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Ambegaokar-Baratoff —Ginzburg-Landau crossover effects
on the critical current density of granular superconductors
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The critical current density of a granular superconductor, modeled as an array of Josephson-
coupled grains, is calculated using a Ginzburg-Landau approach that accounts for suppression of the
superconducting gap parameter in the grains by supercurrent. For a wide range of experimental pa-
rameters, the critical current density versus temperature is found to have an Ambegaokar-Baratoff
dependence at low temperatures but to exhibit a crossover to a Ginzburg-Landau (1 —T/T, )'
dependence near T„ the crossover occurring at the temperature for which the Josephson coupling en-

ergy of a junction is approximately equal to the superconducting condensation energy of a grain. Ex-
perimental results displaying this behavior are reported for a NbN film.

I. INTRODUCTION

Certain granular superconductors, such as NbN, have
high values of both the critical current density J, and the
normal-state resistivity p„, in ranges desirable for device
applications. ' To identify the most important specimen
parameters and to guide the preparation of materials with
optimized J, and p„, Kampwirth and Gray introduced a
model by which such materials are represented as arrays
of Josephson-coupled superconducting grains. This mod-
el, however, neglects the current-induced suppression of
the order parameter and thus leads to an incorrect tern-
perature dependence of the critical current density near
T„ the model yields a proportionality to ( 1 —T /T, ),
rather than to (1—T/T, ) ~, a behavior which is expected
from the Ginzburg-Landau theory and is closer to that
seen experimentally. The purpose of this paper, there-
fore, is to incorporate the original Josephson-coupling
model into a Ginzburg-Landau ' theory of granular
superconductors and to use this theory to derive a
critical-current-density expression that is valid over a wide
range of temperatures.

In Sec. II it is shown that our Ginzburg-Landau ap-
proach yields an expression for J, that for a wide range of
experimental parameters has the Ambegaokar-Baratoff'
temperature dependence, characteristic of Josephson tun-
neling, at low temperatures and the usual Ginzburg-
Landau' (1—T/T, )

~ temperature dependence near T, .
It also will be shown that the crossover between the two
forms occurs at that temperature where the Josephson-
coupling energy of a junction is approximately equal to
the superconducting condensation energy of a grain. In
Sec. III we use the theory to analyze the temperature
dependence of the critical current of a 225-A thick granu-
lar NbN film, and in Sec. IV we summarize our findings.

II. GINZBURG-LANDAU THEORY

Our starting point is the Josephson-coupled grain mod-
el of Ref. 4, which assumes that the grains are arranged
on a cubic lattice with lattice parameter ao and that the

junctions between adjacent grains are identical. For the
case of a two-dimensional (2D) array of grains of average
thickness d (d (ao), the grains may be assumed to lie on
a square lattice with lattice parameter ao. In such a mod-
el, the critical current density due to tunneling between
grains is J, =JD ——Io/3, where Io is the Ambegaokar-
Baratoff' expression for the maximum dc Josephson
current,

+ (A'/2e)Iof (1—cosP) —(R/2e)IQ, (2)

where H, is the bulk thermodynamic critical field, P is the
gauge-invariant phase difference across a current-carrying
junction, and Io is the Ambegaokar-Baratoff' critical
current near T„

Io(T) = orb, (T)
4eR, kz T,

The factor f in Eq. (2) is the fraction by which both the

Io( T)= [n b ( T) /2eR „]tanh[h( T) /2k& T],
and A =ao [three-dimensional (3D)] or A =aod (2D) is
the cross section of a grain. Here b, ( T) is the
temperature-dependent gap parameter and R„ is the
normal-state tunneling resistance of a junction. The
effective normal-state resistivity, measured using a sample
volume much larger than the grain volume V =a 0 (3D) or
V =a2od (2D), is then p„=R„ao (3D) or p„=R„d (2D),
such that at low temperatures p„J,=nb(O)/2eao. Close
to the superconducting transition temperature T„where
Io is proportional to b, this model predicts that J, is pro-
portional to (1—T/T, ).

The above model does not account for the ability of the
supercurrent to suppress the gap parameter. To correct
this deficiency, we use a Ginzburg-Landau ' approach
to account for current-induced gap suppression. When
the array carries supercurrent at density J =I/A along
one of the symmetry directions, the Gibbs free energy per
grain near T, is

b, G = (H, /4'� ) V ( f +f /2)—
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gap parameter and the order parameter are reduced in the
presence of the supercurrent,

I =Ipf sing . (4)

f =1—e(1 —cosP), (5)

where e=E&/2E, is the ratio of the Josephson-coupling
energy of a junction, E~ =(iri/2e)Ip, to twice the supercon-
ducting condensation energy of a grain, E, =(H, /8rr)V.
Substituting Eq. (5) into Eq. (4), we find that the value of
P that maximizes I is given by

(1 —2e+9e )'~ —I+e
cosP (6)

The corresponding critical current density is thus given by
J,(T)=Jp(T)g (e), where g =f sing (the subscript m

indicating evaluation at P=P ) is the factor by which gap
suppression reduces the net critical current J, below the
Ambegaokar-Baratoff value Jo. Shown in Fig. 1 is a plot
of g versus e.

The normalized Josephson-coupling energy e can be
written with the help of Eq. (1) and the Bardeen, Cooper,
Schrieffer (BCS) relations' ' H, (0)/4' =N (0)b, (0),
y =(2ir /3)N(0)kii, and 26(0) =3.53kii T, as

Note that in Eq. (3) b, is the value of the gap parameter
before it is suppressed by the current.

Minimization of AG with respect to f or P at constant I
yields the condition

ty, e(T) is simply the ratio g (T)/ap where g(T) is the
temperature-dependent coherence length and ao is the
effective grain diameter. We show later that e( T)
=2/ (T)/a p near T, . Evaluating Eq. (8) for two specific
examples, we obtain ep ——0. 16 for granular NbN with (see
Sec. III) y=1.3&&10 ergcm K, T, =11.9 K,
p„=145 pQcm, and ao ——219 A; and 6'o= 160 for granular
Al with' ' y=1.35&10 ergcm K, T, =1.49 K,
p„=8.3 pQ, cm, and a o

——79 A.
Equation (7) can be evaluated at arbitrary reduced tem-

perature T/T, with the help of the BCS functions tabu-
lated in Ref. 20; e(T) is a monotonically increasing func-
tion of T, diverging as e'(T)=0. 882ep(1 —T/T, )

' near
T, . Thus, when eo ~&1, the crossover temperature at
which e( T) = 1 is T = T, ( 1 —0.882ep).

When e &~ 1, the critical current is reached at
sufficiently small values of P that sing =P and
(1 cosP)=—P /2, and we obtain P =(2/3e)' «1,
f =2/3, and g=(2/3) e ' «1; i.e., when the con-
densation energy of a grain is much smaller than the
Josephson-coupling energy, gap suppression is severe, and
the temperature dependence of the critical current density
reduces to that of the Ginzburg-Landau theory in the dir-
ty limit. To show this, we recall that the Ginzburg-
Landau critical current density can be expressed as'

cH, (T)
J,(T)= (9)

3v'6irA, ( T)

In the dirty limit the penetration depth X can be expressed
as"

[b ( T)/b. (0))tanh[b ( T)/2k' T, ]
e(T) =ep

[H, ( T)/H, (0)]
(7)

1 /2
c Ak~ T,p„

A.(T)=
2n b, (T)

(10)

where

ep ——e(0) =2.93
y Tcpna o

(8)

The present theory [Eqs. (4)—(6)] also yields J, in the
forin of Eq. (9), except that playing the role of the
penetration depth is the quantity

To see the underlying physics, however, it is helpful to
recognize that, aside from numerical factors of order uni-

k(T) =(iric /8irJpeap)'

This has the same form as the familiar Josephson penetra-
tion depth, except that the usual e6'ective barrier thick-
ness d,z ——d;+2k, is here replaced by ao. Eliminating Jo
in favor of b, with the help of Eq. (3), we recover Eq. (10),
but with the normal-state resistivity defined as p„=R„ao
(3D) or p„=R„d (2D). Thus the present theory in the
large-e limit yields exactly the same critical current densi-
ty as the Ginzburg-Landau theory in the dirty limit.
Moreover, near T, we obtain

—1
eo 10 [J,(T)] =1.840(kgb/Pip„)'~ (T, —T) . (12)

10
10

l

10 10 10 10

FIG. 1. Critical-current suppression factor g =f sing [Eqs.
(5) and (6)] vs the normalized Josephson-coupling energy e.

ir trib. (T)
4e kiiT, p„H, (T)

(13)g(T) =

This equation permits the determination of y from mea-
surements of J, versus T near T, .

If the Josephson-coupling term in Eq. (2) is generalized
as in Refs. 13 and 24 to permit f to vary from grain to
grain, minimization of the resulting expression for AG
yields equations that reduce to the usual Ginzburg-
Landau theory in the large-e limit. Playing the role of the
Ginzburg-Landau coherence distance is the quantity

' 1/2
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At T„ the ratio of A, [Eq. (10)] to g is

K =0.0646ce p „y ' /k~ (14)

III. COMPARISON WITH EXPERIMENT

Of the quantities entering the theory, probably the most
difficult to obtain experimentally is ap, which can be inter-
preted as the effective grain diameter. In the model of
Ref. 4, ap is calculated from ap ——~h/2ep„J„all quanti-
ties being evaluated in the limit of zero temperature. In

1.0
=0

which is identical to the expression first derived by
Cxor'kov for the dirty limit. Similar results have been
obtained in previous theories of granular superconductors
using a diff'erent approach. ' Comparison of Eq. (13)
and the defining equation for e reveals that
e(T)=2( (T)lap near T„such that the limit e»1 corre-
sponds to g»ap.

When e « 1 (g «ap), we obtain P =~/2 —3e/8,
f = 1 e, and—g = 1 e; in o—ther words, when the con-2

densation energy of a grain is much larger than the
Josephson-coupling energy, current-induced gap suppres-
sion plays an insignificant role, and the critical current
density is well represented by the Ambegaokar-Baratoff
result Eq. (1).

When e= 1 (g=ap/1/2), we obtain P =sr/4,
f = I/i 2, and g = —,'; in other words, the transition be-

tween the Ambegaokar-Baratoff regime and the
Ginzburg-Landau regime occurs when the condensation
energy of a grain is of the order of the Josephson-coupling
energy, or, equivalently, when the Ginzburg-Landau
coherence distance is of the order of the grain size.

Shown in Fig. 2 are calculated curves of
[J,(T)/Jp(0)] ~ versus T/T, for several different values
of ep. Near T„we find [J, ( T)/Jp(0) ]
=1.335ep '~3(1 —T/T, ). The top curve in Fig. 2 (ep ——0)
is the corresponding Ambegaokar-Baratoff result [Eq. (1)],
which has infinite slope at T, .

the present theory, however, ap must be obtained self-
consistently as follows. Combining J, (0)=Jp(0)g (ep)
with Eqs. (1) and (8) and making use of the BCS relations
that led to Eq. (7), we find

trip„J, (0)
epg (ep) =0.382

k~y T,
(15)

J, (0)=0.881(key T, /trip„) ' (17)

which is independent of ap.
Implicit in the theory of Sec. II are the assumptions

that (a) the current density ffows nearly uniformly
throughout the specimen's cross section and (b) self-field
and vortex-pinning effects are negligible. The first as-
sumption is well satisfied for samples of average thickness
d and width w satisfying d «k(T) and w «A, i(T), where
A.„=2k, /d is the effective screening length for thin films.
The second assumption requires that the critical current
density as calculated in Sec. II obeys J, ( T) « J, i( T),
where J, ] is the current density at which the self-field at
the edge of the film is equal to H, i, sufficient to nucleate a
vortex. Self-field and pinning effects become important
when J, =J,i. If J, &&J,i, the critical current density is
no longer limited by the mechanisms of Sec. II but by the
larger of J, i or J,d, the critical depinning current densi-
ty. To estimate J,], we first assume uniform current
density and apply the Biot-Savart law to obtain H, i
= (2J, id /c )ln( w /d ). We next use the Ginzburg-Landau
theory for high-a. superconductors ' to approximate
H, i =(Inlc/1~ 2)H„where H, (T)=H, (0)(1—T /T, ).
Finally, using Eq. (14) and the BCS result' '

H( )0= 24 3y8' T„we obtain

which is solved for ep. We then obtain ap from Eq. (8).
This procedure, which reduces to that of Ref. 4 when
E'p (Q 1, works best when Ep Q 1 or ap )a, where

a„=l. 71(Akz /y T, e p, )'

is the value of ap at which E'p=1. This method of deter-
mining ap has poor accuracy, on the other hand, when
ep »1 or ap «a„, because in this limit J, (0) reduces to

0.9—

0.8—

k~T, lnK
J,i(T)=13.3 (1—T /T, ) .

ep„d ln w/d
(18)
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FICx. 2. [J,(T)/Jo(0)] ~' versus T/T, for various values of
where J, ( T)=J0( T)g ( e ), J0 is the Ambegaokar-Baratoff

critical-current density [Ref. 14 and Eq. (1)], g(e) is shown in
Fig. 1, and e( T) is given by Eq. (7).

Shown in Fig. 3 is a comparison between theory and
experiment for the temperature dependence of J, in a
NbN film of thickness 225 A, width 6 pm, and length
6@m. The film was prepared by reactive dc magnetron
sputtering onto an oxidized Si substrate. The film thick-
ness was monitored during deposition with a quartz-
crystal deposition rate monitor, and the final thickness
cross-checked with a surface height profiler. The plotted
points are experimental values, plotted as
[J,( T)/J, (0)], versus T /T„where we assume
J, (0)=7.7X10 A/cm . The values of T, =11.9 K and
y=1.3&10 erg/cm K are obtained from the slope of
J,~~3 versus T near T, [Eq. (12)], and the value of p„=145
pQ cm is taken to be the measured resistivity at T =20 K.
The above value of y is to be compared with previous ex-
perimental values for bulk specimens in the range
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FIG 3. [.J, (T)/J, (0)] vs T/T, . Solid points: experimen-
tal data for a 225-A NbN film; solid curve: theoretical curve
calculated as described in the text; dashed curve: Ambegaokar-
Baratoff' critical current density [Ref. 14 and Eq. (1)]; dotted
curve: Bardeen's (Ref. 36) expression, [J,(T)/J, (0)]
=1—(T/T, ), which approximates numerical calculations (Refs.
37—39) extending the Ginzburg-Landau theory to lower tempera-
tures. The vertical arrow indicates the crossover temperature
T

oriented grains are among those that are more strongly
coupled together.

The crossover temperature T between Ambegaokar-
Baratoff behavior and Ginzburg-Landau behavior (at
which @=1 and g=ao/&2) is calculated to be about
0.87T„and Eq. (16) yields a, =86 A. Using estimates of
k(T) via Eq. (10), we find that the assumption of nearly
uniform current density is justified at all temperatures.
Equation (18) yields J„(0)=2.7&&10 A/cm, from which
we conclude that self-field and pinning effects are unim-
portant at all temperatures.

The dashed curve in Fig. 3 shows the Ambegaokar-
Baratoff temperature dependence expected in the absence
of current-induced gap suppression, i.e., [Jo(T)/Jo(0)]
[Eq. (1)] versus T/T, . The deviation of this temperature
dependence from that of the measured critical current
density is most pronounced near T, . The dotted curve in
Fig. 3 shows the temperature dependence of the phenome-
nological expression [J,(T)/J, (0)] =1—(T/T, ) pro-
posed by Bardeen. ' This simple expression is a good ap-
proximation to [J,( T) /J, (0)] / calculated numerically
from the dirty-limit microscopic theory that extends
the Ginzburg-landau critical-current theory to low tem-
peratures. The Bardeen expression, however, overesti-
mates [J,(T)/J, (0)] by about 6% near T„where it has
slope —2, rather than the value —1.89 obtained from the
dirty-limit microscopic theory.

y=(1.7—3.6)&&10 erg/cm K . The solid curve shows
[J,(T)/J, (0)] / as calculated from the above theory,
where the values of ep ——0. 16 and ap ——219 A are obtained
from Eqs. (15) and (8), respectively. The calculated junc-
tion resistance is R„=66 A.

For comparison with the effective grain size obtained in
the above manner, the actual grain size and phase struc-
ture of the NbN film were determined by using transrnis-
sion electron microscopy (TEM). The results obtained by
selective area diffraction TEM indicate that the NbN film
is of face-centered-cubic polycrystalline structure with a
lattice parameter of 4.46 A. Lattice images were taken
and the number of lattice fringes of (111) planes with
interplanar spacing of 2.58 A were then counted to mea-
sure grain sizes of the polycrystalline NbN film. The
grain sizes of the film were distributed from 30—90 A
with an average size around 60 A. Grains showed no
preferential orientation, but an examination of the (111)
deflection dark field image revealed that grains of similar
orientation were frequently clustered together. The clus-
ter sizes approached 200 A.

Our finding that the effective grain size inferred from
critical-current measurements is somewhat larger than the
average grain size measured from electron micrographs
can be understood in terms of the expected spread of in-
tergrain Josephson-coupling strengths, using percolation
arguments similar to those used in Refs. 32—35. For ex-
ample, two adjacent grains with a larger-than-average
coupling strength will behave essentially as a single larger
grain, while two adjacent grains with a smaller-than-
average coupling strength will behave essentially as if in-
sulated from each other. It is possible that the similarly

IV. SUMMARY AND CONCLUSIONS

In this paper we incorporated the Josephson-coupled-
grain model of Ref. 4 into a Ginzburg-Landau theory of a
grangular superconductor. We then used this theory to
derive an expression for the critical current density, which
provides a good description of experimental results from a
225-A NbN film. The relevant dimensionless parameter
in the theory is e'o [Eq. (8)], which, aside from numerical
factors of order unity, is the ratio of the Josephson-
coupling energy of a junction to the superconducting con-
densation energy of a grain, both energies being evaluated
at zero temperature. Only when up=0 is the original
Josephson-coupled-grain model valid over the entire tem-
perature range from zero to T, . In this case the tempera-
ture dependence of J, is that of Ambegaokar and Bara-
toff. ' For nonzero values of E'p however, the Am-
begaokar-Baratoff temperature dependence holds only at
low temperatures, the behavior giving way to the
Ginzburg-Landau' (1 —T/T, ) temperature depen-
dence above the crossover temperature T
=T, (l —0.882e'o). For large values of eo, current-induced
gap suppression is dominant at all temperatures, and J,
does not obey the Ambegaokar-Baratoff behavior at any
temperature. Instead, the temperature dependence is
governed by Ginzburg-Landau-like behavior at all temper-
atures That is,. J, is proportional to (1—T/T, )3/~ near
T, , where the present theory should be valid, but further
extensions of the theory ' would be needed to calcu-
late the low-temperature behavior of J, more precisely.

In the strongly Josephson-coupled regime (e» 1) the
above model gives results in agreement with the
Ginzburg-Landau theory. That is, as in Refs. 26 and 27,
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the resulting penetration depth A.(T), coherence distance
g(T), and Ginzburg-Landau parameter I~ are given by the
same expressions [Eqs. (10), (13), and (14)] as in the mi-
croscopic dirty-limit theory, except that playing the role
of the normal-state resistivity p„of the microscopic theory
is p„=R„ao(3D) or p„=R„d (2D), the effective normal-
state resistivity measured using a sample volume much
larger than the grain volume. Our theory remains valid
even when the intragrain electronic mean-free path is of
the order of ao but the tunneling resistance R„ is so high
that the mean-free path I calculated from I =mvF/ne p„
is smaller than the interatomic spacing.

The above approach also can be used to investigate the
properties of isolated Josephson junctions. It is easy to
see that current-induced gap suppression is important in
reducing the critical current of small, high-current junc-
tions whenever the ratio of the Josephson-coupling energy
to the condensation energy of the superconducting coun-
terelectrodes is of order unity or larger. This effect there-
fore can reduce the low-temperature I,R„product below
that expected from Eq. (1) and always causes I, to be pro-
portional to (1—T/T, ) sufficiently close to T, .

The theory of Sec. IE also can be extended directly to
square 2D arrays of Josephson junctions with lattice pa-
rameter ao. For this case, p„=R„d, where R„ is equal to
R, the normal-state (tunneling) resistance per square,
and d = V/a o is the average thickness of superconductor.
The physics of Sec. II has an important consequence for
the vortex structure in 2D arrays in a transverse magnetic
field: When the Ginzburg-Landau coherence distance
g( T) [Eq. (13)] exceeds a o, which always occurs
sufficiently close to T„current-induced gap suppression
produces a core of radius approximately equal to g(T).
With decreasing temperature, however, the core shrinks.
For sufficiently weak Josephson coupling that eo & 1, the
low-temperature vortex structure is determined by the

Rg /R„
2N(0)b, (0)V

(19)

we see that if the grains are sufficiently large that
N(0)b, (0)V»1, then when R„&R&, eo&~1, and the
mean-field behavior is expected to be Ambegaokar-
Baratof-like except very close to T, . On the other hand,
the simultaneous appearance of both charging-induced
fluctuation effects (with R„=R&) and Ambegaokar-
Baratoff —Ginzburg-Landau crossover effects (with co=1)
might be observable in specimens containing very tiny
grains for which N(0)A(0) V= 1, i.e. , for which size effects
become important and the normal-state single-particle
level splittings near the Fermi energy EF are of order
6(0). The number of metal atoms per grain required to
meet this condition, however, is of order EF /6(0) = 10 .
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array's geometry, and the core size is set by ao, the lattice
parameter of the array.

Since the above theory is a mean-field theory that ig-
nores charging effects, it is expected to fail at those com-
binations of the junction resistance R„and capacitance C
for which thermal and quantum-mechanical fluctuations
destroy phase coherence among grains. Such fluctua-
tions, however, become significant only at high values
of R„, generally in excess of the quantum of resistance
R& ——h /4e =6.45 kO, . Since eo can be written as
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