NMR study of ¹H and ²⁰⁵Tl in ammonium and thallium perchlorates in the rotating frame: Indirect measurement of the relaxation time of rare-spin ¹⁷O

K. Morimoto

Faculty of the Integrated Arts and Sciences, Hiroshima University, Hiroshima 730, Japan (Received 28 July 1986; revised manuscript received 3 November 1986)

The spin-lattice relaxation times T_1 and $T_{1\rho}$ of ¹H and ²⁰⁵Tl were measured in ammonium and thallium perchlorates (NH₄ClO₄ and TlClO₄). The temperature dependence of $T_{1\rho}$ of ¹H and ²⁰⁵Tl in the rotating frame shows three minimum values (1–3 sec), which are attributable to the interactions between ¹H(²⁰⁵Tl) and ¹⁷O spins of natural abundance (0.037%); one of the minima is due to the modulation of the dipole-dipole interactions between ¹H(²⁰⁵Tl) and ¹⁷O spins by the reorientation of the ClO₄ ion, and the other two minima are due to cross relaxation between ¹H(²⁰⁵Tl) and ¹⁷O spins. The spin-lattice relaxation time T_{1S} of ¹⁷O spins was determined from the experimental T_1 and $T_{1\rho}$ data of ¹H(²⁰⁵Tl). An expression for T_{1S} of ¹⁷O was derived for the reorientation of the ClO₄ ion. The value of the quadrupole coupling constant, $e^2qQ/h \cong 10$ MHz, of ¹⁷O was obtained.

I. INTRODUCTION

The NMR study of a nuclear spin with such a small natural abundance as ¹⁷O (0.037% of natural abundance) is not easy, owing to the poor signal-to-noise ratio, in spite of the possibilities of wide applications in physics and chemistry. The NQR signals of ¹⁷O in solids are detected in many cases by using double-resonance techniques.¹⁻⁵ Isotopically enriched ¹⁷O compounds were used for determining the quadrupole coupling constant, e^2qQ/h , of ¹⁷O in KH₂PO₄,³ the spin-lattice relaxation time T_{1S} of ¹⁷O in CO (Ref. 6) and the dynamical motions of SO₄⁻² ions in (NH₄)₂SO₄.⁷ Generally, high levels of chemical and electrolytic techniques are necessary to prepare ¹⁷O-enriched compounds.

It was reported that the natural abundance of ¹⁷O affects the spin-spin relaxation time T_2 of ¹H in water.⁸ The low-field spin-lattice relaxation time $T_{1\rho}$ (Refs. 9 and 10) in the rotating frame is a powerful tool for investigating slow-motion atoms and molecules in solids,¹¹ the diffusion of spins with small gyromagnetic ratios,¹² very short relaxation times which cannot be measured directly,¹³ and the small tunneling frequency of the NH₄⁺ ion.¹⁴ The measurement of $T_{1\rho}$ is also useful for studying the dynamic motions of rare-atom spins.

Recently it was found that the natural abundance of ¹⁷O spins affects the $T_{1\rho}$ of protons in some solids.^{15,16} Remarkable minimum values of $T_{1\rho}$ (1–3 s) appeared near room temperature. At first, the origin of these minimum values of $T_{1\rho}$ was attributed to the modulation of the dipolar interaction between ¹H and ¹⁷O by the reorientation of anions containing oxygen atoms (¹⁷O). This enabled us to investigate the dynamic motions of the oxygen atoms. But later it was revealed that another mechanism of cross relaxation between ¹H(²⁰⁵Tl) and ¹⁷O also plays an important role in $T_{1\rho}$ for ¹H(²⁰⁵Tl) in NH₄ClO₄, TlClO₄ (Ref. 17) and CH₃NH₃ClO₄. Due to the cross relaxation, we may determine the values of T_{1S} . Chiba and Miyajima⁷ obtained a similar result in ¹⁷O enriched (NH₄)₂SO₄ to that in Ref. 17. In the present study, the temperature dependences of $T_{1\rho}$ of ¹H and ²⁰⁵Tl were measured as functions of the static magnetic field H_0 and the rf fields H_1 in NH₄ClO₄ and TlClO₄. It was found that the temperature dependence of $T_{1\rho}$ for ¹H(²⁰⁵Tl) shows three minimum values due to the interaction between the ¹H(²⁰⁵Tl) and ¹⁷O spins; one minimum due to the modulation of the dipolar interaction between the ¹H(²⁰⁵Tl) and ¹⁷O spins by the reorientation of the ClO₄ ion, and two minima due to the cross relaxation between the ¹H(²⁰⁵Tl) and ¹⁷O spins. An expression for T_{1S} was derived for the reorientation of the ClO₄ ion. The values of e^2qQ/h of ¹⁷O were determined by using the expression for T_{1S} and the experimental data on $T_{1\rho}$.

II. THEORY

We consider the perfect tetrahedron of the ClO₄ ion in a crystalline lattice subjected to a strong magnetic field H_0 . The coordinate system of the ClO₄ ion is shown in Fig. 1, where Θ and Φ are the polar and azimuthal angles of the vector H_0 with respect to the (**X**, **Y**, **Z**) axes, which are fixed in space. The Hamiltonian H for the ¹⁷O spin is assumed to consist of the Zeeman term H_z and the quadrupole interaction $H_Q(t)$:

$$H = H_z + H_O(t) , \qquad (1)$$

where $H_z = -\hbar\gamma_S H_0 S_z$ and γ_S is the gyromagnetic ratio of the ¹⁷O spin $(S = \frac{5}{2})$. The electric field gradient (EFG) tensor $\{V_{\alpha\beta}\}^{18}$ at the site of ¹⁷O is determined by the chemical bonds within the ClO₄ ion and also by the electric charges surrounding the ClO₄ ion. We neglect the latter contribution to the EFG at the site of ¹⁷O. $H_Q(t)$ in Eq. (1) is given by

$$H_{Q}(t) = \frac{eQ}{4S(2S-1)} [V_{0}(3S_{z}^{2}-S^{2}) + V_{\pm 1}(S_{\pm}S_{z}+S_{z}S_{\pm}) + V_{\pm 2}(S_{\pm})^{2}], \qquad (2)$$

$$V_0 = \frac{1}{2} eq(3\cos^2\theta - 1) , \qquad (3a)$$

$$V_{\mp 1} = \frac{3}{2} eq \sin\theta \cos\theta e^{\mp i\phi} , \qquad (3b)$$

<u>35</u> 6608

© 1987 The American Physical Society

$$V_{\mp 2} = \frac{3}{4} eq \sin^2 \theta e^{\mp i 2\phi} . \tag{3c}$$

Since we consider the ClO₄ ion as forming a perfect tetrahedron, the terms containing the asymmetry parameter $\eta = (V_{XX} - V_{YY})/V_{ZZ}$ are neglected in Eq. (2). The parameters V_{XX}, V_{YY} , and V_{ZZ} represent the EFG tensor components for the principal axes and $eq = V_{ZZ}$. Generally, three Euler angles¹⁹ θ , ϕ , and ψ are necessary to represent the principal axes with respect to the (x,y,z) coordinate system where the direction of H_0 is parallel to the z direction. But the parameter ψ is physically irrelevant because of the 3-fold symmetry at the ¹⁷O site.

The first term in Eq. (2) gives the energy shift due to the quadrupole interaction, and the second and third terms cause the spin-lattice relaxation of ¹⁷O spins. We will first derive an expression for T_{1S} of the ¹⁷O spin for the reorientation of the ClO₄ ion. We assume that the ClO₄ ion reorients about the four threefold axes and three twofold axes at the rates k_3 and k_2 , respectively, for changing the position of ¹⁷O. Since an ¹⁷O atom occupies randomly the four sites 1-4 in Fig. 1, the first term in Eq. (2) is averaged to zero within the relaxation time T_{1S} and does not contribute to the energy levels of the ¹⁷O spin. The transition rate per unit time W_{m-n} between the $|m\rangle$ and $|n\rangle$ states of the ¹⁷O spin is given by first-order perturbation theory:

$$W_{m-n} = 2\hbar^{-2} \operatorname{Re} \int_{0}^{\infty} \overline{\langle m \mid H_{Q}(0) \mid n \rangle \langle n \mid H_{Q}(\tau) \mid m \rangle} \\ \times \exp[-i(E_{m} - E_{n})\tau/\hbar] d\tau , \qquad (4)$$

where the long overbar denotes an ensemble average, and E_m and E_n are the Zeeman energies of the $|m\rangle$ and $|n\rangle$ states, respectively. Equation (4) has the following form:

$$W_{m-n} = A \operatorname{Re} \int_0^\infty G_n(\tau) \exp(-in\omega_o \tau) d\tau .$$
 (5)

Here, $G_n(\tau)$ (n = 1 and 2) is the so-called autocorrelation function and is given by

$$G_n(\tau) = \overline{V_{-n}(0)V_n(\tau)} .$$
(6)

The expression for $G_n(\tau)$ depends on the type of reorientation of the ClO₄ ion. We consider the probability $P_{ij}(\tau)$ that $V_n(\tau)(n = \pm 1, \pm 2)$ in Eqs. (3b) and (3c) takes the values $V_n^{(i)}$ and $V_n^{(j)}$ at the time t = 0 and τ , respectively. $V_n^{(k)}$ is the value of $V_n(\theta, \phi)$ when the ¹⁷O atom occupies the kth position (k = 1-4, see Fig. 1). We find, for example,

$$P_{11} = \frac{3}{4}e^{-4\alpha\tau} + 1/4 ,$$

$$P_{12} = P_{13} = P_{14} = -\frac{1}{4}e^{-4\alpha\tau} + 1/4 ,$$
(7)

where $4\alpha = 4(k_2 + 2k_3)$. Then Eq. (6) is represented by the following form:

$$G_{n}(\tau) = \left(V_{n}^{(1)*}V_{n}^{(2)*}V_{n}^{(3)*}V_{n}^{(4)*}\right) \begin{pmatrix} p_{1} & 0 & 0 & 0 \\ 0 & p_{2} & 0 & 0 \\ 0 & 0 & p_{3} & 0 \\ 0 & 0 & 0 & p_{4} \end{pmatrix} \begin{pmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{pmatrix} \begin{pmatrix} V_{n}^{(1)} \\ V_{n}^{(2)} \\ V_{n}^{(3)} \\ V_{n}^{(4)} \end{pmatrix},$$
(8)

where $p_i = \frac{1}{4}$ (i = 1-4) is the probability that the ¹⁷O atom occupies the *i*th position and the asterisk represents the complex conjugate. We obtain

$$G_{1}(\tau) = \frac{1}{2} (eq)^{2} (1 - 2f) e^{-4\alpha\tau} ,$$

$$G_{2}(\tau) = \frac{1}{4} (eq)^{2} (1 + f) e^{-4\alpha\tau} .$$
(9)

All the transition probabilities W_{m-n} in Eq. (4) are given by

$$\begin{split} & W_{\pm 5/2\mp 3/2} = \frac{1}{20} (1-2f) (e^2 q Q/\hbar)^2 f_L(\omega_S, \tau_a) , \\ & W_{\pm 3/2\mp 1/2} = \frac{1}{50} (1-2f) (e^2 q Q/\hbar)^2 f_L(\omega_S, \tau_a) , \\ & W_{1/2+1/2} = 0 , \\ & W_{\pm 5/2\mp 1/2} = \frac{1}{80} (1+f) (e^2 q Q/\hbar)^2 f_L(2\omega_S, \tau_a) , \\ & W_{\pm 3/2\pm 1/2} = \frac{9}{400} (1+f) (e^2 q Q/\hbar)^2 f_L(2\omega_S, \tau_a) , \end{split}$$
(10)

where

$$f = \sin^2 \Theta - \frac{7}{8} \sin^4 \Theta - \frac{1}{8} \sin^4 \Theta \cos(4\Phi) , \qquad (11)$$

 $f_L(\omega,\tau) = \tau/(1+\omega^2\tau^2)$, $\tau_a = 1/[4(k_2+2k_3)]$, and $\omega_S = \gamma_S H_0$ is the Larmor frequency of the ¹⁷O spins. τ_a is the correlation time for the reorientation of the ClO₄ ion and is usually written as $\tau_a = \tau_\infty \exp(E_a/RT)$, where τ_∞ is

FIG. 1. Coordinate system of the ClO₄ ion. Direction of H_0 is defined by the polar angles (Θ and Φ) with respect to the (**X**, **Y**, **Z**) coordinates. The numbers 1–4 represent the sites of oxygen atoms. (*x*, *y*, *z*) is the coordinate system with the Euler angles (Θ , Φ) and Ψ =0) with respect to the (**X**, **Y**, **Z**) coordinates.

6609

the preexponential factor and E_a is the activation energy. However, τ_a should be written as

$$\tau_a^{-1} = \tau_2^{-1} + \tau_3^{-1} , \qquad (12a)$$

$$\tau_2 = \tau_{2\infty} \exp(E_2/RT) , \qquad (12b)$$

$$\tau_3 = \tau_{3\infty} \exp(E_3/RT) , \qquad (12c)$$

where τ_i (*i* = 2 and 3) is the correlation time, $\tau_{i\infty}$ is the preexponential factor, and E_i is the activation energy for reorientation about *i*-fold axes. Assuming a common spin temperature of the ¹⁷O spins [this assumption is plausible because the first term in Eq. (2) does not contribute to the spin energy of ¹⁷O], we obtain an expression for T_{1S} by using the formula for T_1 by Gorter,²⁰

$$T_1^{-1} = \sum_{m > n} W_{m-n} (E_m - E_n)^2 / \sum_n E_n^2 .$$
(13)

Inserting Eq. (9) into Eq. (13) we have

$$T_{1S}^{-1} = \frac{1}{125} (e^2 q Q / \hbar)^2 [(1 - 2f) f_L(\omega_S, \tau_a) + 2(1 + f) f_L(2\omega_S, \tau_a)] .$$
(14)

Equation (14) shows that T_{1S} depends on the direction of H_0 for $\omega_S \tau_a \gg 1$. Averaging over the space sphere, Eq. (14) yields $(\bar{f} = \frac{1}{5})$

$$T_{1S}^{-1} = \frac{3}{625} (e^2 q Q / \hbar)^2 [f_L(\omega_S, \tau_a) + 4 f_L(2\omega_S, \tau_a)] .$$
(15)

Equation (15) agrees with Eq. (9) and with $\eta = 0$ in Ref. (6). This was derived by assuming that τ_a is short enough to average V_0 in Eq. (3a) to zero at high temperatures. But as τ_a becomes longer at low temperatures, the first term in Eq. (2) contributes to the energy levels of the ¹⁷O spin, and Eq. (15) fails. The energy-level schemes of the

FIG. 2. The energy-level schemes of ¹⁷O spin of the ClO₄ ion subjected to the magnetic field H_0 for (I) high temperature and (II) low temperature where $\gamma_S H_0 \ll e^2 q Q/\hbar$ is assumed.

¹⁷O spin for high (I) and low (II) temperatures are shown in Fig. 2.

It will be of interest to compare T_{1S} is Eq. (14) with the relation for T_1 of protons in the tetrahedral NH_4^+ ion which reorients about the four three-fold axes and three twofold axes.^{21,22} The dipolar interaction between protons is changed at the rates k_2 and k_3 by the reorientation of the NH_4^+ ion with respect to the twofold and threefold axes, respectively, and causes the spin-lattice relaxation. Punkkinen²¹ derived the following relation for T_1 of the protons:

$$T_{1}^{-1} = \frac{9}{8} \hbar^{-2} \gamma^{4} r^{-6} \{ ff_{L}(\omega_{0}, 1/12k_{3}) + (1-2f)f_{L}[\omega_{0}, 1/(8k_{3}+4k_{2})] + (1-f)f_{L}(2\omega_{0}, 1/12k_{3}) + 2(1+f)f_{L}[2\omega_{0}, 1/(8k_{3}+4k_{2})] \},$$
(16)

where $\omega_0 = \gamma H_0$ is the Larmor frequency of the proton spin and $r(\cong 1.65 \text{ Å})$ the distance between protons. Equation (16) predicts that, when $k_2 \gg k_3$, the temperature dependence of T_1 shows two minimum values, while only a single minimum appears in the temperature dependence of T_{1S} in Eq. (14). It will be convenient to modify Eq. (16) to a simpler form here. When $k_3 = k_2$ and f is averaged over the space sphere, Eq. (16) yields

$$(T_1)_{\rm HH}^{-1} = \frac{9}{10} \hbar^2 \gamma^4 r^{-6} [f_L(\omega_0, \tau_{\rm H}) + 4f_L(2\omega_0, \tau_{\rm H})] , \qquad (17)$$

$$\tau_{\rm H} = 1/12k_3 = \tau_{\rm H_{\infty}} \exp(E/RT)$$
, (18)

where $\tau_{\rm H}$ is the correlation time, $\tau_{\rm H\infty}$ is the preexponential factor and *E* is the activation energy for the reorientation of NH₄⁺ ion. Correspondingly, the expression of $(T_1\rho)_{\rm HH}$, the spin-lattice relaxation time of ¹H due to the reorientation of NH₄⁺ ion in the rotating frame, is given by¹⁵

$$(T_{1\rho})_{\rm HH}^{-1} = \frac{9}{10} \hbar^2 \gamma^4 r^{-6} \left[\frac{3}{2} f_L(2\omega_1, \tau_{\rm H}) + \frac{5}{2} f_L(\omega_0, \tau_{\rm H}) + f_L(2\omega_0, \tau_{\rm H})\right],$$
(19)

where $\omega_1 = \gamma \mathbf{H}_1$ is the Larmor frequency of ¹H in the rotating frame.

Next we consider the effect of the reorientation of the ClO₄ ion on $T_{1\rho}$ of ¹H and ²⁰⁵Tl. The reorientation of the ClO₄ ion affects $T_{1\rho}$ in two different ways; interaction A: the dipole-dipole interaction between the ¹H(²⁰⁵Tl) and ¹⁷O spins modulated by the reorientation of the ClO₄ ion, and interaction B: cross relaxation between the ¹H(²⁰⁵Tl) and ¹⁷O spins. An expression for $T_{1\rho}^{RE}$ due to the former effect and its detailed derivation have already been shown to be¹⁵

$$(T_{1\rho}^{\text{RE}})^{-1} = 0.000\,37\sum_{i}^{n} N(T_{1\rho}^{\text{RE}})_{i}^{-1} = A_{1}f_{L}(\omega_{1},\tau_{a}),$$
 (20)

6611

where 0.000 37 is the ratio of the natural abundance of ¹⁷O, N (=4) is the number of oxygen atoms in the ClO₄ ion when the natural abundance of ¹⁷O is assumed to be 100%, *i* represents the *i*th ClO₄ ion in the neighborhood of ¹H(²⁰⁵Tl), N($T_{1\rho}^{\text{RE}}$)_{*i*}⁻¹ is the relaxation rate due to the reorientation of the *i*th ClO₄ ion, and $\omega_1 = \gamma_1 H_1$ the Larmor frequency of the ¹H(²⁰⁵Tl) spin in the rotating frame. We have

$$(T_{1\rho}^{\rm RE})_i^{-1} = (\frac{19}{4}\pi) \longrightarrow \frac{14}{9}\pi \hbar^2 \gamma_I^2 \gamma_S^2 \overline{r}_i^{-6} f_L(\omega_1, \tau_a) , \qquad (21)$$

where γ_I is the gyromagnetic ratio of the ¹H(²⁰⁵Tl) spin and \overline{r}_i the average length between the ¹H(²⁰⁵Tl) and oxygen atoms in the *i*th ClO₄ ion.

The mechanism of the cross relaxation, which is dominant in weak magnetic fields, was first observed in cesium halides by Bloembergen and Sorokin.²³ When T_{1S} of the ¹⁷O spin (S spin) is much shorter than T_1 of the ¹H(²⁰⁵Tl) spin (I spin), it is reasonable to consider the S spin as a part of the lattice, so that the I spins are subjected to the random time-dependent perturbation with correlation frequency equal to T_{1S}^{-1} . Assuming that the natural abundance of the ¹⁷O spin is 100%, the ¹H(²⁰⁵Tl) spin in the neighborhood of the *i*th ¹⁷O spin has the following relaxation rate:

$$(T_{1\rho}^{CR})_i^{-1} = C_i f_L(\omega_1, T_{1S}) , \qquad (22)$$

$$C_{i} = \frac{1}{3} \hbar^{2} \gamma_{I}^{2} \gamma_{S}^{2} S(S+1) \langle (1-3\cos^{2}\theta_{i})^{2} \rangle_{av} r_{i}^{-6} , \qquad (23)$$

where r_i is the distance between I and S spins, θ_i is the angle between the magnetic field H_0 and a vector joining I and S spins and $\langle \rangle_{av}$ represents the powder average. We have

$$\langle (1-3\cos^2\theta_i)^2 \rangle_{\rm av} = \frac{4}{5}$$
.

Since the natural abundance of ¹⁷O is 0.037%, the effective relaxation rate $(T_{1\rho}^{CR})^{-1}$ of ¹H(²⁰⁵Tl) in the crystal is given by

$$(T_{1\rho}^{CR})^{-1} = 0.00037 \sum_{i}^{n} (T_{1\rho}^{CR})_{i}^{-1} = A_{2} f_{L}(\omega_{1}, T_{1S}).$$
 (24)

According to Eq. (15), T_{1S} has a minimum value $(T_{1S})_{\min}$ for $\omega_S \tau_a \cong 1$. If $(T_{1S})_{\min} < \omega_1^{-1}$, $T_{1\rho}^{CR}$ in Eq. (24) has two minimum values on the high- and low-temperature sides of the position of $(T_{1S})_{\min}$, where the relation $\omega_1 T_{1S} = 1$ is satisfied.

The total relaxation rate $(T_{1\rho})_t^{-1}$ of ¹H(²⁰⁵Tl) due to the interactions between the ¹H(²⁰⁵Tl) and ¹⁷O spins is given by

$$(T_{1\rho})_{t}^{-1} = (T_{1\rho}^{\text{RE}})^{-1} + (T_{1\rho}^{\text{CR}})^{-1}$$
$$= A_{1}f_{L}(\omega_{1}, \tau_{a}) + A_{2}f_{L}(\omega_{1}, T_{1S}) .$$
(25)

The temperature dependence of $(T_{1\rho})_l$ for ¹H in Eq. (25) and that of T_{1S} in Eq. (15) were calculated as function of H_1 and $\omega_I = \gamma_I H_0$ for the following three examples: (a) $H_1 = 2.1$ G, $\omega_I / 2\pi = 16$ MHz, (b) $H_1 = 4.2$ G, and $\omega_I / 2\pi = 16$ MHz, and (c) $H_1 = 2.1$ G and $\omega_I / 2\pi = 48$ MHz. Other parameters were chosen as, assuming $\tau_3 \ll \tau_2$ in Eq. (12a), $E_3 = 10.0$ kcal/mol, $\tau_{3\infty} = 4.0$ $\times 10^{-13}$ s, $e^2 qQ/h = 12$ MHz in Eq. (15) and

 $A_1 = A_2 = 1.0 \times 10^5 \text{ s}^{-2}$ in Eq. (25). The results are summarized in Fig. 3. Essentially three minima of $(T_{1\rho})_t$ appear; minimum 1' due to interaction A and minima 2' and 3' due to interaction *B* as shown in Fig. 3. In example (a) the positions of the minimum of $T_{1\rho}^{\text{RE}}$ in Eq. (17) and $T_{1\rho}^{\text{CR}}$ in Eq. (24) lie in close proximity, at 288 K ($10^3/T=3.50$) and 303 K $(10^3/T=3.30)$, respectively, and only one minimum 21 of $(T_{1\rho})_t$ appears at about 294 K $(10^3/T=3.40)$ for $H_1=2.1$ G. While in example (c), one minimum of $(T_{1\rho})_t$ at about 294 K in example (a) is separated into two minima; minimum 1' at about 288 K $(10^3/T=3.50)$ due to interaction A and minimum 2' at 357 K $(10^3/T=2.80)$ due to interaction B. Then, we may distinguish the minimum due to interaction A from that due to B by the measurement of $T_{1\rho}$ with different ω_I and the same values of H_1 . Two minima 3 and 3' of $T_{1\rho}$ due to interaction B appear at the same temperature 714 K $(10^3/T=1.4)$ for $H_1=2.1$ G and $\omega_I/2\pi=16$ and 48 MHz.

It is necessary to refer to the role of ³⁵Cl and ³⁷Cl spins on $T_{1\rho}$ of ¹H(²⁰⁵Tl). The reorientation of the ClO₄ ion about the threefold and twofold axes does not change the EFG tensor at the site of Cl atoms and therefore does not contribute to the spin-lattice relaxation time T_{1Cl} of Cl spins. It is reported that the lattice vibration affects T_{1Cl} in ionic crystals.²⁴ We tried to measure T_{1Cl} of ³⁵Cl spins, but could not find any signal of ³⁵Cl spins, probably because of a small lattice strain. Since we consider that the

FIG. 3. Temperature dependences of T_{1S} and $(T_{1\rho})_t$ of ¹H which are calculated by using Eqs. (15) and (25), respectively. (a) The solid line and dashed line represent T_{1S} of ¹⁷O for $H_0=3760$ ($\omega_I/2\pi=16$ MHz) and 11280 G (48 MHz), respectively. (b) The thick solid line and thin solid line represent $(T_{1\rho})_t$ for $H_1=2.1$ and 4.2 G at 16 MHz, respectively, and the dashed line $(T_{1\rho})_t$ for $H_1=2.1$ G at 48 MHz.

ClO₄ ion is a nearly perfect tetrahedron, $e^2 q Q / h$ for Cl nuclei at the center of the tetrahedron would be small, and T_{1Cl} in NH₄ClO₄ and TlClO₄ might be comparable with that in NaCl (5.2 s at 298 K^{24}).

We may evaluate the relaxation time $(T_{1\rho})_{\text{H-Cl}}^{-1}$ of ¹H spin due to the interaction between ¹H and Cl spins. $(T_{1\rho})_{\text{H-Cl}}^{-1}$ consists of two contributions, one $(T_{1\rho}^{\text{RE}})_{i-\text{Cl}}^{-1}$ due

 $(T_{1\rho})_{\text{H-Cl}}^{-1} = \sum_{i=1}^{n} \{ (T_{1\rho}^{\text{RE}})_{i-\text{Cl}}^{-1} + (T_{1\rho}^{\text{CR}})_{i-\text{Cl}}^{-1} \},$

to the modulation of the dipolar interaction between ¹H and Cl spins in the *i*th neighboring ClO₄ ion by the reorientation of NH_4^+ ion, and the other $(T_{1\rho}^{CR})_{i-Cl}^{-1}$ due to the cross relaxation between the ¹H and Cl spins. Assuming that the abundance of ³⁵Cl spins is 100% for simplicity, we have the following relations for $(T_{1\rho})_{\text{H-Cl}}$, $(T_{1\rho}^{\text{RE}})_{i-\text{Cl}}$, ¹⁵ and $(T_{1\rho}^{\text{CR}})_{i-\text{Cl}}$, respectively:

$$(T_{1\rho}^{\text{RE}})_{i-\text{Cl}}^{-1} = \hbar^{2} \gamma_{I}^{2} \gamma_{S'}^{2} \overline{r}_{i}^{\prime-6} \pi \left[\frac{14}{9} f_{L}(\omega_{1},\tau_{H}) + \frac{7}{3} f_{L}(\omega_{I},\tau_{H}) + \frac{7}{3} f_{L}(\omega_{I},\tau_{H}) + \frac{7}{3} f_{L}(\omega_{I},\omega_{S'},\tau_{H}) + \frac{7}{3} f_{L}(\omega_{I}-\omega_{S'},\tau_{H}) + \frac{7}$$

$$\Gamma_{1\rho}^{\rm CR}{}_{i\text{-}\rm Cl}^{-1} = \frac{1}{3} \frac{\pi^2 \gamma_I^2 \gamma_S^2 S'(S'+1) \langle (1-3\cos^2\theta_i')^2 \rangle_{\rm av} \overline{r}_i'^{-6} f_L(\omega_1, T_{1\rm Cl}) , \qquad (28)$$

where n is the number of ClO_4 ions in the neighborhood of the NH₄⁺ ion, $\omega_I = \gamma_I H_0$ and $\omega_{S'} = \gamma_{S'} H_0$ are the Larmor frequencies of ¹H and ³⁵Cl spin in the laboratory frame, respectively, \overline{r}'_i is the average distance between ¹H and ³⁵Cl in the neighborhood of NH_4^+ ion, τ_H is given by Eq. (18), $S'(\frac{3}{2})$ is the spin of ³⁵Cl, and θ'_i is the angle between the magnetic field H_0 and a vector joining I spin and S' spin in the *i*th ClO_4 ion. Neglecting the effect of the quantum tunneling of NH_4^+ ion, 25-27 we may evaluate the value τ_H in Eq. (27) by using a relation obtained by Ikeda *et al.*²⁸ $(T_1)_{\rm HH}^{-1} = 1.11 \times 10^{-11} \tau_{\rm H}$ for $\omega_0 \tau_{\rm H} \ll 1$. Since it is expected that $(T_1)_{\rm HH} = 60$ s at 225 K $(10^3/T = 4.0)$,²⁸ we have $\tau_{\rm H} = 1.5 \times 10^{-13}$ s at this temperature. Assuming that, ¹H atom is at the site of nitrogen, we adopt $\overline{r}'_i = 4.5$ Å in NH₄ClO₄. By using these values $\tau_{\rm H}$, \bar{r}'_i , n = 7, $H_1 = 2.1$ G, $\langle (1 - 3\cos^2\theta'_i)^2 \rangle_{\rm av} = \frac{4}{5}$, and $T_{1Cl} = 5.2$ s, we have $(T_{1\rho})_{H-Cl} = 3.24 \times 10^3$ s in Eq. (26). We will find in Sec. IV A that the contribution of $(T_{1\rho})_{\text{H-Cl}}^{-1}$ in Eq. (26) to the observed value of $(T_{1\rho})^{-1}$ is negligible compared with $(T_{1\rho})_t^{-1}$ in Eq. (25). In the case of TlClO₄, $(T_{1\rho})_{\text{Tl-Cl}}^{-1}$, the relaxation rate of ²⁰⁵/₂₀₅

²⁰⁵Tl spins due to the interaction between ²⁰⁵Tl and Cl spins, is caused only by the cross relaxation since the lattice constants in TlClO₄ are very similar to those in NH_4ClO_4 , we adopt $\overline{r}'_i = 4.5$ Å as the average distance between ²⁰⁵Tl and Cl spins. By using the same values for *n*, \overline{r}'_i , H_1 , $\langle (1-3\cos^2\theta'_i)^2 \rangle_{av}$, and T_{1Cl} as those in NH₄ClO₄, we have $(T_{1\rho})_{Tl-Cl} = 3.57 \times 10^3$ s. Thus, we find the contribution of Cl spins to $T_{1\rho}$ of ²⁰⁵Tl is also negligible compared with that of ¹⁷O spins as shown in Sec. IVB.

III. EXPERIMENTAL PROCEDURE

The relaxation times T_1 and $T_{1\rho}$ were measured using a home-made NMR spectrometer. T_1 was measured with a $\pi/2 \tau_0 - \pi/2 \tau_0 - \pi/2$ pulse sequence in order to saturate the magnetization of the ${}^{1}H({}^{205}Tl)$ spins completely just after the second $\pi/2$ pulse, where τ_0 was chosen to be 300 μ s-1 ms. The usual spin-locking method²⁹ was used in the measurement of $T_{1\rho}$. The locking time reached

about 20 s at maximum. Then, in order to reduce the heating of the samples by the rf field, the strength of the rf field H_1 was set at low values within the condition $H_1 > H_L$, where H_L is the local dipolar field at the ¹H(²⁰⁵Tl) spins. The reduction of the value H_1 during the locking time was less than about 5%. A distortion of the FID signal which prevents accurate measurement was observed after a long-locking rf pulse. This distortion is probably due to the heating up of the phase sensitive detector by the prolonged exposure to high rf level. So, in order to cut off the rf field, a gate circuit constructed by using a double balanced mixer was inserted between the rf receiver and the phase sensitive detector, and no distorted FID signal was observed.

The samples of NH4ClO4 (guaranteed grade, assay minimum 96.0%) and TlClO₄ (guaranteed grade, assay minimum 99%) were taken from Kanto Chemical Corp., and Mitsuwa Chemical Medicine Corp., respectively. Purification of both samples was done once by solidification from aqueous solutions. The samples were pumped for 24 h and sealed in Pyrex ampoules under helium exchange gas. The sealed ampoule of NH₄ClO₄ exploded above the phase-transition temperature $T_C = 512$ K, which is probably caused by ammonia gas from NH_4ClO_4 decomposing partially above T_c .³¹ The measurement in NH_4ClO_4 above T_c was then done with an unsealed ampoule.

The temperature of the samples was varied below room temperature by boiling off liquid nitrogen in the storage dewar and passing the cold nitrogen gas over the samples. For the measurements above room temperature, preheated air was passed over the samples. The temperature of the samples was measured by copper-constantan thermocouple calibrated by using the NQR frequency of ³⁵Cl and KClO₃.³¹ The thermocouple was contacted with the rf coil containing the samples.

In order to avoid the heating of samples by the rf field, it will be useful to measure T_{1D} , the spin-lattice relaxation time of the dipolar energy of ¹H(²⁰⁵Tl) spins, by using the technique of adiabatic demagnetization²⁹ or $\pi/2-\tau_0-\pi/4 \tau$ - π 4 pulse sequence developed by Jeener and Broekaert.³² But the quantitative analysis of T_{1D} data is much more complicated³³⁻³⁵ than that of $T_{1\rho}$. In order to estimate the increase in temperature of samples by exposure to the rf field, we buried the point of contact of the thermocouple into another sample of NH₄ClO₄. The increase of temperature due to the rf field, H_1 =4.2 and 2.1 G, was about 1.3 and 0.33 K, respectively, for a locking time of 20 s at room temperature. Since the measurement of $T_{1\rho}$ was done with an interval of about 9 K, and the locking time is less than about 20 s, the increase of temperature due to the rf field may be negligible for H_1 =2.1 and also 4.2 G.

IV. EXPERIMENTAL RESULTS AND THEIR INTERPRETATIONS

NH₄ClO₄ and TlClO₄ belong to the group MClO₄ ($M = Na, NH_4K, Rb, Cs, Ag, Tl$). This group of compounds transforms from their orthorhombic low-temperature phase to a cubic high-temperature one at temperatures of 400–600 K.^{36,37} NH₄ClO₄ is known to have an extremely low barrier for the rotation of the NH₄⁺ ion, and the reorientation and quantum tunneling of the NH₄⁺ ion have been investigated by a series of x-ray,³⁸ heat-capacity,³⁹ neutron scattering⁴⁰⁻⁴³ and NMR²⁵⁻²⁷ studies. Metz and Hinton⁴⁴ measured the chemical shift of ²⁰⁵Tl spins in TlClO₄. Both NH₄ClO₄ and TlClO₄ exist in an orthorhombic form, space group $D_{2h}^{41,44}$ below the phase transition temperatures T_c .

A. T_1 and $T_{1\rho}$ in ammonium perchlorate, NH₄ClO₄

The temperature dependence of T_1 at 16 and 30 MHz and $T_{1\rho}$ for $H_1=4.2$ and 2.1 G in NH₄ClO₄ are shown in Fig. 4. The values of T_1 at 30 MHz agree with those at 16 MHz below $T_c=512$ K (10³/T=1.95), and T_1 increases with increasing temperature above 125 K (10³/T=8.0). The values of T_1 are determined by the random modulation of the dipole-dipole interaction be-

FIG. 4. Temperature dependence of T_1 and $T_{1\rho}$ of ¹H in NH₄ClO₄. • represents the data points of T_1 at 16 and 30 MHz; • and \odot represent $T_{1\rho}$ for $H_1 = 2.1$ and 4.2 G, respectively, at 16 MHz. \Box represents $T_{1\rho}$ for $H_1 = 2.1$ G and 30 MHz.

tween protons by the reorientation of the NH₄⁺ ion, the activation energy of which is extremely low (700 cal/mol). T_1 decreases with increasing temperature above 250 K (10³/T=4.0), where Ikeda and McDowell²⁸ proposed spin-rotational relaxation of ¹H. T_1 does not change abruptly at T_c .

As shown in Fig. 4, $T_{1\rho}$ decreases sharply with increasing temperature above T_c , probably due to the translational diffusion of the NH₄⁺ ion. The activation energy E_d of this diffusion is 28.1 kcal/mol.

With increasing temperature above 192 K $(10^3/T=5.2)$, $T_{1\rho}$ at 16 MHz decreases and has a minimum (designated by 21), whose value is 0.94 s at 238 K $(10^3/T = 4.20)$ for $H_1 = 2.1$ G, and 1.9 s at 250 K $(10^3/T=4.0)$ for $H_1=4.2$ G. In this case the position of the T_1 minimum shifts to the high-temperature side as H_1 increases. T_1 increases with increasing temperature above 263 K $(10^3/T=3.8)$ and has a maximum at about 333 K $(10^3/T=3.0)$. In the temperature range between 278 K ($10^3/T = 3.6$) and 385 K ($10^3/T = 2.6$), the values of $T_{1\rho}$ were independent of H_1 . $T_{1\rho}$ has a further minimum (designated by 3) with the value of 1.5 s at about 465 $(10^3/T=2.15)$ for $H_1=2.1$ G and 3.0 s at 435 K $(10^3/T=2.3)$ for $H_1=4.2$ G. Note that the additional T_{10} minimum for $H_1 = 4.2$ G appears at a lower temperature than that for $H_1 = 2.1$ G. Thus the temperature dependence of $T_{1\rho}$ at 16 MHz shows two kinds of mini-ma. When NH_4^+ ion reorients about four threefold and three twofold axes, $(T_{1\rho})_{HH}$ of ¹H in Eq. (19) has a minimum value of about 10 μ s for $H_1 = 2.1$ G.¹⁵ Then, the value of minimum 3 at 465 K is about 2×10^5 times longer than that of the minimum of $(T_{1\rho})_{HH}$.

The temperature dependence of $T_{1\rho}$ was also measured for $H_1 = 2.1$ G at 30 MHz. In contrast to the results at 16 MHz, there appear three minima in the temperature dependence of $T_{1\rho}$; minimum 1' with a value of 1.5 s at about 233 K ($10^3/T = 4.30$), minimum 2' with 1.45 s at 263 K ($10^3/T = 3.80$) and minimum 3' with 1.5 s at 465 K ($10^3/T = 2.15$). Above 417 K ($10^3/T = 2.4$), the values of $T_{1\rho}$ at 30 MHz agreed with those at 16 MHz, and then the position and value of the minimum 3' at 30 MHz agree with those of minimum 3 at 16 MHz. Note that the values of minimum 2' and minimum 3' for $H_1 = 2.1$ G at 30 MHz are longer than that of minimum 21 for $H_1 = 2.1$ G at 16 MHz.

The origins of the $T_{1\rho}$ minima are attributable to the effect of the natural abundance of ¹⁷O which affects $T_{1\rho}$ of ¹H through two different interactions A and B as shown in Sec. II; interaction A is the dipole-dipole interaction between the ¹H and ¹⁷O spins modulated by the reorientation of ClO₄ ions, and interaction B is the cross relaxation between the ¹H and ¹⁷O spins. We may explain these $T_{1\rho}$ minima by using Eqs. (15), (20), and (24). Minimum 21 at 238 K ($10^3/T = 4.20$) for $H_1 = 2.1$ G and the minimum at 250 K ($10^3/T = 4.0$) for $H_1 = 4.2$ G at 16 MHz ($H_0 = 3758$ G) are attributed to interactions A and B, respectively. The positions of the minima of $T_{1\rho}^{RE}$ in Eq. (20) and $T_{1\rho}^{CR}$ in Eq. (24) lie in close proximity so that only one minimum is observed. The minimum due to $T_{1\rho}^{RE}$ appears with the condition $\omega_1\tau_a = 1$, while that due to $T_{1\rho}^{CR}$ with $\omega_1T_{1S} = 1$ and $\omega_S \tau_a \gg 1$, where τ_a and T_{1S}

are given by Eqs. (12a) and (15), respectively. The minimum 3 at 465 K ($10^3/T=2.15$) for $H_1=2.1$ G and the $T_{1\rho}$ minimum at 435 K ($10^3/T=2.3$) for $H_1=4.2$ G at 16 MHz are due to interaction *B*. Minimum 3 appears when the conditions $\omega_1 T_{1S}=1$ and $\omega_S \tau_a \ll 1$ are satisfied.

We may evaluate the minimum values of $T_{1\rho}^{\text{RE}}$ in Eq. (20) and $T_{1\rho}^{\text{CR}}$ in Eq. (24) in NH₄ClO₄. The crystal structure of NH₄ClO₄, which is reproduced from the figure by Smith and Levy,⁴⁰ is shown in Fig. 5. According to Choi *et al.*,⁴¹ an NH₄⁺ ion is surrounded by seven ClO₄ ions [n = 7 in Eq. (20)] with short N-O distances ranging from 2.9 to 3.25 Å. Then we adopt $\overline{r} + 1.45$ Å as the distance N-Cl, where $\overline{r} = \frac{1}{2}(2.9 + 3.25)$ Å and 1.45 Å is the Cl-O distance. The average length \overline{r}_i in Eq. (21) is calculated assuming that ¹H and ¹⁷O are distributed on spherical surfaces of radii 1.05 Å (¹H-N distance) and 1.45 Å (Cl-O distance), respectively. We obtain $\overline{r}_i = 4.72$ Å. The minimum value of $T_{1\rho}^{\text{RE}}$ calculated from Eq. (20) is 1.79 s for $H_1 = 2.1$ G, which is in good agreement with the observed value 0.94 s of minimum 21 at 238 K ($10^3/T = 4.20$). Since minimum 21 consists of the two minima due to $T_{1\rho}^{\text{RE}}$ and $T_{1\rho}^{\text{CR}}$, the observed minimum of $T_{1\rho}$ might be taken to be $0.94 \times 2 = 1.88$ s, which is in better agreement with the calculated one.

According to Choi *et al.*⁴¹ and NH₄⁺ ion is surrounded by ten oxygen atoms at distances ranging from 2.9 to 3.25 Å. Then we take n = 10 in Eq. (24). Assuming that ¹H is at the site of ¹⁴N, we have the minimum value of 1.06 s for $H_1 = 2.1$ G in Eq. (24). This value is in good agreement with that of minimum 21 of 0.94 s observed at 238 K (10³/T=4.2) and that of minimum 3 of 1.5 s at 465 K (10³/T=2.3).

The measurement of $T_{1\rho}$ for $H_1=2.1$ G at 30 MHz $(H_0=7046 \text{ G})$ confirms the above statements. As shown in Fig. 4, minimum 21 for $H_1=2.1$ G at 30 MHz is split into two minima; minimum 1' 233 K $(10^3/T=4.3)$ and minimum 2' at 263 K $(10^3/T=3.8)$. Minimum 1' may be attributable to interaction A because this minimum appears (at 233 K) almost at the same temperature as minimum 21 (at 238 K). This explanation is consistent with the prediction of Eq. (20); the position of the minimum value of $T_{1\rho}^{\text{RE}}$ in Eq. (20) is independent of $\omega_I = \gamma_I H_0$. While minimum 2', whose position shifts to the high-temperature side of minimum 21, is due to interaction B and is explained by Eqs. (15) and (24) with $\omega_1 T_{1S}=1$ and $\omega_S \tau_a \gg 1$. The value of T_{1S} for $\omega_S \tau_a \gg 1$ is proportional to H_0^2 . Then the position that satisfies the condition $\omega_1 T_{1S}=1$ shifts to higher temperature as the

FIG. 5. The crystal structure of NH_4ClO_4 . This figure is reproduced from that by Smith and Levy (Ref. 40). The largest sphere shows the rotating NH_4^+ ion, the next largest, the oxygen atom and the smallest, the chlorine atom.

value $\omega_I = \gamma_I H_0$ increases, which is consistent with the observed position of the minimum 21 at 238 K $(10^3/T = 4.2)$ at 16 MHz and that of minimum 2' at 263 K $(10^3/T = 3.80)$ at 30 MHz. The position 465 K $(10^3/T = 2.3)$ and the value 1.5 s of the minimum 3' for $H_1 = 2.1$ G at 30 MHz agree with those (465 K, 1.5 s) of minimum 3 for $H_1 = 2.1$ G at 16 MHz. This confirms the explanation that minimum 3 at 16 MHz is due to interaction B and appears under the condition $\omega_1 T_{1S} = 1$ and $\omega_S \tau_a \ll 1$; T_{1S} is independent of $\omega_I = \gamma_I H_0$. We may determine the relaxation time T_{1S} of ¹⁷O spins

We may determine the relaxation time T_{1S} of ¹⁷O spins from T_1 and $T_{1\rho}$ data. Ikeda and McDowell²⁸ suggested that the observed value $(T_1)_{ob}$ of ¹H in NH₄ClO₄ below $T_c = 512$ K can be expressed as

$$(T_1)_{\rm ob}^{-1} = (T_1)_{\rm HH}^{-1} + (T_1)_{\rm SR}^{-1}$$
, (29)

where $(T_1)_{\rm HH}$ is given by Eq. (17) and $(T_1)_{\rm SR}$ is the relaxation time due to the spin-rotational interaction⁴⁵ of NH₄⁺ ion. We assume that the observed value $(T_{1\rho})_{\rm ob}$ of ¹H below T_c is given by

$$(T_{1\rho})_{\rm ob}^{-1} = (T_{1\rho})_t^{-1} + (T_{1\rho})_{\rm HH}^{-1} + (T_{1\rho})_{\rm SR}^{-1} , \qquad (30)$$

where $(T_{1\rho})_t$ and $(T_{1\rho})_{HH}$ are given by Eqs. (25) and (19), respectively. $(T_{1\rho})_{SR}$ is the spin-lattice relaxation time in the rotating frame due to the spin-rotational interaction of NH₄⁺ ion and may be derived in the same manner as $(T_2)_{SR}$ in Eq. (4.16) in Ref. (45):

$$(T_{1\rho})_{\rm SR}^{-1} = (I_M kT / 9\hbar^2) [2(C_\perp + C_{||})^2 f_L(\omega_1, \tau_1) + 2(C_\perp - C_{||})^2 f_L(\omega_1, \tau_1) + 2(C_\perp + C_{||})^2 f_L(\omega_0, \tau_{12}) + 2(C_\perp - C_{||})^2 f_L(\omega_0, \tau_{12})],$$
(31)

where I_M is the moment of inertia of NH₄⁺ ion, C_1 and $C_{||}$ are the principal components of the spin-rotational tensor, τ_1 is the correlation time relating to the angular velocity and τ_{12} is that relating to the angular velocity and the reorientation of NH₄⁺ ion. Note that Eq. (31) has the

same form as $(T_2)_{SR}^{-1} = J_1(0) + J_1(\omega_0)$ in Eq. (4.16) in Ref. (45) when $J_1(0)$ is replaced by $J_1(\omega_1)$. When $\omega_0 \tau_H \ll 1$, we have $(T_{1\rho})_{HH} = (T_1)_{HH}$ in Eqs. (19) and (17). Since $\tau_1 \tau_H = I_M / 6kT$,⁴⁵ the conditions $\omega_0 \tau_1 \ll 1$ and $\omega_0 \tau_{12} \ll 1$ are satisfied in Eq. (31) in the temperature that concerns

FIG. 6. The temperature dependence of T_{1S} of ¹⁷O spins in NH₄ClO₄. \odot represents T_{1S} for $H_0=7046$ G and \bullet that for 3758 G. Above 417 K (10³/T=2.4) \odot agrees with \bullet .

us here. Then we also have $(T_{1\rho})_{SR} = (T_1)_{SR}$. The explicit form of $(T_1)_{SR}$ is given by Eq. (4.10) in Ref. (45). From the above considerations and Eqs. (29) and (30), we may write

$$(T_{1\rho})_{\rm ob}^{-1} = (T_{1\rho})_t^{-1} + (T_1)_{\rm ob}^{-1} .$$
(32)

Subtracting the contribution of $(T_1)_{ob}^{-1}$ from $(T_{1\rho})_{ob}^{-1}$, we have $(T_{1\rho})_t$. In order to determine $T_{1\rho}^{CR}$, we must further subtract the contribution of $(T_{1\rho}^{RE})^{-1}$ from $(T_{1\rho})_t$. This procedure was done as follows in the case of $T_{1\rho}^{CR}$ for $H_1=2.1$ G at 16 MHz. Assuming that $\tau_3 \ll \tau_2$ in Eq. (12a), we obtained the parameters E_3 , $\tau_{3\infty}$, e^2qQ/h , A_1 , and A_2 (assuming $A_1=A_2$) by using Powell's nonlinear least-squares method with the data for $(T_{1\rho})_t$ between $10^3/T=3.6$ (278 K) and $10^3/T=5.40$ (185 K) and Eq. (25). We obtain $E_3=8.67$ kcal/mol, $\tau_{3\infty}=6.77\times10^{-14}$ s and $A_1=7.46\times10^4$ s⁻² with $\chi^2=7.6\times10^{-3}$. Then we have numerical values of $T_{1\rho}^{RE}$ above 278 K with these parameters. Thus the values of $T_{1\rho}^{CR}$ were determined by subtracting the contribution $(T_{1\rho}^{RE})^{-1}$ from $(T_{1\rho})_t^{-1}$. Of course there exists the possibility that the values E_3 and $\tau_{3\infty}$ which are determined between 278 and 185 K may be different above 278 K. But we could not find another appropriate method to subtract the contribution $(T_{1\rho}^{RE})^{-1}$

FIG. 7. The temperature dependence of T_1 and $T_{1\rho}$ of ²⁰⁵Tl in TlClO₄. • represents the data points of T_1 at 16 and 30 MHz; • and \odot represent $T_{1\rho}$ for $H_1=2.1$ and 4.2 G, respectively, at 16 MHz. \Box represents $T_{1\rho}$ for $H_1=2.1$ G at 30 MHz.

from $(T_{1\rho})_t^{-1}$. The values of T_{1S} of ¹⁷O were obtained from the $T_{1\rho}^{CR}$ values by using Eq. (24) and are summarized in Fig. 6. The values of T_{1S} for $H_1 = 2.1$ G at 30 MHz were also determined in the same manner as that at 16 MHz. The results are plotted in Fig. 6. As shown in the figure, the field and temperature dependences of T_{1S} may be well explained by using Eq. (15); the ratio of the determined minimum values for $H_0 = 7046$ and 3758 G is about 2.9 which is in good agreement with the predicted value 1.9 s by Eq. (15). Below the positions of the minima of T_{1S} , the ratio of T_{1S} for $H_0 = 7046$ and 3758 G is about 3.33 at 286 K ($10^3/T = 3.5$), which is also in good agreement with 3.52 predicted by Eq. (15). The parameters E_3 , $\tau_{3\infty}$, and e^2qQ/h are determined by using Powell's method with the values of T_{1S} between $10^3/T = 2.4$ (417 K) and $10^3/T = 4.0$ (250 K) and Eq. (15). The results are summarized in Table I with the χ^2 values.

B. T_1 and $T_{1\rho}$ in thallium perchlorate, TlClO₄

The temperature dependences of T_1 at 16 and 30 MHz and $T_{1\rho}$ for $H_1=2.1$ and 4.2 G of ²⁰⁵Tl in TlClO₄ are shown in Fig. 7. With increasing temperature, the values

TABLE I. The collected parameters of the activation energy E_3 , preexponential factor $\tau_{3\infty}$ and quadrupole coupling constant $e^2 qQ/h$ in NH₄ClO₄ and TlClO₄.

	<i>H</i> ₀ (G)	e ² qQ/h (MHz)	E ₃ (Kcal/mol)	$ au_{3\infty}$ ($ imes 10^{-14}$ s)	χ ²
NH4ClO4	3 758	12.0	9.49	2.55	0.05
	7 046	9.54	9.20	2.70	0.01
TICIO ₄	6512	10.3	8.19	6.09	0.01
	12210	8.79	7.50	17.9	0.03

of T_1 at 16 MHz decrease gradually in the orthorhombic phase and rather sharply in the cubic phase (above $T_c = 505$ K). T_1 at 30 MHz agreed with that at 16 MHz below T_C . $T_{1\rho}$ for ¹⁰⁵Tl decreases sharply with increasing temperature above T_c , being probably due to the translational diffusion of thallium atoms. The activation energy E_d is estimated as 39.7 kcal/mol, which is much larger than 28.1 kcal/mol for the NH₄⁺ ion in NH₄ClO₄.

With increasing temperature above 172 K $(10^3/T=5.8)$, $T_{1\rho}$ for ²⁰⁵Tl at 16 MHz ($H_0=6512$ G) decreases and has double minima; minimum 1 with the value of 0.9 s at about 215 K $(10^3/T = 4.65)$ and minimum 2, with 0.85 s at 215 K $(10^3/T=4.65)$ for $H_1 = 2.1$ G. The temperature dependence of $T_{1\rho}$ for $H_1 = 4.2$ G at 16 MHz also shows double minima of 1.7 s at about 225 K $(10^3/T = 4.45)$ and 1.7 s at 244 K $(10^3/T=4.1)$, though these minima are not well resolved. The values of $T_{1\rho}$ for $H_1 = 2.1$ and 4.2 G at 16 MHz agree with each other in the temperature range between 270 K ($10^3/T = 3.7$) and 307 K ($10^3/T = 2.7$). With increasing the temperature above 307 K, $T_{1\rho}$ shows minimum 3 with the value of 0.9 s at about 488 K $(10^3/T=2.05)$ for $H_1=2.1$ G and 1.8 s at 444 K $(10^3/T=2.25)$ for $H_1=4.2$ G. After all there exist three minima of $T_{1\rho}$ for $H_1 = 2.1$ G at 16 MHz in TlClO₄. This is different from the case of NH₄ClO₄, where two minima of $T_{1\rho}$ for $H_1 = 2.1$ G at 16 MHz appear. The origins of the three minimum of $T_{1\rho}$ for ²⁰⁵Tl are also at-tributable to the ¹⁷O spins of natural abundance. The minimum 1 at 215 K ($10^3/T = 4.65$) is due to interaction A random modulation of dipolar interaction between the 205 Tl and 17 O spins and is explained by Eq. (20). Minimum 2 at 233 K $(10^3/T=4.3)$ and minimum 3 at 488 K $(10^3/T=2.03)$ are attributed to the interaction-*B* cross relaxation between the ²⁰⁵Tl and ¹⁷O spins and are explained by Eqs. (15) and (21). Minimum 2 appears with the conditions of $\omega_1 T_{1S} = 1$ and $\omega_S \tau_a >> 1$, and minimum $3 \omega_1 T_{1S} = 1$ and $\omega_S \tau_a \ll 1$.

It is possible to estimate the minimum values of $T_{1\rho}^{RE}$ in Eq. (20) and $T_{1\rho}^{CR}$ in Eq. (24) in TlClO₄. There are no available data on the precise positions of thallium atoms and ClO₄ ions in TlClO₄. But the lattice constants of TlClO₄ are very similar to those of NH₄ClO₄, and it might be permissible to use the values *n* In Eq. (20), \bar{r}_i in Eq. (23) and *n* in Eq. (24) in NH₄-ClO₄ for those in TlClO₄. The calculated minimum value of $T_{1\rho}^{Re}$ is 2.61 s for $H_1=2.1$ G, which is in good agreement with the observed value of 0.9 s minimum 1 at 215 K ($10^3/T=4.56$). We calculated the minimum value of 1.47 s for $T_{1\rho}^{CR}$ in Eq. (24) with $H_1=2.1$ G, which is also in good agreement with the value of 0.85 s of minimum 2 at 233 K ($10^3/T=4.3$) and that of minimum 3 of 0.9 s at 488 K ($10^3/T=2.03$).

The above explanations in TlClO₄ may be confirmed, as in the case of NH₄ClO₄, by the measurement of $T_{1\rho}$ for $H_1=2.1$ G at 30 MHz ($H_0=12\,210$ G). As is shown in Fig. 7, the values of ²⁰⁵Tl for $H_1=2.1$ G at 30 MHz agree with the experimental error with those at 16 MHz between 172 K ($10^3/T=5.8$) and 222 K ($10^3/T=4.5$); the positions and values of minimum 1 at 16 MHz and minimum 1' at 30 MHz agree with each other. This fact supports the explanation that minimum 1 (for $H_1=2.1$ G at 16 MHz) is due to interaction A; $T_{1\rho}^{\text{RE}}$ in Eq. (20) is independent of H_0 . As is shown in Fig. 7, the position of minimum 2' for $H_1=2.1$ G at 30 MHz appears at a higher temperature than that of minimum 2 for $H_1=2.1$ G at 16 MHz, this is consistent with the prediction of Eqs. (15) and (24) with $\omega_1 T_{1S}=1$ and $\omega_S \tau_a \gg 1$. The position 488 K ($10^3/T=2.05$) and the value 0.9 s of minimum 3' for $H_1=2.1$ G at 30 MHz agree with those of minimum 3 at 16 MHz, which is also consistent with the predictions of Eqs. (15) and (24) with $\omega_1 T_{1S}=1$ and $\omega_S \tau_a \ll 1$.

The observed value of $(T_{1\rho})_{ob}$ of ²⁰⁵Tl may be written by

$$(T_{1\rho})_{ob}^{-1} = (T_{1\rho})_t^{-1} + (T_{1\rho})_{T_1}^{-1}, \qquad (33)$$

where $(T_{1\rho})_t$ is given by Eq. (25). We could not clarify the origins of $(T_{1\rho})_{T1}$ in Eq. (30) and the observed value $(T_1)_{ob}$ of ²⁰⁵Tl. Below 150 K (10³/T=6.4), where the first term may be negligible, the values of $(T_{1\rho})_{ob}$ for $H_1 = 2.1$ G agreed with those of $(T_1)_{ob}$ [the T_1 and $T_{1\rho}$ data below 167 K $(10^3/T=6.0)$ are not shown in Fig. 7]. Therefore, it is natural to assume that $(T_{1\rho})_{Tl} = (T_1)_{ob}$ in Eq. (30). We have the same relation for $(T_{1\rho})_{ob}$ of ²⁰⁵Tl in TlClO₄ as that of Eq. (32). The values of T_{1S} in TlClO₄ were determined in the same manner as that in NH₄ClO₄. The results which are summarized in Fig. 8 show that the temperature and magnetic field dependences of T_{1S} are explained by using Eq. (15). The ratio of the minimum values of T_{1S} for $H_0 = 12210$ and 6512 G is 2.5, which is in good agreement with that of 1.9 predicted by Eq. (15). For the condition of $\omega_S \tau_a \gg 1$, the ratio of T_{1S} for $H_0 = 12210$ and 6512 G is about 3.6 at 270 K $(10^3/T=3.7)$, which is also in agreement with the value of 3.5 predicted by Eq. (15).

FIG. 8. The temperature dependence of T_{1S} of ¹⁷O spins in TlClO₄. \odot represents T_{1S} for $H_0 = 12210$ G and \bullet that for 6512 G. Above 400 K (10³/T=2.5) \odot agrees with \bullet .

The parameters E_3 , $\tau_{3\infty}$, and $e^2 qQ/h$ are determined by Powell's method, in which the values of T_{1S} between 500 K (10³/T=2.0) and 250 K (10³/T=4.0) and Eq. (15) are used. The results are summarized in Table I.

C. Comparison of the experimental results between NH₄ClO₄ and TlClO₄

We will compare the parameters E_3 and $e^2 q Q/h$ in NH₄ClO₄ with those in TlClO₄ in Table I. We pick up the parameters for $\chi^2 = 0.01$. The activation energy $E_3 = 9.20$ kcal/mol in NH₄ClO₄ is larger than 8.19 kcal/mol in TlClO₄. The difference between these two compounds is probably due to the presence of the hydrogen bond in NH₄ClO₄. The quadrupole coupling constant $e^2/qQ/h$ at the ¹⁷O site is determined by the covalent and ionic bonds within the ClO₄ ion and also by those between the ClO_4 ion and surrounding NH_4^+ ions or thallium ions. The value of $e^2 qQ/h = 9.50$ MHz in NH₄ClO₄ is almost equal to that of 10.3 MHz in TlClO₄, showing that $e^2 qQ/h$ is determined mainly by the chemical bonds within the ClO₄ ion. The values of $e^2 qQ/h = 10$ MHz in NH₄ClO₄ and TlClO₄ are compared with that of 5.96 MHz for ¹⁷O in ¹⁷O enriched KH₂PO₄ which was determined by using double resonance technique by Blinc et al.³

V. CONCLUDING REMARKS AND DISCUSSION

It was found that the natural abundance of the rare ¹⁷O spins has a pronounced effect on $T_{1\rho}$ of ¹H(²⁰⁵Tl) through

- ¹Y. Hsieh, J. C. Koo, and E. L. Harn, Phys. Lett. **13**, 563 (1972).
- ²R. Kado, Y. Takarada, and H. Hatanaka, Phys. Lett. **47A**, 49 (1974).
- ³R. Blinc, J. Seliger, R. Osredkan, and M. Mail, Phys. Lett. 43, 131 (1974).
- ⁴Y. Margalit and M. Shporer, J. Magn. Reson. **43**, 112 (1981).
- ⁵S. G. P. Brosnan, D. T. Edmonds, and I. J. F. Poplett, J. Magn. Reson. 45, 451 (1981).
- ⁶F. Li, J. R. Brookeman, A. Rigamonti, and T. A. Scott, J. Chem. Phys. **74**, 3120 (1981).
- ⁷T. Chiba and S. Miyajima, J. Chem. Phys. 83, 6385 (1985).
- ⁸S. Meiboom, J. Chem. Phys. **34**, 375 (1961).
- ⁹A. G. Redfield, Phys. Rev. 89, 1787 (1955).
- ¹⁰D. Wolf, Spin Temperature and Nuclear-Spin Relaxation in Matter (Clarendon, Oxford, 1979), p. 246.
- ¹¹D. C. Ailion, Advances in Magnetic Resonance, edited by J. Waugh (Academic, New York, 1971), Vol. 5, p. 177, references therein.
- ¹²H. T. Stokes and D. C. Ailion, Phys. Rev. B 18, 141 (1978).
- ¹³K. Shimomura, T. Kodama, and H. Negita, J. Phys. Soc. Jpn. 27, 255 (1969); R. Blinc, J. Pirs, and S. Zumer, Phys. Rev. B 8, 15 (1973).
- ¹⁴K. Morimoto, J. Phys. C 15, 3789 (1982), references therein.
- ¹⁵K. Morimoto and K. Shimomura, J. Phys. Soc. Jpn. 53, 2752 (1984).
- ¹⁶K. Morimoto and K. Shimomura, J. Phys. C 18, 403 (1985).
- ¹⁷K. Morimoto and K. Shimomura, J. Phys. Soc. Jpn. 54, 3244

two kinds of interactions A and B: (A) random modulation of the dipolar interaction between the ¹⁷O and $^{1}H(^{205}Tl)$ spins and (B) cross relaxation between the ^{17}O and ${}^{1}H({}^{205}Tl)$ spins. In both the interactions, the rare ${}^{17}O$ spins play the role of strong relaxation centers of ${}^{1}H({}^{205}Tl)$ spins in the rotating frame. Due to interaction B, we may determine the relaxation time T_{1S} of the ¹⁷O spin and evaluate the quadrupole coupling constant $e^2 qQ/h$ at the ¹⁷O site. The value of $e^2 qQ/h$ would be delicately affected by the hydrogen bonds. It will be of interest to determine the resonance frequencies and $e^2 q Q / h$ for ¹⁷O precisely by using the double resonance technique and to compare them with the present results. The double resonance should be done at low temperatures where the first term in Eq. (2) (and also the second and third terms) contributes to the spin energy of ${\rm ^{17}O}$ spins as shown in Fig. 2(II).

The minimum of $T_{1\rho}$ of ¹H(²⁰⁵Tl) in Eq. (24) takes the value of 1–2 s for $H_1=2.1$ G. In some compounds in which T_1 of ¹H(²⁰⁵Tl) is longer than a few seconds, the measurement of $T_{1\rho}$ might make it possible to determine T_{1S} and e^2qQ/h for ¹⁷O.

ACKNOWLEDGMENTS

The author would like to thank Professor K. Shimomura of Fukuyama University and Professor T. Chiba of Nippon University for useful suggestions. The author also wishes to than Professor T. Hihara of Hiroshima University for his usual encouragement.

(1985); K. Morimoto and K. Shimomura, Phys. Lett. A 116, 85 (1986).

- ¹⁸A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961), p. 159; C. P. Slichter, Principles of Magnetic Resonance, (Springer-Verlag, Berlin, 1978, 2), p. 275.
- ¹⁹M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957), p. 48; A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, New Jersey, 1960), p. 6.
- ²⁰C. J. Gorter, *Paramagnetic Relaxation* (Elsevier, New York, 1947), p. 121.
- ²¹M. Punkkinen, J. Magn. Reson. 19, 222 (1975).
- ²²A. Watton, J. Chem. Phys. 65, 3657 (1976); J. Peternelj and M. M. Pinter, Phys. Rev. B 15, 5097 (1977); K. Morimoto, J. Phys. Soc. Jpn. 42, 1836 (1977).
- ²³N. Bloembergen and P. P. Sorokin, Phys. Rev. 110, 865 (1958).
- ²⁴E. G. Wikner, W. E. Blumberg, and E. L. Harn, Phys. Rev. 118, 631 (1960).
- ²⁵W. Güttler and J. U. Von Schutz, Chem. Phys. Lett. 20, 133 (1973).
- ²⁶J. W. Giehl, R. Wang, and H. W. Bernard, J. Chem. Phys. 58, 598 (1973).
- ²⁷R. C. Code, J. Higginbotham, and A. R. Sharp, Can. J. Phys. 54, 239 (1976).
- ²⁸R. Ikeda and C. A. McDowell, Chem. Phys. Lett. 14, 389 (1972).
- ²⁹A. G. Anderson and S. R. Hartman, Phys. Rev. 128, 2023

(1962), references therein.

- ³⁰M. Stamler, R. Bruenner, W. Schmidt, and D. Orcutt, Adv. X-Ray Anal. 9, 170 (1966).
- ³¹A. Ohte and H. Iwaoka, IEEE Trans. Instrum. Meas. IM-25, 357 (1976).
- ³²J. Jeener and P. Broekaert, Phys. Rev. 157, 232 (1967).
- ³³U. Haeberlen, Z. Naturf. A 25, 1459 (1970).
- ³⁴M. Punkkinen, J. Nonmetals 2, 78 (1974).
- ³⁵K. Morimoto, K. Shimomura, and M. Yoshida, J. Phys. Soc. Jpn. 46, 627 (1979).
- ³⁶K. O. Strømme, Acta Chem. Scand. Ser. A 28, 515 (1974).
- ³⁷S. Yamamoto and Y. Shinnaka, J. Phys. Soc. Jpn. 54, 4600

(1985), references therein.

- ³⁸G. Peyronel and A. Pignedoli, Acta Cryst. B 31, 2052 (1975).
- ³⁹E. F. Westrum, Jr. and B. H. Justice, J. Chem. Phys. **50**, 5083 (1969).
- ⁴⁰H. G. Smith and H. A. Levy, Acta Cryst. 15, 1201 (1962).
- ⁴¹C. S. Choi, H. J. Prask, and E. Prince, J. Chem. Phys. 61, 3523 (1974).
- ⁴²M. Prager and B. Alfred, J. Chem. Phys. 65, 4927 (1976).
- ⁴³H. Friedrich, K. Guckelsberg, R. Scherm, and A. Hüller, J. Phys. C 14, L147 (1981).
- ⁴⁴K. R. Metz and J. F. Hinton, J. Magn. Reson. 50, 212 (1982).
- ⁴⁵P. S. Hubbard, Phys. Rev. **131**, 1155 (1963).