
PHYSICAL REVIEW B VOLUME 35, NUMBER 13

Coherence lengths and neutron optics
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The dynamical diffraction of divergent beams and its application to neutron interferometry are
considered. The coherence properties of thermal neutrons are studied, and it is shown that the ex-
treme anisotropy of dynamically diffracted wave packets should be included in the discussion of
coherence lengths. Finally, the mechanism leading to a nondispersive phase shift is investigated.

I. INTRODUCTION

Wave packets are a convenient aid for visualizing the
behavior of particles in optics. It is therefore challenging
to demonstrate their dispersive propagation and their
coherence properties for massive de Broglie waves as well.
For such experiments time-resolved interferometry is
needed. ' To my knowledge all neutron interferometric
experiments concerning the coherence length have hither-
to been performed under the condition of a stationary in-
cident beam. An exception is perhaps an experiment
showing the interference patterns when the intensity in
one path is diminished either by introducing an absorber
or by periodic chopping.

In the standard neutron interferometry experiment a
phase shifter is brought into one of the two beams of the
interferometer (see Fig. 1). The optical paths for the two
beams thus become unequal, giving rise to intensity oscil-
lations. Usually, these oscillations provide the coherent
scattering length of the phase-shifting material. With in-
creasing order the contrast of these oscillations de-
creases. ' This loss of contrast may be caused by the
phase shifter (absorption, diffuse scattering, inhomo-
geneities, etc.) or by the wavelength spread. For the fol-
lowing considerations only the last point is of interest.
The decrease of contrast with increasing optical path
difference has been used by Kaiser, Werner, and George
to measure the longitudinal coherence length of the neu-
tron beam assuming Gaussian incident wave packets. It
should be noted, that if one relates the coherence length of
the wave packet to its width, the dispersive motion of the
wave packet leads to increasing spatial extension without
an increase of the coherence length. From a rigorous
point of view, the knowledge of the wavelength distribu-
tion alone does not allow any conclusion about the shape
of a wave packet.

b,k lko is usually of the order of 10 —10 and the an-
gular spread of the plane-wave components does not
exceed a few degrees around ko. If one wave packet per
unit time is emitted from the neutron source, the total
current measured by the detector is
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which can be deduced from particle conservation. Equa-
tion (2) shows that the dispersive motion of wave packets
resulting from co~ ——Ak /2m, where m is the neutron
mass, does not enter into neutron optics, even for the clas-
sical experiment in neutron interferometry, where two dis-
placed wave packets P = [P(x, t)+(t (x—a, t)]/2 are
brought to interference.

We now assume that the wave packet Eq. (1) is incident
on a single crystal plate under the condition of symmetri-
cal Laue diffraction. We choose a system of coordinates
with e, normal to the plate surface and e„along the
reflecting reciprocal wave vector G (see Fig. 1). The wave
vector ko of the center of the wave packet is assumed to
lie in the x-z plane and to fulfill the Bragg condition ex-
actly.

The dynamical diffraction of wave packets may be de-
scribed by the dynamical diffraction of single plane waves

II. DIFFRACTION OF WAVE PACKETS

Consider the wave packet
(b) {c)

ol

d k
P(x, t)= f F(k, ko)e'
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which propagates in a force-free vacuum region. The
wave packet is centered around the wave vector ko. In
neutron optics the width of the wave-number distribution

FIG. 1. Schematic diagram of a LLL interferometer. The
wave front is delayed (accelerated) normal to phase shifter de-
pending on the sign of the potential. (a) Dispersive phase shift;
(b) longitudinal (dispersive) phase shift; (c) "nondispersive" phase
shift.
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g; =exp(ikx) that are superposed appropriately behind the
crystal. If only integrated intensities are considered, one
obtains

IG ——f ~F(kk )~
(27r)' }+y2 (3)

known, mainly in the domain of electron diffraction, as
the "Selektionsfehler, " is a measure of the deviation from
the exact Bragg condition in the component of the in-
cident wave vector k parallel to G. Ap and Op are the
Pendellosung or extinction length and Bragg angle, re-
spectively, for the wave number kp of the center of the
wave packet. It should be noted that Ap tanOp is indepen-
dent of the wavelength Xp and the mass m of the incident
neutron. For some applications it therefore seems useful
to introduce

A=ho tan9o/sr=A G/2m
~

VG
~

instead of Ap as the characteristic dynamical diffraction
length, "' since A depends only on the lattice parame-
ters, the rejecting Bragg plane, the coherent scattering
length b„and a small temperature-dependent contribu-
tion from the Debye-Wailer factor.

The average intensity of a diffracted plane wave has the
typical Lorentzian dependence on the parameters, which
determines the range of acceptance of dynamical
diffraction. This so-called "Bragg-window" ' selects a
narrow wave-vector interval for the x component of k.
Assuming a Gaussian weighting function

F(k —kp)=(2~/cr )' exp[ —(k —ko) l4o. ]

one obtains approximately for thick crystals
1/2 l
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with
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for the intensity of the beam diffracted by a single-crystal
plate of thickness D. The notation used is similar to that
of Ref. 10. 3 =~D/6 is a dimensionless parameter that
relates the thickness to the Pendellosung length
A=vrh k, /m

~

VG ~, where m is the neutron mass and VG

the Fourier transform of the interaction potential. The
quantity

y =Ap tan8o(kx —kox ) /~

dynamically. The approximation for IG, Eq. (6), neglects
contributions of the order of }/A p, where A p

——~D /6 p is
the thickness parameter for kp. When one chooses in-
stead of Eq. (5) an anisotropic wave-vector distribution,
then it becomes apparent that the attenuation of the
Pendellosung oscillations depends only on the spread in
the z component of k.

III. TRIPLE LAUE CASE INTERFEROMETRY

where 1(o is the plane wave traveling along path I [see Fig.
1(a)] in the forward direction. The once transmitted and
twice diffracted wave function reads'

1to ———[cos[A (1+y )' ]+— sin[A (1+y )' ]]
( 1 +y2)1/2

sin [2 (1+y )'~ ]
+y 2
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where Pp is a phase angle which is not relevant for our
considerations. The phase difference produced by the
phase shifter is given by

7 = (K—k)nD~ = 2rrNb, Dp l—k, =Xoko, /k, , (10)

~here K is the wave vector within the phase shifter
differing from k only in its component parallel to n, the
unit vector normal to the front surface [see Fig. 1(a)], D„
is the thickness of the phase shifter, N the density of the
scattering atoms with a coherent scattering length b, . In
most cases absorption and diffuse scattering do not lead to
an essential reduction of the contrast. However, if there is
appreciable elastic scattering from small crystallites
and/or inhomogeneities, the attenuation of the beam be-
comes important. ' It may then be taken into account in
a crude fashion by means of an imaginary part of the
scattering length b, and the phase shift Yp. b, =b' —ib",
Xp =X@+&Xp ~

Equation (8) is evaluated for thick crystals using the
same method as for a single crystal. The result is

Ip(Xp) =I (Lp)+I~ (Xp)+ 2I3(Xo)+I3 (Xp)

Now we assume that the beam is incident on a Laue-
Laue-Laue (LLL) interferometer in which a phase shifting
slab is placed in one path of the interferometer (see Fig. 1)
parallel to the interferometer crystal. According to Eq.
(2) the intensity for the forward beam Ip may be written
as

d k
Ip(Xp)= f, ~

F(k, kp)go(k, r)(l+e'r)
~

-'

(2'�)'

and o., =o./kp, . I is introduced to normalize IG in the
usual manner' and Eq. (7) holds only for a wave-vector
spread o much larger than the Bragg window. Thus IG is
much smaller than unity and expresses the fact that only
a small part of the incident wave packet is diffracted

with

9~ —o g0 /2I (Xo)=I e
'

(cosllXp'+e cosXp)
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for m =1, 2, and 3. I, describes the decrease of the in-

tensity oscillations of the average, thickness-independent
part with increasing go. The dependence of b" and 7" on
k is neglected, because it leads to contributions of the or-
der (oXO'/ko) which are small compared to Xo'.

The corrections for the finite thickness of the inter-
ferometer crystal are contained in Eq. (13). A special sit-
uation occurs for go=2mdo and goo., ~1. The latter
condition implies that the oscillation of I, are already
suppressed, whereas from the former condition it is seen
that the last term of Eq. (13) contributes to the interfer-
ence oscillations. This sma11 increase of the fringe visibili-

ty has not yet been observed; it could be considered as a
"phase echo" at the interferometer from the phase shifter.

For studying the longitudinal coherence length of the
neutron beam, the phase shifter is placed in the inter-
ferometer perpendicular to the beam, as shown in Fig.

I

kz —&Oz
go 1 — cos I9O

ko,
(14)

with Xo= RON—b, D~, the longitudinal phase difference
between the two beams. Since the "Bragg window" re-
stricts the wave vectors parallel to Cs, the variation of k
can be neglected in Eq. (14).

When carrying out the calculations completely analo-
gous to the former case one has to substitute in Eq. (11)

lt

I, (Xo)=I e '(cosLYp'+ e ' " ' cosXO) (15)
64

and

1(b). According to Eq. (10) the phase shift is now given
by

g = —2nNb, Dz /(k, cosOo —k singo)
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For a typical neutron interferometer with crystal slabs
of a few millimeters and customary values of the wave-
length spread and the reduced thickness Ao, the correc-
tions shown in Eq. (16) are less than l%%uo. Therefore, Eq.
(15) is the basis for the explanation of the classical experi-
ment for measuring the longitudinal coherence length by
Kaiser, Werner, and George described in Ref. 7. These
authors used an aluminum phase shifter in their experi-
ment with a path difference

~

a
~

=
~

Xo/ko
~

=A,ob 'XDz /2~, i.e., 54 A per cm for neutrons with
A.o

——1.268 A.
Figure 2, which is adapted from Ref. 7, shows the loss

of contrast with increasing thickness of the Al phase
shifter. The experiment was designed to demonstrate the
uncertainty explicitly. The uncertainty in the relative po-
sition of two wave packets traveling along paths I and II,
respectively, is calculated via the width of the Gaussian in
Fig. 2, although the enhanced intensity in the tails indi-
cates a somewhat larger variance. '

The experimental results can be evaluated using Eq.
(15) with go'=0. Rewriting the parameter in the exponent
of Eq. (15) one obtains

cT go cos Op=0 a2

X =2wNb, D& /k, . =+o—2~y At /60

for the phase shift with Xo= —A.ONb, D~ /sin9o and

At =+Vb'D~ cosoo/4~ sin 80 .

(17)

(18)

It should be mentioned that ht may be obtained from
ray optical considerations taking into account the small
lateral displacement of the rays caused by the phase
shifter. According to Fig. 3, b, t is given by Eq. (18) and
the situation that arises from the displacement of the rays
is exactly the same as for a defocused interferometer. '

Assuming sufficiently thick crystals I may be neglected.
For the average intensity, o., has no effect on the oscilla-
tions. Therefore one obtains

where a, =a cosOO is the path difference along the z direc-
tion. In a one-dimensional model, where only the path
difference a occurs, it has to be combined with the vari-
ance o.f -o. cos610 measured behind the interferometer, to
give the above result.

The physically most interesting situation arises from a
phase shift parallel to G as shown in Fig. 1(c). There one
obtains

9m —Xo 2~6,tI, (g )=0I e ' coshXO'+ 1+
64 Ap

2
5 2~At

e ' cosgo
0

for At )0, (19)

a result already known from the defocused interferome-
ter. ' Io(XO) is displayed in Fig. 4 for 70' ——0. A path shift
comparable to the macroscopic size Ao cannot be reached
via the refraction index of phase shifting materials, and no

reduction of the contrast due to the divergence of the in-
cident beam is expected. Although phase shifters in the
nondispersive position evidently show higher contrast
than in the dispersive one, the observed reduction of con-
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FIG. 4. Loss of contrast for a nondispersive interferometer
(Xo' ——0). The contrast is —,

' for At -0.166O.
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FIG. 2. Loss of contrast when the Al phase shifter is p1aced
in the interferometer normal to the beam [see Fig. 1(b)]. The
contrast Co ——(I,„—I;„)/(I,„+I;„)is corrected for inhomo-
geneities, thickness variations, and wave amplitude attenuation
and is normalized to 1 at the peak. the solid line is a Gaussian
passing through most of the data points. It is centered at

0
a = —4 A, reflecting the fact that the two beams are not precise-
ly equal. The figure is adapted from Kaiser, Werner, and
George (Ref. 7).

trast is stronger than displayed in Fig. 4. ' ' Small angle
scattering, elastic scattering by small crystallites and
thickness variations cause a higher reduction of the con-
trast than expected from the wavelength spread.

IV. SUMMARY

We have applied dynamical diffraction theory to a po-
lychromatic beam of thermal neutrons. The calculations,
which were carried out explicitly for an incident Gaussian
wave-vector distribution show that the dynamically
diffracted intensity fraction is proportional to 1/o. A,
where A is a characteristic reQection length and o. the
width of the wave-vector distribution. Since A is wave-
number independent, o. alone determines the total
diffracted intensity. Extending the calculations to the
neutron interferometer we show that this modifies the
shape of the incident Gaussian wave packets.

One has to distinguish coherence lengths parallel and
perpendicular to the relevant Bragg vector G, instead of
longitudinal and transversal coherence lengths with
respect to ko. Therefore, the macroscopic coherence
length mentioned in Ref. 13 does not appear in our calcu-
lations for the direction normal to the crystal plates. In
addition, our results show that the frequently used one-
dimensional model is too simple for a sufhcient explana-
tion of the coherence properties.

Finally the attenuation of the contrast with increasing
nondispersive phase shift' is estimated theoretically. The
results are consistent with a simple ray optical model.
The results may suggest ways to increase the accuracy in
measuring neutron scattering lengths.
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