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Interband optical transitions in CxaAs-Chai „Al„As superlattices in an applied electric field
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We have investigated the light absorption in a CxaAs-Ga~ Al„As superlattice in the presence of
an applied electric field. Using Houston functions to represent the valence and conduction states we
have calculated the transition rates between the valence and conduction subbands for different
values of the field. Both the Franz-Keldysh shift and Franz-Keldysh oscillations emerge from the
formalism. The absorption edge as a function of photon energy varies exponentially and has small
oscillations superimposed on it. It is followed by a flat region characteristic of a two-dimensional
electron gas. The use of Houston functions is justified by computing the tunneling probability be-
tween adjacent subbands and showing that it is negligibly small.

I. INTRODUCTION

Light absorption in superlattices and quantum wells in
the presence of an electric field has been investigated in
the recent literature for possible applications in electro-
optics. Recent experiments have shown that the absorp-
tion coefficient is strongly affected by an applied electric
field. ' The modulation of the absorption coefficient
has led to the proposal of a new class of switching de-
vices ' which can be operated by changing the field ap-
plied to the superlattice structure, thereby creating "on"
and "off" transmission states for the light wave. In the
superlattice case absorption can occur for photon energies
both above and below the superlattice band gap. The
latter is the usual Franz-Keldysh effect. ' Unlike bulk
material, the absorption edge is anticipated to be more
sensitive to the field, a consequence of the lowering of the
effective superlattice band gap. This effect originates
from the polarization of the superlattice envelope function
by the electric field and may be of the order of a few
meV. For bulk material, on the other hand, the effect is
small because the host Bloch functions are not seriously
distorted for fields below the avalanche breakdown.
Switching can thus be effected using a superlattice for
photon energies below the band gap since the electric field
can be used to turn the transmission on and off. The
feasibility of switching below the band gap depends on the
sensitivity of the absorption coefficient to the field. As-
suming that the large device capacitance can be circum-
vented to allow fast switching, these devices may be useful
for integrated optics, hence the need for further studies of
the electroabsorption effect in superlattices.

The purpose of this paper is to investigate the electroab-
sorption in GaAs-Ga& „Al As superlattices. Using the
theory of light-assisted tunneling, we have calculated the
absorption coefficient for photon energies below and
above the superlattice band gap. Among the recent work
in this area, two sets of calculations in particular have ad-
dressed the problem of modeling the electric field in the
superlattice and multiple quantum well (MQW) in some
detail. In these articles, the absorption coefficient and

wave-function overlaps have been worked out using suit-
able model potentials to represent the superlattice and
MQW. In Ref. 8 the Ga~ „AI„As layers are considered
sufficiently thick that the electrons and holes cannot tun-
nel between adjacent wells. In fact Miller et al. con-
sidered the ideal case where the potential barrier is infin-
ite. The electric field was incorporated by tilting the bot-
tom of the well. The authors then computed the red shift
and showed from their bound-state model the closeness
between the Stark shift and the Franz-Keldysh effect.
McIlroy calculated the change in overlap between the
electrons and holes in an MQW caused by an electric
field, a prerequisite to understanding the electroabsorption
phenomenon in these structures. McIlroy imposed an ar-
tificial boundary condition on the MQW by sandwiching
it between semi-infinite barrier layers having constant po-
tentials. Since both approaches are essentially bound-state
models, they yield absorption coefficients that consist of a
superposition of step functions and are characterized by
abrupt increases as the photon energy is increased. Such
results are characteristic of the two-dimensional bound-
state problem and are a consequence of the electron being
unable to tunnel out of the structure. When an electric
field is applied, the function is simply shifted to the left.
In the conventional terminology, this is due to the Stark
lowering of the bound electron and hole states. But as
pointed out in Refs. 8 and 9, once a field is applied, there
are no true bound states. This is especially true for the
superlattice and MQW where the barrier heights are small
(typically around 0.25 eV). And since the particles now
exist in the quasibound states for only a short time (e.g. ,
10 ' s), the problem is essentially similar to the bulk
(i.e., three dimensional) and therefore a considerable
smearing out of the steplike behavior is expected. Con-
ventionally, the red shift with increasing field for continu-
um states is the Franz-Keldysh effect. For the superlat-
tice and MQW the two effects are clearly related. Howev-
er in this paper we denote the red shift in our model as the
Franz-Keldysh effect in keeping with the usual notation.

Our calculations differ from those of Refs. 8 and 9 in
the important aspect of boundary conditions; we avoid the
use of restrictive end conditions (usually necessary for
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wave-function normalization) on the superlattice. In prin-
ciple one could cope with the problem of normalization by
placing the superlattice or MQW in the middle of a large
box (say, 1000 nm wide) having infinite walls. But this
raises the problem that the superlattice or MQW will only
constitute a sma11 fraction of the total structure and may
therefore have very little bearing on the final result. In
our approach this problem does not occur since our
model is not that of a particle in a box. We assume that
the superlattice consists of a sufficiently large number of
layers that periodicity can be assumed, and that the elec-
trons and holes experience a constant field throughout, in
a direction parallel to the growth axis. Furthermore, we
treat the case of relatively thin barriers where coupling be-
tween the quantum wells needs to be accounted for. We
point out that coupling between wells is implicit in Ref. 9
in which the total wave function of the system is con-
structed.

As a simplification we neglect the excitonic transitions.
For the MQW the absorption spectra is dominated by ex-
citonic peaks as shown in the literature, but as the barriers
become thinner, there is a tendency for the peaks to be
smeared out, as demonstrated by Dingle et al. ' Howev-
er, the Coulomb interaction between electrons and holes
remains and produces a correction to the absorption coef-
ficient. We have not included this effect. Our treatment
of the electric field differs from that of previous authors
in that it is similar to the bulk treatise. In previous MQW
and superlattice models the field was introduced by tilting
the wells and then making certain assumptions about the
field in the end regions. In most instances the outer re-
gions are assumed to be thick layers of Ga& Al As in
which the field is allowed to vanish beyond a certain dis-
tance. It affords some convenience in modeling as one
need not worry about the wave function leaking out of the
end regions. But the overall effect is somewhat similar to
creating an internal electric field by varying the Al con-
centration, and would seem to be a local-field effect in-
stead of a global effect produced by an externally applied
field. Furthermore, the results will depend on the choice
of assumptions for the boundaries. In this paper we offer
an alternative approach. Our results show the Franz-
Keldysh shift when the photon energy is less than the su-
perlattice band gap, and Franz-Keldysh oscillations when
the energy is above the band gap. The absorption below
the band gap shown here is the same as photoassisted tun-
neling in bulk material.

In Sec. II we calculate the interband transition rate be-
tween the Houston states representing the conduction and
valence bands. Band mixing caused by the electric field
would tend to invalidate our approach. Accordingly, in
Sec. III we have investigated the interband coupling by
calculating the tunneling probability between adjacent
subbands for moderate values of electric field. Results are
shown in Sec. IV.

II. METHOD

We use Houston functions" to represent the superlat-
tice states. An alternative scheme for bulk material uses
stationary wave functions. ' In the absence of interband
coupling the two approaches yield identical results. ' '

The use of Houston functions allows us to conveniently
include the nonparabolicity of the subbands. Using a sim-
ple effective mass scheme we construct the superlattice
conduction-band states from

1'P,„(k~,q, r, r)= u, exp(ikq. r~)f,„

i
X exp —— E,„(k„q)dr', (1)

o

where u, is the cell periodic part of the host Bloch func-
tion at the zone center, kz is the wave vector in the y-z
plane, q is the wave vector in the x direction, ~ is the
elapsed time, and S is the cross-sectional area in the su-
perlattice plane. f,„ is an envelope function which ac-
counts for the band-edge perturbation, and n labels the su-
perlattice subbands. Under the action of the electric field
F, the wave-vector changes in the manner fiq(r)
=fiq(ro) eFr. P—rovided that the electrons and holes do
not tunnel into adjacent bands the Houston function is a
good approximation for the field-dependent states. In or-
der to study the effect of coupling between the quantum
wells we use the procedure of Voisin et aI. ,

' in which the
envelope functions are constructed from a linear combina-
tion of well states. This is a quasi-tight-binding scheme
for the lowest energy levels and is valid if the barriers are
not too thin. In this case the particles in the lowermost
eigenstates will be partially confined to the well regions.
Accordingly the envelope function is written as

f,„(q,x) = ge'i'"4„(x —pd),
1

P

where N is the number of wells (assumed very large) and
N„ is the wave function of the nth well state. Taking into
account only nearest-well interactions, the dispersions re-
lations are given by'

AkE„=E„o+2t„cos(qd ) +
2m

where E„o is the energy of nth state of the isolated well,
2t„ is the bandwidth of the nth subband and is a measure
of the overlap between wave functions in adjacent wells.
Equation (3) applies to both electron and hole states pro-
vided the appropriate values of E„o and t„are substituted.
The probability of absorbing a photon is found from'

2
7 2f dr' f dr+,*„(k',r)A P'4l, (k, r)

mc

(4)

where 0„ is the wave function for the mth valence band
state. After finding the probability per unit time for a
valence- to conduction-band transition, the total transition
rate per unit volume is obtained by summing over all ini-
tial states as follows:

W= f dk~dq
(2m. ) d7.

Substituting (1) in (4),
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A Q f dr'M, „I „(q)exp — f [E„(ki,q') E~—(ki, q') Rc—o]dq'
2

where E„and E are, respectively, the dispersion rela-
tions for the conduction and valence states. Explicitly the
momentum matrix element Mcv is given by

Mcv Bric 7 c VQv r

and the overlap integral I „between the mth valence-
and the nth conduction-band states is found from

I „(q)= f dxf,*„(q,x)f„(q,x) .

As shown in Ref. 13, I „ is weakly dependent on q for
transitions between states of the same parity and is negli-

t

gible for transitions between states of different parity. In
the following scheme we consider transitions for the case
of m =n and for odd values of n.

A. Photon energy less than the effective band gap

Here the effective band gap Eo is defined as
Eo=[E„O(electron)+E„o(heavy hole)+Eg] where E„o
has been defined in Eq. (3) and Eg is the band gap of
GaAs. From Eq. (6) the band-to-band transition probabil-
ity is given by

m*@

2
~~~ dq

Mcv Inn exp 8q Ene En (9)

Subscripts e and h have been added to the energies to
denote electron and hole states. The integrand in (9) has
saddle points q, for small fields when E„(ki,q)E—(ki, q) fico=0. T—hese occur in the complex q plane
and are obtained from

(a)

-2x -~ 0

" lm(qd)

Re(qd)

2m,*„(EO fico)+—iri ki
cos(q, d) =

4m„t
(10)

-q d
S —X——

where m,*v is the joint density-of-states effective mass, and
2t is the sum of the two mini-bandwidths. Depending on
whether r is greater or less than 1, the position of the sad-
dle points in the q plane will vary. Figure 1(a) shows the
saddle points in the complex q plane for the case r & 1.
The integration in Eq. (9) is over the first mini-Brillouin
zone which extends from q = —~/d to q =~/d, d being
the superlattice period. Provided there are no poles or
branch points in between, the path of integration in Eq.
(9) can be deformed to include the appropriate saddle
point as shown in Fig. 1(a). Of the two saddle points +q,
in the first miniature zone, —q, is more important be-
cause it occurs at a higher level than +q, . The integrand
is negligibly small at +q, but has a nonzero value at —q, .
There are then two contributions to the integral. The
principal contribution comes from the saddle point and
yields terms of the order of ~F, while the other contribu-
tion comes from the endpoints and produces terms of the
order of F. Based on the initial assumption of small F,
the endpoint contribution can be neglected. Substituting
the results in Eq. (5) we obtain the total transition rate. It
is noted that w is independent of q. Therefore the in-
tegration with respect to q in (5) is simply the length of
the mini-Brillouin zone. Also, the probability per unit
time required in (5) is found by dividing w by the time
taken by the electron to traverse the miniature zone.
After making the appropriate substitutions we obtain

(b)

Irn(qd)

Re(qd)

FIG. 1. (a) Sketch of the complex q plane. Because of
periodicity, an infinite number of saddle points are present. The
dashed lines represent the imaginary parts of the saddle points,
which are constant. q, and —q, are the two saddle points in the
first mini-Brillouin zone which extends from q = —m/d to m/d.
The path of integration from left to right is deformed to pass
through the path of steepest descent. The three contours shown
correspond to the contributions to the total integral. (b) Show-
ing the saddle points q, in the complex q plane at which the ad-
jacent subbands are joined. As in Fig. 1(a), all the points lie on
the dashed lines. For the case Eo & 2t the points are located at
the zone boundary. The solid lines indicate the path of integra-
tion.
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KM„I„„
exp

(r —1)

4tr
&

(r 1—) '~
cosh 'r-

eFd

in which rp ——(Ep fu—o)l2t and K =(e/mc) (2~) &pm,*, lfi If. rp & 1, the path of integration along r circles the branch
point at r = l. Allowance must be made for the case of rp & 1 (i.e., the presence of saddle points on the real q axis). The
final results are obtained by numerical integration of the following equation:

KM,„I„„ QO

.H(rp —1)J, dx exp
d cosh rp

4t
(x —tanhx )coshx

eFd

cos 7p
—1

2 2t+H(1 rp)— dx cos (x —tanx)cosx ——
0 eFd 4

oo 4t+ dx exp — (x —tanhx)coshx
0 eFd (12)

where

H(z)=l; z&0,
=0; z&0.

If Ep ))Aco and the field is very small, Eq. ( 12) can be
solved by successive integration by parts. Then the lead-

ing term is given by

W =KM„I„„eF

4tr p
exp — (cosh 'rp —1)

eFd

(Ep —fico)cosh 'r
p

(13)

The higher-order terms contain increasing powers of F
and 1/Fp in the prefactor and are therefore negligible.
Equation (13) exhibits the same field dependence as the
Franz-Keldysh result for bulk material. However the
dependence on ~ is more complicated for the superlattice
case. There are now terms involving the superlat tice

[

bandwidth t. In general this parameter is of the order of
a few meV, a consequence of electron localization in the
well regions. Owing to the quasi-two-dimensional elec-
tron transport, Eqs. (12) and (13) yield different results for
the absorption coefficient than for bulk GaAs. An addi-
tional term is the overlap integral I„„.

B. Photon energy greater than the effective band gap

As in the preceding section the transition probability is
calculated by the saddle-point method. In counting the
total number of transitions W, we need to account for the
fact that the saddle point can occur at various points of
the q plane (depending on the value of r), being real in
some instances and complex in others. It implies that the
deformed path of integration is not the same in every in-
stance and must be worked out for each case. Thus the fi-
nal solution is piecewise and can be worked out as before,

KM„I„„ cosh xp
H(xp —1) dh cos coshx exp

0 eFd
4t

(x —tanhx)coshx
eFd

vr /2
+ dx cos (~—x+tanx)cosx ——

0 eFd 4

n/2
2 2t+H(1 —xp), dx cos (vr x+tanx)cosx ———

cos xp eFd 4

m/2 oo —4t+ dx cos ( —x+tanx)cosx ——+ dx exp (x —tanhx)coshx
0 eFd 4 0 eFd

(14)

Here xp=(fico Ep)/2t and the function H—(z) has the
same meaning as before. The foregoing results pertain to
transitions for odd values of n. When n is even Eqs.
(12)—(14) are only slightly modified.

III. INTERBAND TUNNELING

A recent article' has justified the use of Houston func-
tions for bulk material on the grounds that the interband
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coupling is small for typical values of electric field. In
this section we calculate the tunneling probability between
adjacent subbands in either the conduction or valence
bands. Using the crystal momentum representation
(CMR) (Ref. 16) of Schrodinger's equation, we find that
the interband matrix element linking states of equal ener-

gy is obtained from

M„=— dqX„exp E„—E dq
' (15)

Bf (kq, q)
&nm =E n &S~q

Bq
(16)

where the f„are the normalized and orthogonalized en-
velope functions representing the conduction- or valence-
band-edge perturbations, and the E„are the dispersion re-
lations defined previously. We consider the specific case

of tunneling between the n = 1 and n = 2 conduction sub-
bands. From the preceding section,

Eq E—) so—+2t cos(qd), (17)

T=
f Mgp

/
p(E)

eFd
(18)

Here p(E) is the density of states and is given by 1/eFd.
After making the appropriate substitutions in (18) we ob-
tain

in which cp is defined as the energy separation between
the first two discrete levels of the isolated quantum well
and 2t is the sum of the widths of the associated sub-
bands. The two subbands are joined in the complex plane
at saddle points q, defined by cos(q, d)= —eo/2t. For
small F, Eq. (15) can be solved asymptotically since the
saddle-point contributions will be dominant [see Fig. 1(b)
for a sketch of the q plane and the paths of integration).
M&2 is obtained by adding the two contributions shown in
Fig. 1(b). The tunneling probability T is found from'

2vreF
~

X,z ~

mEoT=
2 2 A/2 Pd(co 4r ).—

E,p ( Cp
cosh

eFd 2t Cp
(19)

Equation (19) is valid as long as so& 2t. For so &2t, T is given by

2~eF
i
Xip

i
', Eo, cp

cos 7T—cos +
d+4t — end 2t Cp

(20)

The apparent singularity at cp ——2t is resolved by observing
that the integrand in Eq. (15) consists of a real and an
imaginary part. Being an odd function, the latter yields
zero over the limits of integration. However, the real part
may actually be expressed in terms of Bessel functions of
the first kind and produces a finite contribution for all cp.
When spat the two subbands overlap in which case T
loses its meaning as a tunneling probability. The absence
of a kz dependence in T is accounted for by noting that
the interband separation is the same for a11 kz. we as-
sumed that the effective mass in the superlattice plane is
independent of the subband index. T vanishes when
cp ——eFd/2. This is plausible if the electron oscillates be-
tween adjacent subbands.

For typical subband separations of about 200 meV and
bandwidths of about 8 meV, T is less than 10 for fields
below 180 kV/cm. T will, of course, approach 1 for
higher-order subbands which tend to be closely spaced.
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IV. RESULTS AND DISCUSSION

Apart from a constant factor, Eqs. (12) and (14)
represent the absorption coefficient. We have computed
W for various superlattice geometries and have sketched
the results in Figs. 2—5. Only n = 1 transitions are
shown. Figure 2 treats the case of a superlattice of period
100 A and well widths of 50 A. Because of the two-

FKx. 2. Absorption coefficient versus photon energy for
0

n =1 heavy-hole electron transitions for a well width of 50 A
O

and a barrier width of 50 A. The zero-field case is compared
with four cases of applied field. (See also Ref. 13 for a sketch of
the zero-field case. ) The superlattice is CxaAs-Gao 7Alo 3As
which is assumed to have a conduction-band-edge discontinuity
of 0.25 eV and a valence-band-edge discontinuity of 0.15 eV.
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FIG. 3. Absorption coefficient as a function of photon ener-
0

gy for n =1 transitions for a well width of 50 A and a barrier
width of 40 A. The values of electric field are the same as in

Fig. 2.
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FIG. 4. Absorption coefficient as a function of photon ener-
0

gy. The barrier width has been reduced to 20 A. Close coupling
between the wells gives rise to Franz-Keldysh oscillations. As F
increases the amplitude and period become larger.

dimensional electron confinement caused by such relative-
ly thick barriers, the absorption coefficient resembles a
step function, as in the case of an MQW. For compar-
ison, the zero-field case is included. In the limit as the
field tends to zero, the results approach the zero-field
case, and are marked by a Van Hove singularity at a value
of %co equal to the effective band gap plus the sum of the
electron and hole subband widths. As expected, the ab-
sorption edge in the zero-field case is abrupt. Both the
singularity and the absorption edge are smeared out once
the field is applied, with the edge becoming an exponen-
tial tail. If the electrons and holes were not free to tunnel
out of the wells, the abruptness of the edge would persist
even for very high fields. In Fig. 3 the barrier layers have
been reduced to 40 A, and in Fig. 4 they have been fur-
ther reduced to 20 A. As the barriers become thinner the
red shift is enhanced, as shown in Fig. 5. This is caused
by the broadening of the subbands which leads to a reduc-
tion of the effective superlattice band gap. Energy-level

FIG. 5. Absorption coefficient as a function of photon ener-
0

gy for three cases of barrier widths. The well width is 50 A and
the electric field in each case is 100 kV/crn. An increase in the
red shift is shown for thinner barriers.

E„"'(kz,q) =E„(k~,q) eFX„„(kq,q) . — (2l)

The superscript in Eq. (21) denotes first-order correction.
E0 is expected to be reduced by a few meV and will cause
a noticeable shift for Ace ~E0.

As the wells become more closely coupled, a ladderlike
behavior occurs as seen in Fig. 4. We believe that these
are Franz-Keldysh oscillations which may be compared
with the oscillatory absorption coefficient for bulk GaAs.
(See, for example, the bulk calculations of Ref. 8.) For
bulk CraAs the oscillations appear as points of inflection
in the absorption versus photon energy curves, and are
possibly caused by the oscillatory nature of the overlap be-
tween valence and conduction states as a function of Ace

and F. In the superlattice case, we find that both the am-

broadening also causes the onset of constant absorption to
occur at a higher value of fm, as shown more clearly in
Fig. 4, for 20-A barriers. As the barrier thickness is re-
duced the dispersion relations of Eq. (3) will be less reli-
able since the electrons and holes become delocalized.
However, we feel that the formalism is still valid provided
the correct band structure is inserted in the limit of ex-
tremely thin barriers. In each of the three cases shown
the absorption coefficient is expected to increase with in-
creasing field because vertical transitions in q space can
occur between any given pair of states, unlike the zero-
field case.

The Franz-Keldysh shift for fico &Eo is clearly shown.
In this case the absorption tail is caused by the penetra-
tion of the wave functions into the forbidden gap as in the
bulk case. An additional correction to the energies not
easily recoverable from the Houston formalism may be
found from the CMR and can be calculated from'
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plitude and period of the oscillations become larger as the
field is increased. This is also true for the bulk case. In
Fig. 4, the apparent disappearance of the oscillations as
the field is increased from 10 to 100 kV/cm, is explained
by noting that their amplitudes and periods are actually
greater when the field is increased, and that they occur
only between the effective band gap and the Van Hove
singularity. The oscillatory behavior is a direct conse-
quence of coupling between the wells and it vanishes as
the barrier height or thickness of the Ga& „Al As layer is
increased, as shown in Figs. 2 and 3. Therefore, in the
limit of thin barriers we believe that our results show as-
pects of bulk behavior. We have shown only transitions
between the n = 1 valence and conduction subbands.
Similar results are obtained for transitions between the
higher-order subbands and are simply added to Eqs.
(12)—(14). For higher-order subbands, the curves are
shifted to the right along the Ace axis. We have not in-
cluded these results in Figs. 2—5 because the dispersion
relations are increasingly in error as n becomes larger.
Transitions between states of different parity can also be
calculated but these are anticipated to be much smaller.

It is noted that the concept of the change in the overlap
integral with increasing field is not a useful one here,
since the changes induced by F are manifested as distor-

tions of the energy space. Furthermore we observe that
even though the electron-hole interaction in, say, the jth
well is reduced for increasing F, it is offset by the increas-
ing interaction between holes in the jth well and electrons
in the (j—1)th well.

V. SUMMARY

In summary, we have investigated optical absorption in
a GaAs-Ga& Al As superlattice in the presence of an
electric field. We have extended the Franz-Keldysh ap-
proach to the case of a superlattice and have calculated
the transition rates between conduction and valence Hous-
ton states. The Franz-Keldysh effect and Franz-Keldysh
oscillations are recovered from the model. Our investiga-
tions of tunneling between the lowest-lying subbands indi-
cate that they are weakly coupled by the field, thereby jus-
tifying the use of the Houston functions.
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