discuss in general terms how useful infor-
mation can be obtained from RJ as a function of tempera-
ture and of applied current or field before developing the
microscopic model. For this purpose, we will consider
calculated results for two hypothetical SIN junctions.
The difference between the two junctions is that electron-
phonon scattering in the S film is omitted for one but in-
cluded for the other. To include a realistic amount of
pair breaking due to inelastic processes, calculations are
done using typical values for Sn for the S film. Intrinsic
gap anisotropy that exists in real Sn films is omitted. For
all situations illustrated in the figures, modifications due
to inelastic pair breaking are a few percent or less.
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For the junction that includes electron-phonon scatter-
ing, the parameters are S-film thickness d =600 A, width
m =300 pm, and resistivity p=3 pA cm, a junction area
of (300pm), and an intrinsic junction resistance R~ = 100
pA. The electron-phonon scattering rate in the S film for
an electron at the Fermi surface at T =T, =3.715 K is
about ' 4 X 10 s ', and is proportional to T in the
normal state. The proximity (tunneling) rate 1/r, „„that
characterizes the strength of coupling between the S and
2V films is inversely proportional to R& and independent
f T.12, 30

C
3
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FIG. 2. Calculated normalized junction resistance R, (T)/R~
vs T/T, for two hypothetical SIN tunnel junctions. T, =3.715
K was used for the S film. Electron-phonon scattering is includ-
ed in the S film for one junction but not for the other.
R,q{T)/R& is the normalized equilibrium resistance of the junc-
tion. The difference between R, and R,q is the nonequilibrium
resistance R&* associated with a charge imbalance in the S film.
As seen in the figure, the addition of electron-phonon scattering
to tunneling relaxation reduces R, (T)/Rz by reducing R&~.

1/r, „„=1/2A (0)e QR~=4X10' s

for the present junction, with a density of states"
2N(0)=2. 9X10 eV ' m, and an injected volume
A=(300 pm) X600 A. Note that the tunneling process
acts like an inelastic scattering process in parallel with
electron-phonon scattering so that the total inelastic
scattering rate is their sum. For this example junction,
1/'r ~h(T, ) is about 10 times larger than 1/r, „„,and will
dominate the charge-imbalance relaxation process down
to T/T, =0.5, where 1/r, ~„=0.5 /r, „„(T,)=1/r, „„.

For the junction that does not include electron-phonon
scattering in the S film, the parameters are the same, ex-
cept that Rz is 11 times smaller, so that the tunneling
rate is 1/~t„„=4.4& 10 s '. Thus, the total inelastic
scattering rate at T, is 4.4&10 s ' in both junctions.

The calculated resistances RJ(T)/Rz for these junc-
tions is shown in Fig. 2. The "equilibrium" resistance

R,q(T)/RJv is the resistance the junction would have if
nonequilibrium effects were negligible. Although it nomi-
nally was calculated for 1/~t„„=4.4 & 10 s ' and
T, =3.715 K, i.e., A/k&T, rt„„=0.009, the curve labeled
1/'T ph

=0 1$ a limiting curve that is independent of
1 /+tun as long as A/~tUn ~& kz T and A. Values of
R (T)/Rz for junctions with 0& 1/r, ~h(T, ) & 10/r, „„lie
between the two curves in Fig. 2. Close inspection of Fig.
2 reveals that the two RJ(T)/R~ curves are merging as T
decreases and electron-phonon scattering freezes out.

To see in more detail how the scattering rates influence
R (T), consider the calculated curves as data. From
R (T) near T„we can obtain R~ and the rates 1/r, „„and
1/r, zh(T, ). Near T, , R,q(T) =Rz is nearly constant
compared with R&e(T), which diverges as k&T, /b, , where
b, is the order parameter. By fitting RJ(T) near T, with
the form

4k' T
R, (T)=R~+

2X(0)e fl

we obtain both Rz and the rate

1/r;„=1/r, „„+1/r, p (hT, ) .

(2)

From Rz and measured sample parameters, 1/~t„„ is cal-
culated, then subtracted from 1/r;„ to give 1/r, „h(T, ).
This procedure has been used successfully even in very
low resistance junctions. The factor ~A/4k& T is
essentially an average over energy of the coherence factor
for charge-imbalance relaxation due to inelastic electron
scattering near T, . If an elastic process were dominant,
then the coherence factor would be proportional to
(b, /kii T) .

Away from T„ it is difFicult to extract information
from Rj(T) since both R,q(T) and R&*(T) depend on T.
Measurements of R~ as a function of supercurrent along
the S strip or of magnetic field parallel to the S strip, are
very useful. In the present examples, we will see that
these measurements allow determinations of the electron-
phonon scattering rate and the density of superconducting
electrons as functions of T below T, . The procedure
works because the nonequilibrium resistance R&*(T) is
much more sensitive than R,q(T) to external pair-
breaking perturbations such as a supercurrent I, along the
superconducting strip or a magnetic field B~~ parallel to
the strip, so measurements at low fields and currents
probe R&~ almost exclusively.

The experimental arrangement for measuring R~(T,I, )

is illustrated in Fig. 1. The current I through the junction
is fixed, and the voltage V across the junction is measured
while the current I, along the superconducting film is in-
creased. The effect of the supercurrent is to shorten the
charge-imbalance relaxation time ~& *, and thereby to
reduce R&*. The equilibrium resistance is also reduced.
Measurements of RJ(T,B~~) as a function of magnetic field

B~~ are made in a similar fashion, but the external current
passes through a solenoid around the sample rather than
along the superconducting film.

Figure 3 shows calculated values of RJ(T,B~~)/R~ and
R,q(T)/R~ versus magnetic field for several temperatures.
The divergence in R&/R& evident in Fig. 3(a) occurs as
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the field approaches the critical field, and the order pa-
rameter vanishes. In other words, the resistance diverges
as T~T, (B~~) just as it diverges when T~T, in zero
field, as shown in Fig. 2. This divergence has not been
observed due to the large fields required, but would be in-
teresting to study because it would give a more accurate

4k~ T
1 1 1+-
+in +s +in

1/2

(3)

[This result is modified extremely close to T, where the
dynamic charge-imbalance relaxation rate, in large square
brackets in Eq. (3), becomes larger than the frequency
b, /A. We are not concerned with this range here. ] In the
present case, the inelastic rate is I/r;„= I/r, „„+I/r, ~h,
and the elastic pair-breaking rate 1/~, is

value for the critical field than determinations based on
resistance measurements.

In practice, the low-field portion of the curves in Fig. 3
are measured. If they were data on an ideal BCS super-
conductor, then careful numerical fits to the theory
presented below would yield all the information desired
about electron scattering rates and coherence factors.
Since the most interesting applications of this technique
will be to materials in which one is unsure of the correct
microscopic model, e.g. , disordered superconductors in
which electron-electron scattering may be important, it is
useful to dissect the calculated curves to see how their
general features can be used to infer the microscopic phys-
ics. We have found that this sort of crude analysis of data
offers a starting point for more detailed fitting.

As seen in Fig. 3, for small fields R,q/R& is nearly
constant. The dominant effect of the field is to reduce
R&e/R&. The inflection point in RJ(B~~~)/R~ is marked
with an arrow because its location allows a convenient pa-
rametrization of the entire low-field curve. As one might
guess, the inflection point occurs when the pair-breaking
rate 1/~, due to the field reaches a characteristic value,
which turns out to be roughly half of the intrinsic pair-
breaking rate. This relationship can be demonstrated
near T, by the following argument.

Consider the case in which the intrinsic pair breaking is
due entirely to inelastic processes so that the intrinsic
pair-breaking rate is one-half of the total inelastic scatter-
ing rate. The argument is easily generalized to include in-
trinsic elastic pair-breaking processes. Schmid and Schon
showed that, near T„1/~&* depends on the geometric
mean of the total pair-breaking rate 1/2~;„+1/~, and the
inelastic pair-breaking rate 1/2~;„:

I/O, =B~~~d /12pN(0)R (4)

00
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Not too close to T„ the dependence of 5 on 1/~, is
small, and r&~(B~~) versus B~~ has an inflection point at
1/w, = 1/4w;„, i.e.,

B(~ ~;„sd /12pN(0)A' = —,'(I/r, „„+1/r, ph) .

FICi. 3. Calculated resistances R, ( T,B
~~

) /R& and
R,q(T, BI~)/R& vs Bll/B, ll(0) at several temperatures for a hy-
pothetical SIN junction including electron-phonon scattering in
the S film. Bll is the magnetic field applied parallel to the S film

and B,I~(0) is the critical field at T=0. T, =3.715 K was used
for the S film. The vertical arrows mark the low-field inAection
points. (a) Results near T, showing the divergence in R, /R~ as

Bl~ approaches B,ll(T), and hence T/T, (B~~)~ l. (b) Results
away from T, . Note the change in vertical scale for T/T, =0.5.
The solid curves for R, /R~ are terminated before the critical
field for clarity.

To the extent that R + ( T) is proportional to r& ~ and

R~(T) is unaff'ected by the relevant fields, the inflection
point in Rz/R~ coincides with that in ~&~, and serves as

a crude indicator of the inelastic scattering rate.
Figure 4 shows normalized values of 1/~, at the low-

field inflection point in R~/R& versus Bll for example
junctions with and without electron-phonon scattering.
[Plots of RJ/R~ versus B~[/B ~~(0) for the junction with
no electron-phonon scattering are shown below. ] For the
junction including electron-phonon scattering,
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FIG. 4. The normalized elastic pair-breaking rate
tt/",7,

'
T(, lat the low-field infiection point in R, (8ii)/R~

vs BI~ for the two example junctions. Curves are shown for junc-
tions with and without electron-phonon scattering and with the
same inelastic scattering rate at T„4.4&(10 s '. Including
electron-phonon scattering results in a strong T dependence
roughly paralleling the T dependence of the electron-phonon
scattering rate in the normal state.

rises by a factor of about 8 between T/T, =0.5 and 0.9,
reflecting the T dependence of 1/~, „h in the normal
state. As expected, the dependence of 5 on 1/~, keeps
7

~

' fl/7;„'( T, ) from reaching —,
' at T, . For the junction

with no electron-phonon scattering, r, '
~;„tt is roughly

constant, as expected from the T-independent rate 1/~,„„.
The value of r, '

~;„tt/r, „'(T, ) is much smaller than —,
' for

this case because the proportionality between R +(T) and

~ + is worst when tunneling is the only charge-imbalance
relaxation process, as is shown below.

The possibility of obtaining electron scattering rates
from R~ in this way is a major result of this paper. The
result should be somewhat insensitive to junction quality.
In real junctions imperfections in the junction insulator
might change the magnitude of R&e(T), but probably not
change its dependence on BII, e.g. , the value of 1/~, at the
inflection point.

The density of superconducting electrons n, (T) can be
obtained from R/(T, I, )/R& versus supercurrent I, . Cal-
culated curves for RJ(T,I, )/Rz are shown in Fig. 5 for
the SIN junction including electron-phonon scattering.
The inflection point at low current has a very strong tem-
perature dependence, in contrast to the field measure-
ments in Fig. 3. The reason is that the pair-breaking rate
for a current I, depends on n, (T), whereas the pair-
breaking rate due to a given field is independent of T.
Once again, at the inflection point, the external pair-
breaking rate is about one-fourth of the inelastic scatter-
ing rate:

2r'p
tr 2N (0)(kz T, ) d ttt n, ( T)
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FIG. 5. Calculated resistances R, ( T,I, ) /R& and

R,q(T, I, )/Rz vs I, /I, (0) at several temperatures for the same
SIN junction as in Fig. 3. I, is the supercurrent along the S film

and I, (0) is the critical current at T=0. The vertical arrows
mark the low-current infiection points. In contrast to results in

a magnetic field, Fig. 3, there is no divergence at I, ( T) because 6
is not depressed to 0 at I, .

IV. THEORY OF THE RESISTANCE
QF SIN TUNNEL JUNCTIONS

The above discussion has shown how the general
features of R~ can be used to obtain useful information.
Of course, with real data, detailed numerical fits will yield
more precise values for the various rates. The basic con-
cepts needed for such calculations are outlined in this sec-
tion, which adapts the theory of charge imbalance to SIN
junctions. The principal contribution to the literature of
this formulation is that it includes the proximity-effect
coupling between the S and N films.

A. Background and assumptions

where ~/y =1.765. This expression for the pair-breaking
rate due to an applied supercurrent is valid in the dirty
limit and for I, much less than the critical current I, (T).
Since the rate on the right-hand side (rhs) of Eq. (6) is
determined from the field measurements, the density
n, (T)/n, (0) is determined from

n. (» I.
l .s 2&3ypfi

&, (0) &ii ~;,tt tr d tttksT,

The density of states has cancelled out, leaving only
measurable parameters and constants.

1 1 1+
+tun e -ph

(6)
We consider a SIN junction in which the superconduct-

ing film is sufficiently thin, and the areal dimensions of
the junction sufficiently large, that quasiparticle diffusion
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ensures a uniform nonequilibrium quasiparticle distribu-
tion throughout the volume of superconductor adjacent to
the insulator. The relevant diffusion length is

&&» ——+Dr&», where I/r&» is the charge-imbalance re-

laxation rate, D =UFl/3 is the electron diffusion constant,
Up is the Fermi velocity, and l is the electron mean-free
path that is measured by the normal-state residual resis-
tivity.

The discussion is restricted to junctions biased at very
low voltages,

~

eV
~

(&k~T and b,(T). Heating can be
neglected, since it is proportional to V . The nonequili-
brium quasiparticle distribution in the superconducting
film is a pure charge imbalance; that is, quasiparticles are
added on one side of the Fermi surface and removed from
the other side such that the total number of quasiparticles
remains constant. In this case, the magnitude of 6 is
unaffected by the quasiparticle disequilibrium; only the
phase of 6 changes. '

%"e basically follow the dirty-limit, Green s function
formulation of the problem, ' ' adapting the theory to
SIN junctions to properly include the proximity effect
coupling between the S and N films through the insulator.
Equations are cast in a form that emphasizes their rela-
tion to the Boltzmann-equation picture developed by
Pethick and Smith. '

The order parameter b, (T, I /r, I/r;„) is calculated fol-
lowing Maki. Since we consider only cases in which the
inelastic pair-breaking rate is small compared with T„we
treat the inelastic rate like an elastic pair breaker in calcu-
lating h. For large inelastic rates, the full Eliashberg
equations would be required. ' The density of supercon-
ducting electrons n, (T, I/&„1/r;„) also is calculated ac-
cording to Maki, with inelastic pair-breaking treated the
same as elastic. The superconducting density of states
N, (E) and the other functions N2, R~, and R2 that are
needed to calculate the effective quasiparticle charge q (E)
and coherence factors are calculated from Eqs. (17), (19),
and (34) of Ref. 9. Checks on our computer programs are
described in the Appendix.

B. Formal calculation of R~( T)

The main purposes of this section are to show that R~ is
the sum of the usual equilibrium resistance R,~(T) and a
nonequilibrium resistance R&»(T), and to relate R&»(T)
to the charge-imbalance relaxation time ~&*. We consider
only the dirty limit, in which the momentum distribution
of quasiparticles is isotropic, so that quasiparticle states
can be labeled by energy E. As usual, ' ' ' ' '' the tunnel
junction is described by the tunneling Hamiltonian with a
tunneling probability that is independent of energy.

The quasiparticle distribution function in the supercon-
ductor is written

fE f (E)+6fz, —

where f (E) is the Fermi function with argument E/k~ T,
and 5fE is the nonequilibrium part of the distribution
function. The quasiparticles in the normal-metal elec-
trode are assumed to be in equilibrium. E is measured
relative to the actual, nonequilibriurn, chemical potential
p, in the superconductor.

[There is a difference in the meaning of 5fE in the
Green's-function and Boltzmann-equation theories, as dis-
cussed in Appendix A of Ref. 9. In the former, fE
evolves into the probability of finding an electron as T in-
creases past T„whereas in the latter fz evolves into the
probability of finding a normal excitation, i.e., an electron
above the Fermi surface and a hole below. For a charge-
imbalance disequilibrium, in the Green s-function theory
5fz is symmetric about the Fermi surface, while in the
Boltzmann-equation theory 6fE is antisymmetric about
the Fermi surface. To avoid confusion in the interpreta-
tion of relations given below, we note that the important
quantity here is the charge associated with nonequilibrium
excitations, i.e., the product of 6fz and the effective quasi-
particle charge q(E). The product q5f~ for a charge-
irnbalance disequilibrium is symmetric about the Fermi
surface in both theories. ]

Q* is the number density of electrons associated with
excitations. Q* is zero in thermal equilibrium, where

f~ f (E).——If a disequilibrium exists, then

Q*=4N(0) J dEN, (E)q(E)6fg .
0

(9)

Extension of the limit of integration to infinity assumes
that the width of the conduction band is much larger than
ks T, since 6fz is substantial only within ks T of the Fer-
mi surface.

Since q (E) and N~ (E) play important roles, it is
worthwhile to pause here to examine how they depend on
energy and pair-breaking rates. Following the notation of
Refs. 9 and 10, we define normalized elastic and inelastic
pair-breaking rates I, =A/~, 6 and I =A/2~;„A. The
functions N&, N2, R, , and Rz are calculated from Eqs.
(17), (19), and (34) of Ref. 9, with the approximations
Im(ZE) = I 5 and P = b„, thus neglecting strong-coupling
effects on 6 while retaining the broadening of excitation
energy levels due to inelastic scattering. In the same no-
tation, q (E)=(N

&

—R 2)/N&, as seen from a comparison
of Eq. (4.3) of Ref. 9 and Eq. (9) above. In the BCS limit
of small pair breaking, I +I, && 1, and, for E ~ 0,

q (E):(E2 g2 ) 1/2/E

N, (E)=E/(E2 —S2)'",
(10)

so that as E~0, q ~0 and N
&
~ oo such that

N)(E)q (E)= l.
Figure 6 shows q (E) and N, (E) for different amounts

of elastic pair breaking. E is normalized to the value of 6
in the absence of pair breaking. Values of I and I, are
for the example junctions at T/T, =0.9, and for 1/~, =0
and 1/~, =4/~;„. Note that the gap edge is lowered by
increased elastic pair breaking. For both cases illustrated,

q (E) rises from zero at the gap edge to 1 at high energies,
as the nature of excitations evolves from an equal mixture
of electron and hole, to pure electron.

The junction resistance RJ(T) is obtained by calculating
the current I that flows in the presence of a bias voltage
V. The sign convention used here is that when V is posi-
tive, electrons fiow from N to 5, so that Q* is positive.
From Eqs. (4.5) and (4.6) in Ref. 10, we find

g = Vg~s(T)/R~ —Q*/2N(0)
~

e
~
R~,
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FIG. 6. Normalized density of states Nl(E), effective quasi-
particle charge q (E), and the coherence factor C,~(E) for elastic
charge-imbalance relaxation processes, vs E/h(0. 9T„1/~,. =0).
The solid curves are calculated for no external elastic pair break-
ing, and for an internal inelastic pair-breaking rate appropriate to
Sn at T=0.9T, . They are very close to the BCS results, Eqs.
(10) and (11), because the internal rate is small compared with A.
The dashed curves are calculated for an elastic pair-breaking rate
8 times larger than the internal inelastic pair-breaking rate. The
depression in 6 is calculated for Sn at T=0.9T, .

g~s ( T)—:2 f "dE N, (E)
—af'(E)

0 BE
(13)

2N(0)5p, +Q*=O . (14)

This is consistent with the voltmeter measuring the line
integral of the electric field because there is an electric
field in the S film at the edges of the junction where the
charge imbalance decays to zero. The electric field in the
film is required to keep the condensate electrochemical

where Rz is the intrinsic resistance of the junction. From
Eq. (12), R~/g~s(T) is the equilibrium resistance R,q(T)
of the junction, i.e., the resistance when Q* is negligible.
As shown in Fig. 7 for the case of a small pair-breaking
rate, g~z is 1 at T, and decreases monotonically as T de-
creases. Equation (12) shows that the charge imbalance
Q* reduces the total current. This leads ultimately to the
nonequilibrium resistance R&*.

Before calculating R&s(T), we pause to consider what

voltage V the voltmeter across the junction reads. Keep-
ing track of electric and chemical potentials is tricky in
detail, but the end result is simple: the voltmeter mea-
sures the electrochemical potential difference between the
electrons in % and the superconducting electrons in S.
There is a chemical-potential shift in the injected region of
the superconductor because bulk charge neutrality re-
quires that when the quasiparticle electron density in-
creases from 0 to Q*, the condensate density decreases by
the same amount. This requires a shift 6p, in the conden-
sate chemical potential such that

FIG. 7. Calculated, normalized charge-imbalance relaxation
time ~&*/~,„„vs T/T, for a SIN junction with no electron-

phonon scattering in the S Alm. Also shown are F* and the
normalized conductance g,~q. Pair-breaking effects are small for
the temperature range shown.

I =I,q
—Ig*,

I.,=[V —Q*/2N(o)
l
e

l ]gNS/RN

I&*——[Q*/2N(0)
l

e ](1—gzs)/RJv .

(15}

(16)

The reverse current I&* represents tunneling of quasipar-
ticle charge from S to X through the tunnel barrier. The
physical meaning of the separation of I into two parts is
that the electrostatic potential across the junction is the
applied perturbation, and the chemical-potential shift, or
charge imbalance, is the response of the junction to the
perturbation.

Now consider the total rate G,„„(E)at which quasipar-
ticles are generated at each energy E, i.e., the rate at
which N, (E)Sf' is replenished by tunneling electrons.
From Eq. (4.10) in Ref. 10, in the limit

l
eV

l

k«T,e

G,„„(E)=N((E)q (E)
—Bf (E)

E

N) (E)ofF /r, „„. —

potential constant throughout the S film, as it is in steady
state. The end result is that the voltmeter reads the sum
of the two electric potential drops, which equals the elec-
trochemical potential drop across the junction. This po-
tential is larger in magnitude than the electric potential
alone.

Now we can define the charge-imbalance relaxation rate
1/w&~ and calculate R&*(T). The total current I in Eq.
(12) should be thought of as the difference between a for-
ward "equilibrium" current proportional to the electro-
static potential [ V —Q*/2N (0)

l

e
l ] (with magnitude

less than
l

V ) across the junction, and a reverse "non-
equilibrium" current proportional to the chemical poten-
tial drop Q*/2N(0)

l

e
l

across the junction, i.e. :



35 THEORY OF THE EFFECT OF SUPERCURRENTS ON THE. . . 6677

Analogously to the division of the current, we divide
G,„„(E) into equilibrium and nonequilibrium parts pro-
portional to the electrostatic and chemical potentials:

G,„„(E)=G,„„,q(E) —Gt„„g«(E),

G,„„,q(E) =N t(E)q (E)
—@o(E)

(19)

x[ l
e

l

V —Q'/2N(0)]/r, „„, (20)

Gt„„&«(E)= N, (E—)q (E) [Q* /2N (0)r,„„]
—ufo(E)

+N, (E)5fE/rt„„. (21)

The notation used here di6'ers slightly from Ref. 13. Gen-
eration and relaxation rates here are larger than those in
Ref. 13 by a factor of X& since Ref. 13 deals with an
equation for 5' rather than Nt5fz.

We define the charge-imbalance generation rate,
dQ'Idt

l s,„, to be the rate at which quasiparticles are
generated by only the equilibrium part of G,„„times the
charge each carries:

=4N(0) f dEq(E)G, „„,q(E) .
0

(22)

F*—:f"dEN, q'
0 f "dEN,

The fraction of the "equilibrium" current of electron
charge to enter the superconductor as quasiparticle charge
is commonly denoted F*, and from Eqs. (13), (16), (20),
and (22),

for I to obtain

R (T)=R,q(T)+Rg»(T),

R,q( T) =Re /gars( T),
Rg«( T) =R cq( T)/[rtU„/F*rg « —(1—g~s )]

(27)

(28)

(29)

Equation (29) is an important result of this paper. From
Eq. (29), R&«(T) would be proportional to r&«, as expect-
ed, if the factor 1 —gzz were much smaller than
~,„„/F*~&~. It often is smaller. In particular, it is much
smaller in the usual situation in which 1/~&* is deter-
mined by a rate much larger than 1/~,„„as in the exam-
ple junction that includes electron-phonon scattering.
The proportionality is worse when the only charge-
imbalance relaxation process is the tunneling process.
This case is discussed in Sec. IVD below. When 1 —gzz
can be neglected, R&«(T) can be written

R&«(T) =R,q(T)F*r&«/r«„(1 —g~s negligible) . (30)

It is physically reasonable that R&~ is proportional to the
fraction F' of the equilibrium current to enter the super-
conductor as quasiparticle charge, since the charge-
imbalance generation rate is proportional to F*. (If
I/r&» were defined using I,q

in place of dQ" /dt l,q, in

the spirit of Schmid and Schon, then the factor of I'*
would be absorbed into r&«and not appear explicitly. )

The approximate result (30) is at the heart of the rough
analysis in Sec. III above.

C. "Boltzmann" equation for 5fz

To calculate R&*, we need to know ~&*, so we need to
know 5fE. The "Boltzmann" equation for a steady-state,
spatially uniform perturbation has the form

(23)
O=G,„„(E)—G, (E)—G, ph(E) . (31)

The rest of the current goes directly into the condensate.
F* lies between 0 and 1, decreasing monotonically from 1

as T decreases from T, as shown in Fig. 7. Both I'* and

g&& have been discussed previously for the case of no pair
breaking. It is convenient to write the charge-imbalance
generation rate in terms of F* and g&z

..

=2N(0)[
l

e
l

V —Q'/2N(0)]F*g/ys Ir,„„.
g«tt

(24)

G,„„(E)has already been discussed. G, (E) is the net rate
at which quasiparticles scatter elastically across the Fermi
surface in the presence of applied supercurrents and fields.
G, ~h(E) is the net rate at which quasiparticles scatter
from state E to all other states E' due to absorption or
emission of phonons.

For the situations considered here, the scattering term
G, (E) arises from elastic scattering from nonmagnetic im-
purities in the presence of a supercurrent, either an ap-
plied supercurrent or a supercurrent induced by an ap-
plied magnetic field. G, (E) is related to 5fE through'

The charge-imbalance relaxation rate is the generation
rate divided by the steady-state value of Q ",

G, (E)=(1/r, )C,I(E)N, (E)(2N, 5f~ ),
1/w, =Dp, /2A +De B ~Id /6R

(32)

(33)

dQ*
dt

gen

(25) 21 2p n, (0)
I,

vr 2N(0)(k~T, ) d w n, (T, 1/r, )

=[2N(0)
I
'

l

V/Q* —1]F'gNs/rtu (26)

For low voltages, Q' tx: V, so I/r&» is independent of V.

Finally, to relate RJ(T) and 1/r&», solve Eqs. (24) and
(25) for Q' in terms of r&«, and use the result in Eq. (12)

B2d2

12pN (0)tri
(34)

when free-electron relations among D, p, and 2N(0) are
used. p, is the superAuid momentum, 2mu, . Note that n,
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depends on I, for I, close to the critical current I, . We
calculate the coherence factor C,f(E) for the elastic
charge-imbalance relaxation following Eq. (4.14) in Ref.
10. In the BCS limit of small pair-breaking, '

C f(E)=b, /E (35)

so it decreases monotonically from unity at the gap edge.
Figure 6 shows that with or without pair breaking the
coherence factor is unity at the gap edge and decreases
smoothly as energy increases.

Simple elastic scattering contributes to charge-
imbalance relaxation when a supercurrent Aows because
the supercur rent spoils the symmetry between equal-
energy excitations above and below the Fermi surface by
making the order parameter 6 different for different direc-
tions of momentum. This makes the coherence factor
nonzero, and allows simple elastic scattering to scatter ex-
citations across the Fermi surface. In the dirty limit, the
pair-breaking rate is proportional to the elastic scattering
time, not the rate, because of the strong tendency of elas-
tic scattering to make the order parameter isotropic in
spite of the current.

The term G, ~h(E) represents inelastic scattering of
quasiparticles from phonons. There are eight basic terms.
A quasiparticle can (1) absorb a phonon and stay on the
same side of the Fermi surface, or (2) cross the Fermi sur-
face; (3) emit a phonon and stay on the same side of the
Fermi surface, or (4) cross the Fermi surface; (5) recom-
bine with a quasiparticle on the same side of the Fermi
surface, or (6) with one on the other side. Also, two
quasiparticles can be created by absorption of a phonon,
with quasiparticles created (7) on the same side of the Fer-
mi surface, or (8) on both sides. Processes (2), (4), (5),
and (7) are especially eff'ective in relaxing a charge imbal-
ance, but in any of these processes, the net quasiparticle
charge generally changes, depending on the initial and
final quasiparticle states. For the calculations presented
here, the electron-phonon coupling function, a F(co), is
assumed to be proportional to co . This results from an
energy-independent matrix element and a Debye density
of phonon states proportional to co . These terms have
been discussed in detail by several authors ' ' ' and are
not discussed further here.

The characteristic rate associated with electron-phonon
scattering, 1/r, z (Th, ), is the electron-phonon scattering
rate of a quasiparticle at the Fermi surface, E =0, evalu-
ated at T =T, :

R,„(T)/R~ ——1/g~s is calculated by using the definition,
Eq. (13), and the density of states calculated with pair-
breaking effects included.

D. Proximity effect only

In this subsection we discuss a junction in which the
dominant internal charge-imbalance relaxation mecha-
nism is the tunneling process. This limit can be realized
in very low resistance junctions in which 1/~, „„is much
larger than the electron-phonon scattering rate at all
relevant energies and temperatures. The equation for 5'
is no longer an integral equation:

G,„„(E)—G, (E)=0 . (37)

It is worthwhile to explore this limit in detail because it is
easy to solve and therefore provides a particularly clear
example illustrating the basic concepts. Some results for
this limit were shown in Figs. 2 and 4.

First, consider the case where there is no supercurrent.
The solution for N~5fz is

N, 5' N, (E)q—(—E)
—af'

aE fe /V

=N, q (
~

e
~

V/k&T)/4 cosh (E/2ks T) . (38)

Q*=2N(0)F*gxs
~

e
~

V, (39)

1/rg* ——(1/r, „„)(1 F*g~s) . — (40)

Figure 7 shows r&e(T)/r, „„,F*(T), and gvs(T) in this
limit where only the proximity effect contributes to
charge-imbalance relaxation. At low temperatures, F*
and g&s vanish, so 1/~& ~ ——1/~, „„. Near T„
F*=1—~A/4k&T and g&s=1, so that 1A&* is propor-
tional to 5/k&T, as expected for an inelastic pair break-

.2, 13

1/rg*=(1/r, „„)~b/4k' T (T= T, ) . (41)

By combining the general result (27)—(29) for RJ(T)
with Eq. (40) for 1/r&*, we find

With the definition of Q* and the above solution for 5',
we can solve for g* and 1/r&* in terms of the functions
F* and gxs:

1/r, „h(T, )=14irg(3)a F(ksT, /A)kBT, /R~ T, (36)
R/(T)/RN=1/(gNS F gNS) . (42)

where g(3) =1.202 is the Riemann zeta function. At tem-
peratures below T„a characteristic electron-phonon rate
can be estimated from the value at T, by using T as a
rough guess for its dependence on T. In the supercon-
ducting state, there is no standard definition for the rate.
A detailed numerical analysis of measurements of R~ will
yield a F(cu), which can then be compared with measure-
ments in the normal state.

The strategy for calculating R (T)/R~ numerically is
to solve Eq. (31) for N, 5fE/V, calculate g*/V from Eq.
(9), and finally calculate R /R v from Eq. (12).

This result is plotted in Fig. 2. It appears to be indepen-
dent of 1/~, „„,but it is not because F* and gzs depend
implicitly on the pair-breaking rate. For a large pair-
breaking rate, i.e., A/2~, „„comparable to kz T or 6, pair-
breaking effects on the density of states 6 and q will
change R~(T)/R~ significantly from the values shown in
Fig. 2.

Now we examine the effect of externally applied super-
currents and magnetic fields. In the presence of these
elastic pair-breaking perturbations, the solution for N~5fe
is simply the ratio of the generation rate and the relaxa-
tion rate:
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e
I

VN, (E)q
Ni(E)5fE =

ks Tr,„„4cosh (E/2k' T)

1
X

l /r, „„+(2/r, )C,/( E)X, (E)
(43)

BII as a function of T/T, . The value near T, is smaller
than for the junction including electron-phonon scattering
because, in this limit, R&+ is not quite proportional to

Note the very weak dependence of r, '
~;„ fl/ r;„'(T, )

on T, reAecting the T-independent rate 1/~,„„.
Figure 8 shows calculated normalized values of N, 5'
versus energy E, normalized to b, (T/T, =0.9, 1/r, =0),
for a SIN junction with 1/~, ~h

——0. As 1/~, increases,
N, 5fE decreases. The largest depression is at low ener-
gies where the coherence factor and density of states are
largest. The gap edge also decreases as 1/~, increases.

Figure 9 shows how R~/Rz and R,q/Rz are reduced
by a magnetic field for the example junction with
1/7 ph 0. A coraparison with Fig. 3 for a junction with
a finite electron-phonon scattering rate shows that
R

&
e ( T) /R Jv is much larger here, but the low-field

inAection point is at about the same field for T near T,
where the inelastic scattering rates are about the same.

A number of effects contribute to the shapes of these
curves, as emphasized by the following few figures calcu-
lated with parameters appropriate for Sn. As the field is
increased, the pair-breaking rate increases, and the
charge-imbalance relaxation time ~&* decreases, Fig. 10.
The order parameter 5 decreases, Fig. 11. The fraction
F' of current to enter the superconductor as quasiparticle
charge increases, Fig. 12. At low fields, the dominant
effect of the field is to reduce ~&*, so that the low-field

inAection point in R~ is near the inAection point in ~&~.
At higher fields, the effects of pair breaking on 6, F*, and

gzz become dominant, with the ultimate rise in

R~(T, B~~ )/R~ near the critical field occurring as b.~0.
Figure 4 plots the normalized pair-breaking rate

1 q ~
i~fl/r;„'( T, ) at the inflection point in R~ (8~~ ) versus

K. Electron-phonon scattering included

I/7~ ph=0
I/TtUp 44x IO s

5
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~
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With the inclusion of electron-phonon scattering, the
equation for 5fF becomes an integral equation. Numeri-
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FIG. 8. Normalized nonequilibrium quasiparticle distribution
function, N~5fe(eV/ks T) ' vs E/6(0. 9T, , l/r, =0). Curves
for different elastic pair-breaking rates 1/~,. show the reduction
in N~5fE caused by an applied elastic pair breaker. For cotnpar-
ison, the dashed curves in Fig. 6 correspond to the curve labeled
1/w, =4/r, „„.

FIG. 9. Calculated resistances R~/Rz and R,q/R& vs paral-
lel field B~~/B, ~I(0) for a hypothetical SIN junction with no
electron-phonon scattering in the S film. R,q/R, z is the normal-
ized equilibrium resistance of the junction. Compare with Fig. 3
to see the eft'ect of including electron-phonon scattering.
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FIG. 10. ~&*/~,» vs B~I/B, II(0) for the SIN junction in which

electron-phonon scattering is neglected. Note the similarity be-
tween the behavior of ~&*/~,„„and R, /R (Fig. 9), especially at
low fields.
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cal results were presented in Figs. 2—4 above. Here, we
wish only to add a discussion of the approximations used
to calculate the curves and to illustrate approximately
how the effective electron-phonon scattering rate for
charge-imbalance relaxation depends on energy and T.

In our calculation of Q* when electron-phonon scatter-
ing is included, we neglect the effects of pair breaking on
the coherence factors and density of states in the
electron-phonon scattering integral, but include the reduc-
tion in A. This is valid for small external pair-breaking

0
0 0.2

I I

0.4 0.6
8 /8 (0)

I

0.8 I.O

FIG. 12. The fraction F* of the equilibrium current to enter
the S film as quasiparticle charge vs B~~/B, I~(0) for several tem-
peratures.

rates 1/~, ~ 1/~;„because then the total rate is also small.
For larger external rates, neglecting pair-breaking effects
introduces an error in Q* and hence R, . However, for
large I/r„Q* is so much reduced that errors in its calcu-
lation are relatively unimportant in a calculation of
R, /Rz. Pair-breaking effects on R,q(T)/Rz are impor-
tant and always included.

We obtain an effective rate I/O &h(E, T) by fitting Eq.
(43) to values of 5fz calculated with I/r, =0. In the
fitting, the relaxation rate ~,„„' in the denominator of Eq.
(43) is replaced by

r,„„'+(~b, /4k' T, )~, ph(E, T) .

The factor of ~A/4k& T, represents the effective coherence
factor for charge-imbalance relaxation due to electron-
phonon scattering. Strictly speaking, the coherence factor
should always be less than unity, but for this rough
analysis, we relax that restriction a little. Figure 13
shows the effective rate as a function of E/kz T for several
temperatures. The effective rate at the lowest energy,
b,(T), is roughly proportional to T . It depends slightly
on energy, increasing by about 10% over the relevant en-
ergy range from 6 to 6+k~ T.

Unfortunately, when elastic pair breaking is added this
simple model breaks down, and the effective electron-
phonon scattering rate determined in this simple way has
a complicated energy dependence. Nevertheless, it is
pleasing to see the similarity between the effective rate
I/r, zh(h, T) shown in Fig. 13 and the pair-breaking rate
at the inflection point in RJ versus BI~, shown in Fig. 4.

00 0.2 0.4 0.6
8 /8 (0)

0.8 1.0

FIG. 11. Normalized order parameter h(T, B}() vs B~I/B, II(0)
for several temperatures.

V. CGNCI. USIONS

Our main result is that the dc resistance of low-
resistance SIN tunnel junctions contains information
about pair-breaking electron-scattering rates, coherence
factors, and the density of superconducting electrons in
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l.5 tance of pair breaking due to inelastic electron-electron
scattering and elastic scattering in the presence of super-
current fluctuations is unresolved. In heavily disordered
systems, it is unclear how the disorder affects the nature
and scattering rates of excitations. Model calculations of
the resistance of SIN junctions for the heavy-fermion sys-
tems are needed, since it would be very interesting to
compare measurements on SIN junctions made with these
materials with other nonequilibrium measurements.
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APPENDIX

FICr. 13. Normalized effective electron-phonon scattering
rate, r, ~h(E, T) /~, ~h(0, T, ) vs E/ka T for several temperatures.
The value at the minimum energy, E;„=A(T), scales roughly
as T'. The rate depends somewhat on energy, increasing by
about 10%%uo over the relevant energy range between 6 and
6+k' T

the S film, and that the information can be obtained
through measurements in the presence of supercurrents,
either applied directly or induced with a parallel magnetic
field. We illustrated in general terms how data might re-
veal this information with a crude analysis that em-
phasized the inflection point in R~ versus B~I and I, . With
real data, one could do a more precise analysis by doing
detailed numerical fits.

There are a number of potential applications for the
technique. These include measurements of the pair-
breaking rate in weakly disordered superconductors for
comparison with the dephasing rate from localization
studies, studies of highly disordered superconductors,
and measurement of the exchange-scattering rate in super-
conductors containing magnetic or nearly magnetic
dopants. The technique may be especially interesting in
studies of novel superconducting materials such as the
heavy-fermion superconductors, since it yields informa-
tion similar to that from other nonequilibrium techniques
like NMR and ultrasonic attenuation, but may be easier
to apply in some cases since it is a dc measurement.

There is a need for theoretical work in these areas as
well. In disordered superconductors, the relative impor-

Various parts of the computer program were checked
against analytic or numerical results available in the
literature.

The program used to calculate Q* including electron-
phonon scattering and elastic pair breaking was basically
the same program used in Refs. 18 and 19. The program
accurately reproduces all of the results discussed in those
papers. Those results have been reproduced independent-

9

The program to calculate the order parameter 6 in the
presence of pair breaking was based on Ref. 32, and it
was checked against plotted results in that paper. The
program to calculate the density of superconducting elec-
trons n, in the dirty limit in the presence of pair breaking
was an integral part of the program to calculate A. The
results were checked by calculating the critical current
density J, ( T) from the maximum value of
J, =n, (T, 1/~, )eu, as a function of 1/r, =Dp, /2A, where

p, =2mu, . The results were checked against the usual
Ginzburg-Landau result near T„and against numerical
results in Ref. 36 at lower temperatures.

The program to calculate the density of states N, (E),
the efFective quasiparticle charge q (E), and the coherence
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based on Ref. 10. The functions N~(E) and N2(E) were
checked against plotted results in Ref. 9. The functions
N&, Nz, RI, and Rz all reduced to the appropriate analyt-
ic forms given in Ref. 10 in the limit of zero pair break-
ing. In addition, calculated values of N& for elastic pair
breaking only were checked against plotted results in Ref.
32.
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