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Functional derivatives of the current jump at the superconducting gap
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A new method is developed to calculate the functional derivative of the real-axis gap function A(co)

and its derivatives with frequency cu. It is tested against previous results for the functional derivative
of the gap edge and applied to a calculation of the functional derivative with electron phonon
[6JR /6a F(A)] and paramagnon [6' /6P(II )] spectral densities of the normalized quasiparticle
current jurnp (JR) at the gap edge in a tunneling junction.

I. INTRODUCTION

In a previous paper' we calculated within Eliashberg
theory the jump, at the energy-gap voltage, in the quasi-
particle current of a superconducting tunnel junction for
many materials. The ratio of the jump to its weak-
coupling limit, which we call Jz, is given by

1 dh, (co)J = 1+—
2 dc'

2

where b, &(co) =Re[A(co)], A(co) is the gap function for real
frequencies co and bo=b. , (bo) is the gap edge. Using the
imaginary-axis formulation of the Eliashberg equations '

with Pade approximants ' we were able to determine
A, (co), its derivative and Ao. The results for Jz agreed
well with the previous results of Harris et al.

We now complement this work by determining the
functional dependence of Jz on small changes in the
electron-phonon spectral density a F ( Il ) and in the
paramagnon spectral density P ( Sl ). The functional
derivative shows which phonon or paramagnon frequen-
cies in the spectral density influence the size of Jz the
most. To do this we introduce in Sec. II a new method
for calculating functional derivatives of functions of the
gap. We derive new equations for the infinitesimal part of
the perturbed Matsubara gaps. The infinitesimal part is

basically the functional derivative of the gap. We obtain a
set of inhomogeneous linear algebraic equations with the
kernel and the inhomogeneous term dependent only on
the unperturbed gaps and on a F(Q) and P(A). In Sec.
III the analytic continuation from the functional deriva-
tives of the Matsubara gaps to the real frequency axis is
discussed and is based on Pade approximants. ' In Sec.
IV our new method is tested against the previous results
of Mitrovic et al. for the gap edge although this is not
the quantity of primary interest here. These authors carry
out two separate calculations, one for the pure spectral
density and another with its weight augmented by a small
6 function like amount around some specific frequency.
The comparison is successful and we proceed to calculate
the functional derivative of the normalized jump for Pb,
Nb3Sn, V, Nb, V3Si, and Nb3Ge. As a further test, the
brute force method of Mitrovic et al. is extended to the
current jump and compared with our results for Pb and
Nb3Sn. In Sec. V we give a summary and draw con-
clusions.

II. DERIVATION OF BASIC EQUATIONS

In this section we derive a new method for calculating
the functional derivative of functions of b, (co). To begin
we use a form of the imaginary-axis Eliashberg equations
which combines the usual two ' into one equation with
the summation ranging from 1 to a cutoA' N, determined
by the Coulomb repulsion pseudopotential p*:

&c
1

&c

b,„(2n—1)+ g [k+(n —m) —A, +(n +m —1)], = g [A. '(n —m)
m =1 (I+g2 )1/2

'(n +m —1)—2p*]
(1+g 2 )1/2

(2)

The imaginary-axis gap function 5„—:b, (i~„)is related to
A„by

venience we have set kz ——6=1. The electron-phonon and
paramagnon spectral densities enter via the parameters

b,„=6„/
~

co„

where

ice„=i (2n —1)AT—(n =0, +1, l-2, . . . )

(3) (n —m)= J ,
—dfI[a F(fI)+P(II)]

0

2A
X

II +(2trT) (n —m)

are the Matsubara frequencies at temperature T. For con- We note that, for the electron-phonon part alone of
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A.
—(n —m), the n =m term drops out of Eq. (2) because it

appears once on each side of the equation with the same
sign. In contrast, for the paramagnon part, X+ (n —m )

appears on one side and k (n —m) on the other resulting
in opposing signs so that no cancellation can occur for the
term n =m. This is very important because it implies
that if we add an infinitesimal part e6(A —Bo) at frequen-
cy Ao with e~O to the electron-phonon part, nothing
happens to the gap functions as 00~0 because the
change in A,

—(n —m) for n =m does not appear and for
n~m it is

200
n&m

Ao+(2~T) (n —m)

which goes to zero as AO~O. This means that adding
phonons at Ao ——0 does not affect the superconductivity in
any way. On the other hand, a very different result arises
when an infinitesimal term is added to the paramagnon
spectral density. It leads to a I/Ao divergence in Eq. (2)
from the term k —(n —m) with n =m.

The functional derivative of a functional F of G(A) at
some frequency Bo is defined as

6F . 1
=1&m —{F[6(II )+e'5(& —fIo)]—F[6(&)) I5G (Qo) ~-o e

where 6(II) is the spectrum, a F(A) or P(II ), in which
one is interested and t = T/T, is the fraction of the criti-
cal temperature, T„atwhich one is working. Ordinarily
for F =b, (to) one wants the t=0 results, however these
are impossible to attain with the imaginary axis equation,
instead we work with t «1 (usually t=0. 1) and assume
that b.(ro, T =tT, ) is very similar to A(co, T =0) for the
frequency range co of interest.

From Eq. (2) we note that 5, is an explicit function of
G(Q) through the factors 2 as well as being a function
of temperature T. When we keep the temperature fixed
we will denote the variation in Z„by4A, /AG(II). It
satisfies the equation

4-5

4G (0)
with

H„=6„+g [k+(n —m')
7TT

—/(. +(n +m' —1)]
( I+g 2 )1/2

the solution of the Eliashberg equation (2) and a
knowledge of a F(A) and P(II). In Eq. (7)

with

g„=g [b,X+(n —m) —AA+(n +, m —1)]
( I +g 2 )I/2

—g [bA. (n —m)+bA. (n +m —1)]
(I +g 2 )I/2

where by definition

~~+ 4 d~ [u F(A)+P(II)]II(n —m— )=4
[Il +(2~T) (n —m) ]

(12)

X (2'T) (n —m ) (13)

As with h, the new quantities g, are known from solu-
tions to Eq. (2) and the spectral densities for the material
of interest. We note finally that the equation for
6A„/66(A, ) is

6A 1 6T,
66(LI) " " Tc 56(Q) (14)

which involves explicitly the functional derivative of the
critical temperature. This is a well known quantity since
the pioneering work of Bergmann and Rainer ' ' to whose
work we refer for the appropriate formula. The formal
solution to Eq. (14) is given by

20,o {
—5„+Q,„{h„=g

Slo'+ (27tT)'(n —m )' (1+g '„,)'/'-

2$lo Q„+Q+g
Slo+(2vrT) (n +m —1) (1+& ~ )'/2

which is also known once we have solutions to Eq. (2).
Eq. (7) is completely determined and yields

0-4„/4G (SI ).
On the other hand, we can think of 6, as an explicit

function of G(Q) and of T =tT, and consider keeping t
constant rather than T. In this case we can write and
complete variation as

6A„4-A„(3A, 6T,
66(II) ~(~) dT 56(A, )

'+

where T(dA„/BT) satisfies the equation

aa,.g H„T =g„,
m

—&„[&+(n m) k+(n + m ——1—)]-
(1+g 2 )3/2 6T,

T, 66 (A)
(15)

—[& (n —m)+A, (n +m —1)—2p" ]
1

(1+g 2 )3/2

(8)

Note that this quantity can be constructed explicitly from

We have generalized our original Eliashberg programs
to compute 6A„/66(A) in addition to A„and want to
construct from this information the functional derivative
of the gap function A(toT) for real frequencies, namely
6A(co, T)l66(A). This is the subject of Sec. III.
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III. THE ANALYTIC CONTINUATION

We need now to analytically continue to the real fre-
quency axis. First, we note that the 6„'sused in our nu-
merical work are related to the 6„'sby A„co„=A„for
positive n with the analytic continuation of 6, being
A(cu, T). Thus we have

66(i co„)
b, '(co, T) =b, cu 1—,T

T, 5G(f1) (19)

where the last term stands for analytical continuation us-
ing, in our case, Pade approximants. We get, on expand-
ing (19)

5A, 56„5„5T,
5G(fl) " 5G(0) T, 5G(Q)

(16) b, '(cu, T) =A(co, T) —co
' +eAc)b, (co, T) 6T 55(i co„)

Bco T 5G (A)

The Matsubara gaps for the system with the added piece
e6(A=Go) are denoted by b, '(ice'„) and related to those
with @=0 by the equation

(2O)

For a fixed value of cu this last equation tells us that on
rearranging terms

5b, (i cu„)
5'(ice'„)=A(ice„)+e

5G ~) (17) 6S(~,T)»(I~. ) aa(~, T)=A —CO6G(0) 5G(Q) Bco T, 5G(A)

6b, (ico„)
b, '(ice„)=h[icu„/(1+5T,/T, )]-+e

6G (Q)

Both sides can now be analytically continued to get

(18)

For t constant, T' and T are related by the ratio

(5T, +T, )/T, =1+(5T,/T, ) with 5T, =c[5T,/5G(f1)]
so that we can write

Ao ——Reh'(co = b, o, T)= 5', (~= b, o, T)

which leads to

(22)

(21)

&»«he gap Ao &0+a[53——,,/6G(f), )] is obtained from
the equation

5ao
=&'(&0)—&(&o)=

5b,(i~„)
A]

5G(Q, )

c)b. i(co, T)—Ao
~o Bco

aa, (~, T)1—
(3Q) Ap

5T,
s, T, 5G(O)

(23)

where A
&

is the real part of the analytic continuation A.
This last formula can be evaluated directly in our pro-
grams which gives us A[M(icy„)/5G(A)] and b(co, T)
through Pade approximants techniques. For this we fol-
low the method of Vidberg and Serene. The N-point
Pade approximant to a complex function u (z) of the com-
plex variable z, whose N values u; (i = 1, . . . , N) are
given at N complex points z; (i =1, . . . , N) is defined"'5

as a continued fraction:

It can be shown that

A~(co)
C(N;co, T)=

where Az and Bz are polynomials give by the recursion

A
„ + )(co ) = A„( co ) + ( co —z„)a„+ , A

„ ) ( co )

n =1,2, . . . , N —1

(28)

C(N;co, T)=
ap(cu —z, )

a3(co —z~)

(24) B„+)(co)=B„(co)+(co—z„)a„+,„B)(co)

n =1,2, . . . , N —1

such that

I+ 1+a~(~—z~, )

and

Ao ——0, Ai ——ai, Bo ——Bi ——1 . (29)

C(N;z, , T)=u;, i =1, . . . , N .

The coefficients a; are then given by the recursion

(2&)
While formula (23) is the most useful for our work it can
be rewritten in another way which is sometimes good for
the purpose of discussion. Substituting (21) into (23) leads
to

a;=g;(z;), g, (z, )=u;, i =1, . . . , N

gp 1(zp 1 ) gp ](z)
gp(z)=

— — P-, p) 2
(z —zp ) )gp, (z)

(26)

(27)

5b, )(co, T)

5G (Q)

c)b, , (co, T)1—
BC() Ap

(30)
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but at constant t we can rewrite

5b i(co T) 4b(co T) Bb, , 5T,
5G(O) ~(fI) r)T 5G(A)+

leading to

(31)
6ho

5G(I1)

4.5)(co, T)
5G (fI)

Bb ((co, T)1—
Bc&)

T~Q . (33)

6ho

5G(A, )

4b, )(~, T)

4G (II) &o

t)b, (co, T)
+T aT

6T,
g„T,5G(II)

"ob, , (co, T)

Bcd

This tells us that at low temperature it does not matter
whether we keep T or t constant as we would expect.
Our numerical work confirms this as well and suggests
that working with t=0. 1 is good enough.

To obtain the functional derivative of Jz first note that

(32)

This last formula involves the temperature derivative of
the real gap Bb, , (co, T)/dT which is not evaluated directly
here. If we assume that it is finite, however, we see from
(32) that the second term drops out as T~O because it
contains an explicit factor of temperature leaving us with
the formula

5G(A) 5G(I1)
db, i(co)

dM
(34)

To find the functional derivative of [db, ~(cg)/dc']
l ~

simply take the derivative with respect to co of both sides
of the real part of (20), evaluate at b, o, and expand to first
order in e. This gives

6
5G (II)

d A, (cu)

dt's

56(i co„
dao 6G (0A)

dA)(co, T)

dt's

Ao

) d Ai(co, T)

) Ao dc'
+ 2

d'A, (co, T)
+~o

dco

&~o

g„5G(O) n„
6T,

T, 5G(&) n,

IV. RESULTS

In this section we present results for Pb, Nb3Sn, V, Nb,
V~Si, and Nb&Ge. As a check, the results for Pb and
Nb3Sn are compared to those found using the method of
Mitrovic et a$. In that method the Eliashberg equations
are solved for a given material spectrum and b, (co) deter-
mined. Next the equations are solved again but with a 6
function of finite weight 3 added to either a F ( II ) or
P(fI), as desired, at some frequency Il. The critical tem-

perature is found by keeping p* unchanged. At the same
reduced temperature t, the new 5'(cg) is determined. The
dift'erence between the gap edges, or between the deriva-
tives at the gap edge, divided by 3 gives the approximate
functional derivative of each of those quantities. Of
course 3 must be small enough that there is an approxi-
mately linear dependence on A. To check the linearity
two or more values of 3 must be used for each frequency
O. The main advantage of the method proposed in Secs.
II and III is that only one calculation need be done for
each value of A. As well, decisions on a choice of 2 and

on how constant the functional derivative is with varying
A are no longer present. We will not present results for
5bo/5G(II) as we found that the results from the two
methods agreed to within approximately 2% and because
the Mitrovic et al. paper thoroughly discusses that func-
tional derivative. We note that 2% is the level of agree-
ment that is obtained when the direct ("brute force")
method of Mitrovic et al. is applied to the calculation of
the functional derivative of the critical temperature and
compared with the results for the same quantity based on
the analytic formulas given in Bergmann and Rainer.

The comparison for 51nJ„/5a F(A) as a function of
6, /T, is given in Fig. 1 and for 5 In'� /5P(Q) in Fig. 2.
The solid and dashed curves in each figure were obtained
using formulas (34) and (35) of Sec. III while the X's
represent results of direct calculations ("brute force").
That is, Jz is calculated twice, once for the desired spec-

0.6—

0.5—
3ln JR

p~2F(Q, )

0.4—

Nb Sn3

0.3—

0.2—

O.I—

0.0 3 4 5 6 7 8 9
Q /Tc

IO

FIG. 1. The functional derivative, with respect to a F(A), the
electron-phonon spectral density, of the ratio of the jump, at the

gap edge Ao, in the quasiparticle current of a superconducting
tunnel junction to its weak coupling limit, 61nJ& /6a F(A), plot-
ted against 0/T, . for Pb (solid line) and Nb3Sn (dashed line) us-

ing the method of Secs. II and III of this paper. For compar-
ison, values of 61nJ&/6a F(B) determined by an extension of
the method of Mitrovic et aI. (Ref. 7) are also given ( &( ).
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O.O 4.0

—I.O-

Sln JR
8 P(Q) I

I

1

l

I

l

I

l—3.0 I

I 2 5 4 5 6 7
c

Pb

Nb~Sn

3.0—

8 In JR
s2'F(a, )

2.0—

I.O-
FIG. 2. Same as ig. , uF 1 b t for the functional derivative with

respect to P(Q), the paramagnon spectral density.
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~0 we expect thelnJ /5a F(Sl) will go to zero as 0~0 w p
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r er the functional derivative. is iscoupling, the larger e is is
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/6 F(B) vs 0,/T, , for V (so1id 1ine),FIG. 3. Plots of 61nJ / u vs
Nb (dashed line), ~ i o e, V S (d tted 1ine), and Nb3Ge (dashed-dotte
line).

O.O

Sln JR
sr {c)

Tc
5 6 7

FEG. 4. Same as Fig. 3 but for 61nJ~/6P(A).

/5a F(0). The major difFerence ofand 6 lnho a
51nJg/5a F(fl) compared to 5lnT, / a
51nhii/5a F(Q) is that the peaks occur at considerably

The hei hts of the peaks are alsosmaller frequencies. e eig
T 5a F(Q} or1 t s larger than those of 61nT, / a orsevera times a
P Q) differ lit-51nbo/5a F(A). The curves for 51nJ&/5P( i
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from 5 ln T /6p (0) and 6 in', o/5P (0, ). The curves
start from zero at A /T, = oo and smoothly approach

at A/T, =0. In general, weaker coupling the ma-
terial, the faster it falls to infinity, at least in the range
shown. This is the same behavior as 6 lnT, /6P(Q) and
5 in', o/5P($1). The only dift'erence is again in the sensi-
tivity, at a given 0/T, the absolute value of
51nJz/6P(Q) is several times larger than 5 lnT, /6P(Q)
or 61nho/6P(fl).

V. CONCLUSIONS

We have developed a new method for calculating the
functional derivative of the gap A(co) on the real frequen-
cy axis and of its derivative with respect to frequency ~.
The method is based on imaginary axis equations that
deal directly with the change in the Matsubara gaps
A(ice„) with spectral weight 6 (0) namely
66(ice„)/66(fl). Here G(Q) can be the electron-phonon
[a F ( 0 ) ] or the paramagnon spectral density [P ( 0 )].
The coefficients in our equations, which are a set of linear
inhomogeneous algebraic equations, require only the ma-
terial parameters of the particular superconductor under
consideration and the solutions of the Eliashberg equa-
tions at the Matsubara energies. The functional derivative
of the gap edge on the real axis 6ho/56 (fl) then follows

on analytical continuation of the 6A( ice, ) /6G ( 0 ) and
b, (ice„)which is accomplished by the method of Pade ap-
proximates. Comparison with results obtained by the
brute force method of Mitrovic et ar. shows that our new
method is accurate in all cases considered while it is much
faster and more direct.

We have used our new methods to calculate
5 1nJ& /6rz F(fl, ) and 5 inJ& /6P(A) as a function of

6/T, for Pb, Nb3Sn, V, Nb, V3Si, and Nb3Ge, where Jz
is the normalized jump in the current at the gap edge (Ao)
in a tunneling junction. To our knowledge this quantity
has never before been calculated. Although, for reasons
of numerical accuracy, we were not able to continue our
calculations beyond A/T, =0.25 at which point
61nJ~ /6a F(Q) is still rising as fl is lowered (except for
V), we argue that the curve starts from zero at f),/T, =0
increases to a maximum at some approximately universal
value of 0, /T, and then decrease to zero at infinity. This
shape for 61nJ&/6a F(A) is similar to that previously
found for 61nT, /6a F(A) and 61nho/5a F{A) but the
magnitude is greater and the peak is at much lower fre-
quencies 50.25T, . In general, weaker coupling materials
have higher values of 6lnJ~/5a F{A) indicating that in
weak coupling materials Jz is more sensitive to a given
small change in a F(Q) than is the case for strong cou-
pling materials.

Our results for the functional derivative of the current
jump at the gap edge with electron-paramagnon spectral
density P {Q) are even more similar to its 61nT, /6P (0)
and 51nb, o/6P(Q) counterparts. The curves start at zero
at infinite frequency, are negative for all finite frequency
increasing steadily in absolute value and diverging as l/0,
for A, ~O. This indicates that paramagnons of any fre-
quency reduce the jump JR with the lowest frequencies
having proportionally the largest eAect.
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