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Estimates are presented of nuclear-spin-lattice relaxation rates in the normal state of heavy-electron
metals due to dipolar coupling of nuclear moments and 4f or 5f spin fluctuations. The 4f or 5f sites
are modeled as point ions in the LS limit with dynamics of the N~„z-fold degenerate Anderson model.
Dipolar coupling alone is sufficiently large to account for the relaxation of 'Be in CeBe1& and UBei&,
as has been found for other light nuclei in heavy-electron and local moment systems. However, for
heavy nuclei with large intrinsic relaxation rates due to stronger on-site coupling to conduction elec-

trons, the dipolar contribution underestimates the observed relaxation by orders of magnitude. I sug-

gest that nuclear resonance is a more effective probe than electron-spin resonance of the heavy-
fermion state primarily because the probe nuclei sit closer to the heavy-electron sites so that the
strong range dependence of both dipolar and transferred exchange (Ruderman-Kittel-Kasuya-Yosida)
interactions favors nuclear relaxation. I show for the Anderson lattice, using both mean field formal-
ism and Green's function formalism (the latter explicitly including dynamic many-body effects and

assuming a dispersionless interaction contribution to the f-electron self-energy) that many-body can-
cellation effects are relevant in magnetic relaxation in heavy-electron compounds only when coupling
of probe moments to distant heavy-electron sites is vanishingly small. I show that since the maximal
f-electron enhancement of impurity electronic moment relaxation follows the square of the ratio of
the paramagnetic transition temperature (Tp) to the effective degeneracy temperature or "Kondo" en-

ergy scale (To) that those heavy-fermion systems close to magnetic instabilities are more suitable for
study with electron spin resonance. Detailed studies of the relaxation in that instance are beyond the

scope of this paper.

INTRODUCTION

Heavy-electron systems have attracted much attention
recently, both for the onset of apparently exotic supercon-
ductivity in CeCu2Si2, UPt3, and UBe» as well as the
spectacularly enhanced normal state specific heat and
magnetic susceptibility. ' The understanding of these
materials is very difficult as is evidenced by the experi-
mental situation in magnetic resonance. For example, in

UBe„, nuclear magnetic resonance (NMR) on the Be nu-
clei shows a low-temperature spin-lattice relaxation rate
(1/T, ) enhanced by a factor of 1000 over the rate in

LaBi& or Be metal. The temperature dependence of the
relaxation follows that expected from a narrow resonance
of width —10 K pinned to the Fermi level as is also sug-
gested by the electronic specific heat.

While this rate enhancement is indeed enormous, it
falls far short of the 10 -fold enhancement one would ex-
pect by comparing the low-temperature electronic specific
heat of UBei3 to LaBei3, and assuming as per the stan-
dard Korringa law for magnetic relaxation in metals that
(T i T )

' —N (0), N(0) being the density of states at the
Fermi level, proportional to the specific-heat coefficient.
Moreover, while NMR on the Be nuclei clearly shows
enhanced relaxation, electron-spin resonance (ESR) on Er
and Dy substituted for U shows only a moderate tempera-
ture enhancement of spin-lattice relaxation rates by a fac-
tor of 2 —3. Conceptually, these experiments do not differ
in any apparent gross features. Despite the intriguing

suggestion for ESR that many-body mass enhancements
cancel from 1/Ti, the NMR and ESR results appear to
be at odds. It should be noted that in CePd3 and CeOsz
which are generally classified as valence fluctuation ma-
terials (corresponding to the interpretation in this paper of
having large characteristic or Kondo temperatures), the
impurity ESR relaxation appears to be suppressed relative
to isostructural La-based analogues. ' However, it is
generally the case that the impurity Korringa rates are
unenhanced or mildly enhanced over those in the nonin-
teracting hosts. "' A possible exception to this is Gd in
UA12 for which no ESR signal has been observed, due ei-
ther to an anomalously large g shift or highly enhanced
relaxation. '

In this paper I point out a possible explanation for the
observed nuclear relaxation rates in UBei3 and CeBei&,
some of the reasons why ESR is generally a less effective
probe of the heavy-electron state than NMR, and how the
simp1est inclusion of lattice coherence effects due to the
banding of the heavy electrons do not alter this picture
substantially. The basic physical idea is that the heavy-
electron magnetic moments reside at the 4f or 5f sites
rather distant from the probe NMR or ESR moments.
For light nuclei, direct coupling via the dipolar interaction
is sufficient to provide strong relaxation due to the fluc-
tuating 4f or 5f moments. For heavy nuclei and impurity
electronic moments the dominant coupling should be via
conduction-electron-mediated [Ruderman-Kittel-Kasuya-
Yosida (RKKY)] interactions which will likely be weak
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compared to on-site coupling of the conduction-electron
spins. Indeed, due to the physical reality that f fse-para-
tions in these intermetallic compounds are larger than
that between the f and nuclear resonance probe sites, the
chances of any ESR enhancement via coupling to the f
electrons are small.

The paper is divided into two parts. The first discusses
the dipolar mechanism in detail, and the second discusses
the cancellation effects and the differences between ESR
and NMR. The second section relies upon Anderson lat-
tice formalism the structure of which is readily apparent
within recently developed mean field theories. These re-
sults should be reasonable so long as intersite spin correla-
tion effects are small and in that limit lead to essentially
the same conclusions arrived at in the first section. The
central results of this second section with little essential
modification also derive from a Green's function treat-
ment (which explicitly includes dynamical many-body
effects) with the assumption of an f-electron self-energy
which has dispersion only through one-body hybridization
effects. The contribution from electronic interactions is
assumed frequency dependent only. Details of this
derivation are deferred to an appendix. The paper in-
cludes two tables. Table I summarizes the relevant in-
teractions which can lead to relaxation in these materials,
and Table II summarizes the results of the dipolar rate es-
timates. Note that for both NMR and ESR considera-
tions, I suppose that the relaxation rate of the heavy-
electron moments is large compared to that of the probe
moment.

DIPOLAR COUPLING TO LIGHT NUCLEI

In an effort to clarify the physics of the problem, I have
estimated the nuclear relaxation rates induced by dipolar
coupling of 4f or Sf spin fiuctuations to the nuclear mo-
ment. This coupling mechanism represents a clear
difference between ESR and NMR, since electronic dipole
coupling is not expected to have sufficient strength (rela-
tive to electronic exchange energies) to be relevant. '

Note that the various relevant interactions for the problem
are summarized in Table I. For the purposes of this pa-
per, it is sufficient to limit considerations to crystals with
cubic symmetry at the 4f or Sf sites, and to compute
powder averages of the theoretical rates. It is not difficult
to extend the calculations beyond these assumptions as
the need arises.

In performing the calculations, I have assumed (i) that
the 4f or Sf ions possess point moments; (ii) that the
Ng, d-fold degenerate lowest-lying multiplets are described
by Hund's rules; and (iii) that the N, d-fold degenerate
Anderson model in the limit of unit occupancy adequately
describes the dynamics. '

We expect (i) —(iii) above to be very reasonable for Ce
compounds to the extent that intersite correlations are
negligible. However, for U compounds with less localized
Sf electrons, (i) will surely not hold, though one would
not expect corrections to create an order of magnitude
difference. Point (ii) could be objected to more seriously,
since the strong spin-orbit coupling in the actinides is
known to require an intermediate-coupling description.

However, some calculations appear to yield results closer
to LS coupling than the extreme jj coupling. ' Finally,
point (iii) could be objected to since a more complicated
Anderson model with 5f ', 5f, and 5f configurations
might be envisaged to describe U in a metal host. ' While
this may complicate the actual form of the ground state
relative to the simpler case presented by Ce, the basic con-
clusion of a lowest-lying singlet appears to still come out
of the calculations. Moreover, the spectrum of spin fluc-
tuations which depends primarily upon the details of the
ground configuration should not be significantly different
from the Ce case. In regard to all the above points, since
I am interested primarily in order of magnitude estimates
of the relaxation rates, I shall press ahead with these ad-
mittedly heuristic assumptions.

It should be noted that 1/T, T probes a sum over all
sites or equivalently all wave vectors of the dynamic sus-
ceptibility. ' In this sense, it is expected to be less sensi-
tive than neutron scattering to intersite effects which
could produce coherent effects in the long-wavelength lim-
it.

While the notion of dipolar coupling to f-electron spin
fluctuations as a source of strong nuclear relaxation is not
new, the present application (arrived at independently of
previous work) is new. One of the clearest examples of
the dipolar rnechanisrn in the literature is for the local
moment system (Gd, La)A12. ' However, the heavy-
electron systems differ from those studied previously in
that the f-electron magnetic moments remain strongly
damped all the way down to zero temperature. In con-
trast, the Korringa rate for, say, Gd is orders of magni-
tude smaller than that of heavy-electron systems for all
temperatures and possesses usually only a minute rem-
nant linewidth for T =0 K. ' We note that the high-
temperature relaxation of H in CeHq (Ref. 20) and of ''8
in CeRhiBi (Ref. 21) are apparently accounted for by di-
polar coupling to the high-temperature Ce local moments
in those systems.

We now proceed to compute the relaxation rate. Fol-
lowing Slichter, the dipolar induced rate for a particular
field orientation is written as

3 2~
2I(I+ 1) A'

In the above expression, P= 1 lkii T, I is the nuclear spin,
Z„ the nuclear partition function, and Z, ~

is the electronic
partition function. Hd;„ is factored into three terms in-
volving opposing nuclear and electronic spin flips, parallel
nuclear and electronic spin flips, and nuclear spin flips
with no accompanying electronic spin flips. These are
proportional respectively to the ~sherical harmonics
Yi&(h), Yiz(h), and Yzo(h), where h is the direction of
the applied dc field. Thus in a powder sample, the dipo-
lar rate can contribute only to the line broadening and not
Knight shift of the probe nuclei, since the average over
orientations in a powder sample wi11 kill all three of these
terms.
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The calculation proceeds with substitution of the
separate terms of the dipolar interaction into (1) with sub-
sequent factorization of the nuclear and electronic por-
tions of the matrix elements. Use is made of the fact that
the nuclear resonance frequencies are negligibly small
compared to any typical electronic energies, and averaging
is performed over the field direction to provide rate esti-
mates appropriate to a powder sample. I then obtain, for
a cubic system in the low-field limit

4k& 2 p 1 . X"(~,T)

d, p
h

Here, g"(co, T) is the absorptive part of the f electron spin
susceptibility, yz is the nuclear gyromagnetic ratio given
by (h is the applied field strength)

TABLE I. Interactions leading to magnetic relaxation of NMR or ESR probe moments in heavy-
electron compounds. The table contains nothing new and is included solely for pedagogical purposes.
The notation is as follows: S„ is the probe spin, S, is the spin of a conduction electron Wannier orbital
about the site, J„, is the probe —conduction-electron exchange, r is the Wannier orbital coordinate about
the probe site (r=r/r), P, (0) is the actual Wannier orbital wave function at the probe nucleus, I is the
orbital angular momentum of the Wannier orbital if it is of non-s-wave character, J„ is the electrostatic
exchange integral between a given conduction electron and an s orbital on-site, E, is the energy of that s
orbital relative to the Fermi level, J is the total angular momentum of a distant f-electron moment at po-
sition R relative to the probe site, D is the conduction bandwidth, kF is the Fermi momentum, and J,f is
the conduction-electron —to —f-electron exchange coupling. The formula for the core polarization cou-
pling is rather schematic and ignores mixed exchange between two different core s levels (Ref. 37). The
range function F(kFR ) in the RKKY interaction has a nominal asymptotic envelope of cos(2kFR )/R '
for a spherical Fermi surface, but of course will depend in detail upon the actual band structure and Fer-
mi surface of the material in question. The bounding of the on-site couplings by a (Z/n)' envelope (Z
the atomic number and n the principle quantum number of the valence electrons) follows by assuming
the short-distance behavior to be atomiclike and using hydrogenic orbitals as a crude approximation to
this behavior (Ref. 66). In reality, of course, screening of outer orbitals will tend to reduce Z to some
effective value depending upon the orbital, and thus the full atomic number must represent some kind of
upper bound. The point is that one expects greater overlap at the nucleus for greater atomic number
(Ref. 38). Hence, the on-site effects will eventually dominate NMR for large Z with all other electronic
and structural properties held constant.

NMR ESR

Contact exchange
—J„,S„.S, (0)

Orbital coupling
S„.I,

pep, vgpa
~e(

On-site (J„,)

s wave only

)'vrouw~ I 0.(0)
I

'
3

non s wave

dominant

Dipolar
S„~S, —3(S„.r)(S -r)

pxpxgpa
el

non s wave weaker than exchange

Core polarization

—J„,S„S,(0) IJ. I= X

Dipolar

3'xP xgqP a

RKKY

S„-Jf—3(S„-R)(Jf R)
R

Intersite (J„f)

small Z only weaker than RKKY

J„,J„fa F(R)S„-JfD
cos2kFRF(R)—
(kFR )

o.-0{1)
not S„.Jf for Ngrd & 2

not S„Jf for Ng„d &2
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~NMR
3 1V

p~A
(3)

where X(0) is the zero-temperature static susceptibility
and

and R indexes the 4f or 5f positions relative to the probe
nucleus. The rapid decay of the dipole summand makes
it sufficient for the purposes of our simple estimates to
truncate at the first shell of 4f or 5f ions. Corrections
due to further-neighbor shells will in no case considered
here make than a 10%%uo enhancement of the estimated rate.
I shall ignore the problem of inequivalent sites; for the in-
teresting case of RBe», where R represents rare-earth
atoms, all but one of the 13 Be atoms has two near-
neighbor "heavy electron" sites. Hence, the thirteenth
site is expected to have little intensity.

While in principle information about 7" is obtainable
through neutron scattering data, I can use the assumption
that the Anderson model applies to relate the low-
temperature limit of the spin-lattice relaxation rate direct-
ly to the linear specific heat coefficient which characterizes
the heavy electron behavior. I proceed in two steps.
First, the Shiba relation connects X"(co,T=O)/cu to the
low temperature static susceptibility. For a lowest-lying
Xg,d-fold degenerate multiplet, the relation is

X"(co, O)
(4)

60~0 %CO

Ngrd 3y(0}
Ngrd —1 vr k13

(6)

We emphasize that (5) and (6) apply only to the extent
that on-site effects dominate the physics and thus applica-
tion of this analysis to any materials which magnetically
order is problematic. I also emphasize that in this limit
where intersite correlations are small, (5) and (6) hold
only in the limit of extreme unit occupancy. However,
this latter point practically excludes only those heavy elec-
tron systems with "degeneracy temperatures" of the order
of thousands of kelvin, and thus does not present a prob-
lem in this context.

We thus are led to the expression

(P.ff/PB }
grd a

e indexes the states of the ground multiplet and J, is the
z component of the total angular inomentum. (We allow
for the possibility of crystal-field splitting within a Hund s
rule multiplet. ) The next step is to use the Wilson ratio to
eliminate X(0) in favor of the linear specific-heat
coefficient y(0) according to

lim
T~O

2 2
1 4m. A+Pa 2

T) T . h 3 Ak~
XN

1

R
3y(0)
w k~

=6.33& 10 yz
Ngrd (jeff/P B }

(Ng, d
—1)

1

R
3y(0)

2~ kg

the latter holding in cgs units. We have applied this for-
mula to several compounds and tabulated the results
(Table II). For CeBe, 3 and UBe, 3, all estimates are re-
markably close to the observed low-temperature rates, the
values being rather insensitive to the choice of the lowest
multiplet.

It seems likely that at least part of the relaxation of
Al in CeA12 is due to dipolar coupling to the Ce spin

fluctuations. However, it is difficult to estimate the ap-
propriate y(0} values for CeAlz and CeB6 because of the
presence of low-temperature phase transitions (antiferro-
magnetic for CeAlz and antiferroquadrupolar for CeB6). I
have set bounds by noting (i) that each compound has a
quasielastic linewidth I „,„, (T=O K) of order 1 meV or
less. ' This sets a lower bound of —1000 mJ/mole K
on y(0) since both empirical correlation plots and Ander-
son model theory give y(0) —I „,„,(0). It should be not-
ed, however, that some of the line broadening is likely due
to antiferromagnetic intersite exchange. (ii) In the dilute
Ce limit of (Ce, La)Alz and (Ce, La)B6, physical proper-
ties show characteristic (Kondo) temperatures of order 1

K with correspondingly large linear specific heat
coefficients of order 10 mJ/(mole Ce) K The extra-

polation from dilute to concentrated limits is justified par-
ticularly well for Ce in LaA12, where near-perfect scaling
with Ce concentration is observed for the susceptibility
and resistivity at sufficiently high temperatures. Obvi-
ously, the neglect of intersite correlations renders these es-
timates considerably more uncertain than for CeBe» and
UBe )3.

It should also be noted that the presence of a sizeable
isotropic component to the Knight shift in powder sam-
ples of CeA12 proves the presence of other coupling mech-
anisms (presumably RKKY), since the average over orien-
tations of dipolar shifts is zero. The anisotropic com-
ponent of the Knight shift in CeB6 has been analyzed in
terms of the dipolar coupling which appears to provide a
perfectly adequate account. The magnitude of the an-
isotropic components [proportional to Y2O(h)] is of about
the same size as the isotropic piece.

One may well ask why any RKKY coupling between
the nuclei and 4f or 5f moments appears to be so ir-
relevant in the RBe» systems. The answer goes roughly
as follows. Since both RKKY and dipolar interactions
fall off nominally as 1/R, and since both must ultimately
contain factors of 8~@&pz /3, the dimensionless ratio of
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TABLE II. Estimated dipolar contributions to spin-lattice relaxation in various cubic heavy-electron systems. These estimates are
based upon Eq. (2). The degeneracy Ng„d of the assumed lowest f multiplet is in parentheses beside the state; the nuclear moment ) N

(units of pN) appears beside the probe nucleus; the nearest-neighbor f-site coordination number (q&) appears beside the nearest neigh-
bor f-site distance (aN). [The gyromagnetic ratios and structural information can all be obtained from well-known references (Refs. 67
and 68).j As described in the text, the rate estimates include nearest-neighbor f site contributions within a point ion model. The f dy-
namics are assumed described by the SU(Ng„d) Anderson model (with one exception; see footnote a below). The estimates are expected
to work well only for light nuclei (see the preceding table).

Material GrOund Mult (Ng d)

y(0)

(mJ/mole K )

Nucleus

a (q)
Tl T

dip

( 1/sec —K)

CeBel3

UBel3

CeSn3

CeA1~

CeBe

4f', J=& (6)
4f', j=~, I (4)
4f', j =~r, I 7 (2)

expt. (Ref. 52)

Sf', j=4 (9)
5f', j =4, I 3 (2)'

Sf', 1= ~9 (10)
5f3 j=z I e (2)

expt. (Ref. 4)

4f', j =~5 (6)

expt. (Ref. 41)

4f', j=~, 17 (2)

expt. (Ref. 34)

4f', j= ~5, I 8 (4)

2.54
1.99
1.24

3.58
0.00
3.62
2.31

2.54

1.24

1.99

115 (Ref. 69)

1000 (Ref. 5)

53 (Ref. 69)

10'-104 (~)c

10'-104 (~) c

Be (0.78)

Be (0.78)

" Sn (2.07)

Al (1.44)

''8 (2.56)

3.0(2)

3.0(2)

3.33(4)

3.34(2)

3.05(4)

0.0029
0.0034
0.0057
0.0030

0.25
& 0.14
0.23
1.50
0.19

0.0047
20.0

0.78—78.0
25.0

4.9—490.0

'Relaxation due to Van Vleck fluctuations, cf. Eq. (8).
J=

& quartet states depend in detail upon the level splittings (Ref. 42).
'Lower bound from quasielastic linewidth, upper via extrapolation from dilute limit; see text for discussion.
Only the three equivalent sites nearest to Ce atoms are included.

the two interactions between a given nucleus and a f
electron moment at a distance R is roughly

7 3
I(nuclear-electronic dipole) A.F

(8)
I(nuclear-electronic RKKY)

~

l((0)
~

~~
~
J,f /D

where J,f is the conduction-electron —f-electron exchange,
D is the conduction bandwidth, kF is the Fermi vector,
and P(0),a is the effective overlap of the conduction elec-
tron Wannier function at the nuclear site. This overlap is
either via direct contact (for s-wave conduction electrons),
core polarization, ' or direct dipole or orbital coupling
(for non-s states). ' In any case, for small atoms, the
effective squared wave function is presumably of order
a o (assuming that the short-distance behavior of the
Wannier orbitals is nearly atomic) and so the product
with kF is no more than say 10. The ratio J,f/D is ex-
pected to be, say 0.03 or so, so that one would expect, for
small atoms, that dipolar coupling should be reasonably
strong relative to RKKY. However, for all sources of
P(0),a, the overlap will increase with atomic number, with
a naive bound set by the hydrogenic result of (Z/n) (Z
the atomic number and n the principle quantum number
of the conduction electrons). Thus the dipolar mechanism
can only be relevant in small nuclei.

Indeed, it is clear from Table II that the relaxation of" Sn in CeSn3 (Ref. 41) cannot be accounted for by the
dipolar mechanism. This is very plausible because the in-

1
lim
T-0 T) T

dip

k
) NPN~B ~ 6 r(r '+ z')

Note that the factor I /(I +b, ) is bounded above by
I/2A. Assuming I =1 meV (motivated by the specific-

trinsic relaxation of the Sn nucleus (as measured in, say,
metallic Sn) is already quite large, of order 30/sec at 1 K.
Since this rejects the local character of the Sn-electron
Wannier functions which I would not expect to change
dramatically in the intermetallic host, the on-site coupling
induced rate is likely very nearly comparable to that of
CeSn3.

It is worth noting a final possibility for the UBe&3 esti-
mate. If the relevant stable 5f configuration has two elec-
trons rather than the usually assumed value of three, then
the cubic field at the U site can split the J =4 ground
multiplet with (possibly) a stable I ~ doublet for the
ground state. Such a state has vanishing magnetic di-
pole moment but can couple magnetically to excited I 4
and I

& triplets. If one assumes that interactions with con-
duction electrons proUIde a broadening I for such a level
and the presence of an excited I 4 triplet level at energy 6
with width I, one obtains a dipolar rate of



35 RELAXATION OF NUCLEAR AND ELECTRONIC MAGNETIC. . . 6509

heat data of Ref. 5), b, =15 meV (motivated by a compar-
ison to the available neutron scattering and Raman spec-
tra) ' we thus obtain the upper bound of 0.14/sec K
quoted in the table. More extensive theoretical considera-
tions are underway, and the relevance of this particular
model to other properties will be reviewed in a subsequent
work.

CANCELLATION AND COHERENCE EFFECTS

Finally, it is worth making contact with the cancella-
tion arguments put forward previously to explain, among
other things, the ESR results for Er and Dy in UBe».
The arguments put forth were based upon general many-
body considerations, specifically, the cancellation of
wave-function renormalization factors (mass enhance-
ments due to the frequency dependence of the self-energy)
in such quantities as the conductivity, ultrasonic attenua-
tion amplitude, and spin-lattice relaxation. I do not
dispute the applicability of these arguments to the first
two cases where they may indeed be relevant. Also, as
pointed out in the article, the cancellation arguments
work only to the extent that "scattering of conduction
electrons" provides the dominant coupling to the nuclear
or impurity electron moments. For example, in the case
of CeSn3, since the effective on-site coupling is quite large,
one can expect the cancellation arguments to apply
reasonably well. Independently, a similar viewpoint has
been put forth, though the arguments which follow pro-
vide a more detailed picture of the physics of the problem.

Such arguments can be put on a particularly transpar-
ent basis via the one-body resonant level lattice model
which has emerged from various mean-field treatments as
a description of the Anderson lattice in the low temper-
ture hydrodynamic regime. The effective Hamiltoni-
an is

has states given by

Dka=ukcka +Ukfka (12)

with uk ——(Ek —F.„)/[(Ek —s„) + V ]' . The density of
states of the lower band is

N(Ek )=N(s(Ek ))/uka, (13)

where N(e(Ek )) is the bare conduction electron density
of states evaluated at the energy c(Ek ) equal to
Ek V /(c„E—k ). —

Now I assume simple exchange coupling of the probe
spin to the original conduction and f-electron quasiparti-
cles described by Eq. (10). Explicitly, for probe spin S„, I
assume a contact coupling with the ordinary conduction
states

tures and high fields, but those conditions are not met in
the experiments of interest here; for example, in the ESR
experiment of Ref. 6, the spectrometer frequency was set
typically at 9.3 CzHz, or about 0.5 K in temperature units,
small compared to the characteristic temperature of UBe»
of about 10 K.

While the above model is suggested by the various
mean field treatments of the Anderson lattice problem,
essentially identical conclusions to those discussed below
also follow from a Green's function treatment where the
dispersion of the f-electron self-energy (apart from the
one-body hybridization terms) is ignored. We defer this
derivation to the Appendix, since the physical ideas are
clearly exposed within the framework of the mean-field
theory.

The Hamiltonian of Eq. (10) is easily diagonalized.
This simple form results in two hybridized bands, the
lower of which has energies EI,. given by

Ek. =1/2[(&k+ &. ) —I (&k —&, )'+4 V 'l'"
I

H =g [ekckacka+ e„fkafka+ V(ckacka+H. c. )] .
k, cr

(10) C
~exch

J„,
CSn Wp»C kpCk'v

k, k', p, v

(14)

Here, c& creates a normal electron quasiparticle residing
in a band of width D of wave vector k and spin 0., and
fk creates a heavy (f-electron) quasiparticle. It is as-
sumed that c,„&V /D —T0I&g,d, where T0 is the one-ion
Kondo temperature. (Note that the tacit assumption of
Ng„d fold degenerate conduction states is really a theoreti-
cal convenience here and consequently I stress only the
qualitative aspects of normal conduction electron relaxa-
tion of magnetic moments in what follows. Obviously
this sidesteps the question of how many bands form, but
in the absence of gaps or pseudogaps in the spectra at the
Fermi level, I would expect the model to be qualitatively
reliable. ) Assuming no k dependence to the hybridization
V, then the mass enhancements are due to wave-function
renormalization, as assumed in the paper concerning can-
cellation arguments. It has been demonstrated previously
that the mass factors explicitly cancel in a calculation of
the electrical conductivity for this model. Note that
while a full calculation should include fluctuation correc-
tions to the mean field results, these will produce no qual-
itative alterations in the static limit to the conclusions that
follow. They are a must for calculations at finite tempera-

and a coupling to the f states given by

1H,„.a ——— g Sn.O„,jnf(k k)f„gk», —

where the exchange integral is given in terms of the site
basis as

J„f(k—k')= g e'" "' J„f(R) .
R(~0)

(16)

J„(k —k') = uk uk J„,+ Uk Uk J„f( k k') . —(17)

In terms of this intraband exchange, the probe relaxa-
tion rate in the limit of low-frequency, field, and tempera-
ture is given by the formula

The relevant combination of exchange integrals for the
low temperature and frequency relaxation of the probe
spin in terms of the hybridized quasiparticles is that for
intraband exchange within the a band, since there will be
a gap for excitation of interband exchange processes at
low temperature and frequency. The intraband exchange
is given by
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I
lim
T 0 T]T (18)

The above expression can be readily manipulated into the form

T 0 Ti T 3(gpB ) f1 Ep Jng

V [Jn2f ]FS [I f ]FS+
Er J2 (193

N(e(0))' 4J
4 ul, - 1tc )

ug
(21)

the factors in the denominator coming from wave-
function renormalization modification of the density of
states, and the factors in the denominator corning from
the renormalization of the interaction between the probe
and conduction electron moments. The relaxation rate is
different from that in the absence of f electrons only by
the factor [N(E(0))/N(0)] . This would not be expected
to lead to anything like an order of magnitude difference,
and rather than lead to enhancement is more likely to
lead to suppression of the relaxation rate due to the fact
that E(0)-D and one expects the density of states near
the band edges to smaller than that in the middle. How-
ever, any quantitative estimate of the effect is beyond the
scope of this paper.

We note the conclusions in the above paragraph are
unmodified with respect to the cancellation of the effective
mass factors (identified as 1/uk ) when realistic dispersion
of the matrix element V is allowed; a calculation which
includes the possible dispersion of the hybridization gives
the following result:

where the square bracket Fermi surface (FS) average
denotes, e.g. ,

[~nf ]FS j f 2
I f (k —k')

I Ei. =Eg =0
dkdk'

(41r

Here, of course, k=k/k is the direction of k. I note that
the factor V/e„ is approximately (D/To)', which is pre-
cisely the square root of the effective mass ratio.

Equation (19) has two interesting limits. The first case
is when J„f tends to zero, so that all relaxation of the
probe spin is due to on-site coupling the normal conduc-
tion electrons. I assert that this is the limit relevant to
impurity based ESR in most instances, and I will return
to that point later in the manuscript. This limit is where
the many-body cancellation arguments apply since the
effective mass explicitly drops from the expression. Very
explicitly, on converting sum to integral of Eq. (19) con-
tains the following combination of mass factors in this
limit

VI,- ——Vg —2
ak

(23)

D[Jnf ]FS

0
(24)

In this limit, the f-electron spin fiuctuations dominate the
relaxation of the probe moment, and this is the case for
typical NMR probes as I have argued in the first section
of the paper and will consider again below in a different
context. In fact, the relaxation rate in this limit is little
different from the incoherent rate calculated in the previ-
ous section. To demonstrate this, I note that explicitly
the relaxation rate tends to

NgrdirkB N(E(0)) V

~r

1 Pef[
lirnr-0 Ti T 3(gpB)-'

Peff ~kB [Jnf ]FS

3(gPB ) & Ng, d To

The average of J„f is given by

[Jnf ]FS

It is understood that vI,. in the above expression is to be
evaluated at ck ——c0. Note that depending upon the sign of
the k gradient of the hybridization, the numerator of Eq.
(22) could lead either to suppression or enhancement of
the on-site relaxation in the presence of the f electrons.

It should be pointed out that in Ref. 8(a), a similar cal-
culation was carried out in this limit where on-site relaxa-
tion dominates. The differences from the calculation
presented here are (i) the calculation was done for a single
rare-earth heavy-electron site (the modifications to the
conduction-electron Green's function due to scattering off
of the distant site were considered), and (ii) the resonance
parameters were not fixed in the self-consistent fashion
implicit here, as a physical picture closer to the strongly
mixed valent limit was envisioned, with the bare f level
approaching the Fermi level.

The second interesting limit for spin-lattice relaxation
of the probe moment given by Eq. (19) is when the
probe-f exchange obeys the inequality

1

lirn
T 0Ti

(22)
sin(ko

I
R —R'

I
)

nf ]FS r Jnf( ) Jnf(
RR'(~0I ko R —R'

Here T
&

is the spin-lattice relaxation in the absence of hy-
bridization, Ti is the relaxation time for V&0, the angu-
lar brackets imply an angular average over the respective
Fermi surfaces, vk is the conduction electron velocity for
V=0, and vi, measures the modified velocity and is given
by

r

J f(R) 1+0 1

R(~0) (kOa )
(263

This result follows since the factor [sin(kr)/kr] acts like
a Kronecker 5 function. In the above, k0 is defined as the
wave vector corresponding to E(0). Thus, the mean-field
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model reproduces the incoherent picture (sum on sites of
the on-site value of Y"(co)/co) in the parameter regime
determined by Eq. (24) to within factors of order unity
[Eq. (26) giving only a few percent correction].

The dipolar mechanism which is central to the paper is
an obvious example of where this limit implied by (24) ap-
plies, and although the above result is derived strictly for
exchange interactions it is straightforward to extend the
derivation to dipolar coupling. It is clearly the matrix ele-
ment effect implicit within (25) which prevents the Be mo-
ments from having a millionfold enhancement as naively
guessed on comparing the specific heats of UBe» and
ThBe».

The probability of a weak matrix element in the case of
ESR, as alluded to earlier, is, I believe, the most likely
reason that the impurity electronic moments are not
effective probes of the heavy electron state. To clarify this
point, let us assume that the interaction between the im-
purity probe and the f electrons is indeed of the RKKY
form. Then, roughly, if I put the impurity at the origin,

J„,
„f(R) = IaKK Y(R),J,f

(27)

where J,f is the bare conduction-electron —f-electron ex-
change interaction, and I&KK& is the RKKY interaction
which would have existed between a heavy electron atom
at the probe site and the f moment at R. One expects
this quantity to scale roughly with the paramagnetic tran-
sition temperature Tz. Hence, we can estimate the maxi-
mal f-electron enhancement of the ESR relaxation rate as

V [Jnf ]Fs T
J2 TQ

1 D

&fJ
where qz is the nearest f-shell coordination about the im-

purity site. While one can generally expect D/J, f -20, in
those compounds like UBe» and CeBe» which do not
magnetically order, it is probably the case that
Tp/To &0. 1, say, so that it is unlikely that the maximal
f-electron enhancement will exceed unity. "Best case" es-

timates of (28) for UBe» and CeBe» gives upper bounds
of 10 and 0.025, respectively, for the maximal enhance-
ment, assuming the simplest free electron form for the
RKKY interaction, a conduction bandwidth of 3 eV,
k+=1 A ', and J,f/D =0.05. Clearly, a reliable calcula-
tion awaits a reliable calculation of the band structure of
these materials taking the near integral occupancy of the f
electrons into account. This is a project for the future.

It should be noted that Eq. (28) suggests that ESR on
those materials which magnetically order might well pro-
vide a more fruitful probe of the heavy-electron state,
since the rough criterion for magnetic order is that
Tp /Tp ) 1. ' ' Of course, in that limit it would be very
important to take account of the intersite correlations in
evaluating Eq. (18), which goes beyond the scope of this
paper. Some specific suggestions would be CeA12, CeB6,
U2Zn&7, and UCd». While the antiferromagnetic fluctua-
tions above the magnetic transitions in these materials
might complicate the interpretation, it is possible to
suppress the transition by doping (La or Th) on the (Ce or
U) sublattice. For the first two materials, this could lead

to a rather clean probe of very heavy electrons since the
characteristic temperature is of order 1 K for all concen-
trations of Ce atoms.

Finally, I contrast Eq. (28) with the maximal f-electron
enhancement for a heavy nucleus probe moment. In that
case, as discussed in the preceeding section, I cannot ex-
pect dipolar coupling to be relevant and RKKY again
must dominate. The expression corresponding to (28) is

4 2 6
V [~nf ]Fs A D Ts &F.

(29)
72 J T~ nC max ~E

where qz is the nearest f-shell coordination about the nu-
cleus at a distance az, and az is the corresponding dis-
tance in the ESR case. The "best case" analysis corre-
sponding to that below Eq. (28) yields values of 100 and
0.25, respectively, for the maximal enhancements of
UBe» and CeBe», compared with the observed enhance-
ments of order 1000 and 10. '

While the exact power law of the distance ratio in Eq.
(29) should not be taken too seriously, since it will, in

general, depend upon direction and the actual shape of
the normal conduction electron Fermi surface, the point
that the simple distance dependence makes such an enor-
mous difference in the observed relaxation behavior is
clearly demonstrated. The NMR probe sites, as witnessed
in Table II, sit typically at about 3 A from the heavy elec-
tron sites, while f-f spacings are usually 4—5 A, the latter
holding for UBe». The ratio of (3/5) is about —,', . One

might hope to see significant enhancement in ESR on ma-
terials where the f fspacing is-unusually small unfor-
tunately, this will usually either correlate with lower
specific heat coefficients due to increased hybridization or
in more anisotropic cases, magnetic order due to
enhanced nearest-neighbor exchange [as happens in
CeRh3B2 (Ref. 53)].

SUMMARY

In summary, I have shown that the dipolar coupling of
4f or 5f spin fluctuations to Be nuclear moments is
sufficient to understand the enhanced spin lattice relaxa-
tion rates of UBe» and CeBe». This mechanism cannot,
however, play any significant role in the relaxation of
heavier nuclei (such as " Sn in CeSn3) which have already
strong intrinsic relaxation due to on-site coupling to the
conduction electrons. Neither can the dipole mechanism
make a significant contribution to the relaxation of say, Er
moments in UBe», where only RKKY coupling with the
heavy electrons and on-site exchange with the normal
electrons are feasibly strong. The cancellation arguments
put forth to understand the lack of relaxation enhance-
ment in ESR apply only to the contact coupling to ordi-
nary conduction electron states and clearly are less
relevant in the NMR case, for light nuclei at least.
Should the on-site couplings (J„„schematically) be very
strong, then the relaxation rate will be subject to the can-
cellation arguments, apart from a modification of the en-
ergy at which the bare density of states is evaluated.
Rather than being evaluated at the zero hybridization Fer-
mi level, it is evaluated near the band edge which should
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tend to lead to suppression since for most bands, the den-
sity of states is higher in the middle of the band. In addi-
tion, if the hybridization is dispersive, while the mass
effects still cancel, the rate may be enhanced or
suppressed depending upon the k gradient of the hybridi-
zation at the Fermi level. Any direct interaction between
4f or 5f moments and probe spins can in principle probe
the enhanced, heavy electron density of states to the ex-
tent that the range dependence (nominally —I /R for
both dipolar and RKKY interactions) of the matrix ele-
ments is not too great. This range dependence is clearly
of great relevance for both ESR and NMR where there is
typically a large-probe —heavy-electron site separation in

0
the former case of about 4—5 A and usually a separation

0

of only about 3 A in the latter. The lack of success so far
in using ESR to probe the heavy-electron state might be
turned around in those heavy electron compounds which
magnetically order, since the maximal enhancement due
to the f electrons is roughly proportional to
(D /J f ) ( Tp /To ), where Tp is the paramagnetic transi-
tion temperature, D is the conduction bandwidth, and J,f
is the conduction-electron exchange interaction. Specific
candidates for such experiments are CeA12, CeB6, CePb3,
UqZn]7, and UCd[].

Note added. In the course of submitting this article for
publication, two more facts have been brought to light.
First, the Knight shift data for single crystal UBe» have
been analyzed by MacLaughlin and Clark and it is clear
that the isotropic component is of roughly the same size
as the anisotropic component which may be presumed
due to dipolar coupling. This means that some of the re-
laxation is due to the same mechanism responsible for the
isotropic shift, which may well be RKKY interactions be-
tween the probe nuclei and the f electrons. Second,
ESR measurements on impurities in UPt3 have yielded
similar results as for the corresponding impurities in
UBe». Finally, I have recently received a copy of work
prior to publication from Simanek and Sasahara which
arrives at similar conclusions concerning the relevance of
cancellation effects in the limit of strong on-site coupling
via a Green's function formalism closely related to that of
the Appendix. I thank these authors for sharing their re-
sults prior to publication.
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APPENDIX: GREEN'S FUNCTION
DERIVATION OF LATTICE RESULTS

+U g nfR BfR (A 1)

We assume U»
~ ef ~

&&I =aN(0)V to put us in the
asymmetric local moment regime.

As is well known, the electron Green's functions for
spin index o can be written formally as a matrix with
"isotropic" indices a running over c, f, and entries given

by

G„(k,co, T) =[co Ek —V /—(co —ef —X(k, co, T))]

(A2a)

Gff (k, co, T)=[co—c.f —X(k, co, T) —V /(co —E& )]

(A2b)

Gf, (k, co, T)= VG,, (k,co)Gff(k, co, T) . (A2c)

Several authors have utilized these forms. In the
above, G,, (k, co) = [co—Ek ] ' is the noninteracting
conduction-electron Green's function, and X(k, co, T) is
that part of the f-electron self-energy arising from ffin--
teractions (as opposed to the one body self-energy term
arising from mixing). As such, the imaginary part of X
obeys standard Fermi-liquid phase-space arguments and
thus vanishes quadratically in co at zero temperature.

The important point about X(k, co, T), as has been noted
elsewhere, is that for large U, one expects the local in-
teractions to dominate and thus for this self-energy to be
rather dispersionless. ' Dispersion becomes relevant to
the extent that intersite interactions (of necessity mediated
by conduction electrons and thus loosely identified as
RKKY interactions) are strong. In the heavy-electron su-
perconductors, valence Auctuation materials, and heavy-
electron materials (which show no order of any sort, it is
apparently the case that this situation holds at least as a
zeroth-order approximation coming in from the high-
temperature side.

With this assumption about the structure of X, I can
make connection with the parameters of the mean field
resonant level lattice. I define c.„as

In this appendix, I derive a formula which agrees in
essential detail with the mean-field theory result of Eq.
(18) by a Green's function approach where it is assumed
that the interaction piece of the f:electron self-energy is
dispersionless. Thus the derivation is expected to be
relevant to the extent that intersite correlations between
the f-electron moments are small; i.e. , it is most appli-
cable to the heavy electron materials which do not mag-
netically order.

The model Hamiltonian is the full Anderson lattice
Hamiltonian, given by

H =g [eke&~c«+ eff&~f1 ~+ V(c&~fl ~+H. c. )]
k, cr
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ef+X(co=0, T=O)
Er= (A3)

ar
a

co, T=O

and assume c., —TO. I define V via

V =V (A4)

and assume V -DT0. As before, the parameter s(0) is

V /c, Yosida and Yamada have noted that there will be
a contribution to the wave-function renormalization from
equal spin interactions (ruled out in the totally dispersion-
less self-energy model) to the extent that the susceptibility
of the f electrons possesses momentum dependence.

It is a straightforward exercise in finite-temperature di-
agrammatic perturbation theory to evaluate the relaxation
rate of the magnetic probe. The basic result which has a
well-known structure' (generalized here to include the
"isotopic" indices) is

lim =, g J„(q)J„~(q)
k~

r-0 T) T ~,(gps)

X" pg(q, ~, T)
(A5)

The relevant diagrams for J" are shown in Fig. 1 (the co differentiation being taken account of in that figure). I shall elu-
cidate the differences between J (q) and J(q) [Eq. (14)] below.

In evaluating the low-frequency dynamic susceptibility ratios which appear in (A5), I follow Shiba in noting that it is
the singular part of the Green s functions which appear between the vertices in Fig. 1 which will contribute. One can
follow standard lines of analysis to show how the product separates into a regular and singular part for low frequency
co according to

G & (p+q)G~ ——
~

G & (p+q)G~ (p)]„s+2icu5(pa)p ~ (p+q)p~ (p) .

In the above, p =(pa, p) and q =(co,q) are four-vectors and the spectral functions p ~ (p) are defined by

p ii (p)= —ImG & (p0+iri, p), ri~O+ .

(A6)

(A7)

The di6'erentiation with respect to co breaks a line in each diagram of Fig. 1, and therefore, one has vertex corrections at
each vertex. The vertex function A (p +q,p ) is just o for a =c, and is given, for a =f, by

Af (p+q, p)=cr+g f dp'If (p,p', q)Gff (p'+q)Gff (p')Af (p'+q, p')

= a+y 'af dp'I ff 'Gff '(p+q)Gff (p'), (A8)

where Iff and I ff, are, respectively, the irreducible and
reducible four-point interaction functions of the f elec-
trons. For q~0 with co/

~ q i
~0, (A8) is solved by

r

I find that (q=k —k')

1
lim
T 0 T]T

2
jeff

3(gus)'
kgNg, d

AÃ,

A =o 1 — + +O(T /D)
oaf. , Bhf

=crk.f(q=0), (A9)

X g J„(q)J„&(q)A. (0)
k, k', a, P

Xp ~ (k, O)pp (k', 0)kp(0), (A12)

p,s Af(0)
off (0)=

BX1—
a

N(e(0)) V
(A10)

Inserting (A6) and (A9) into (A5) and defining the re-
duced vertex function gf(q) by

Af(q) Af (O, p, O, p+q)
kf (0) Af (0)

(A11)

where hf is a field which couples only to f spin o. (see
Ref. 58). In terms of this vertex, the static susceptibility
is given by

where A., (0) is identically one and I define

J„f(q)=gf(q)J„'f(q) . (A13)

Note that (A13) is the desired relation between the bare
interaction and the quasiparticle interaction given by Eq.
(14).

Note that the diagram of Fig. 1(d) which represents a
possible nontrivial vertex correction to the cccc term in
Eq. (A5) can in fact be incorporated into the ffff term
with a suitable redefintion of J„f. Hence, I shall assume
that all such conduction-electron-mediated interactions
between the probe and f electrons are included in J„f at
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0
Gcc

Gcc q = lim (~,g)
GJ ~O

p+q

p, o- p, o

~nf (q) Jnf (q)

p qI~ p+1
~8

Jnc
lpga

p +q, Q

&nc

(c)
p, o p cr

I I

p

=cr ~ lg ' + hg(q) = cr- II-4
p cT

(e)
P cT

FIG. 1. Relevant diagrams for Green's function of 1jT&T. The correspondence of the various lines to the propagators of Eqs.
(A2a) —(A2c) is shown at top. The wavy line with an m at its tip corresponds to differentiation by m as must happen according to (A5).
Figure 1(a) corresponds to the normal" on-site relaxation, Fig. 1(b) corresponds to mixed relaxation which exists in the presence of
hybridization due to the "off-diagonal" propagators of Eq. (A2c), and Fig. 1(c) corresponds to the magnetic probe relaxation induced

by the spin fluctuations of the f electrons. Note that while Fig. 1(d) shows a potential nontrivial vertex correction to Fig. 1(a), it is

more properly incorporated into a redefinition of the bare J„~ as discussed in the text. The relationship between the three point vertex

AI and the interaction functions Iy (irreducible four-point interaction) and I ~ ~ (reducible four-point interaction) is illustrated in

Fig. 1(e).

the outset and in that way avoid double counting dia-
grams.

Since the spectral functions of (A12) are constrained to
the Fermi surface, then the Fermi liquid phase space con-
siderations enter, and the spectral functions defined by
(A7) tend to 5 functions. Explicitly,

m6(e„—V /Eq)
p//(k, co=0, T=0)=

ar
8co T O

(A14b)

—V
ppf(k, co=0, T=O)= p/I(k, co=0, T=O) . (A14c)

p„(k,co=0, T=0)=m5(Ek —V /E„), (A14a)
Substitution of (A14a) —(A14c) into (A12) yields the

desired expression for the relaxation rate which is

r

lim R (A15)

where the "%'ilson ratio" R is given by

A,/(0)
(A16)

The only diA'erence from the mean-field result is the ap-

pearance of the factor R. Since R is expected to be of or-
der unity and since the mean-field theory is apparently
capable of including R once Gaussian fluctuations are ac-
counted for, ' then I conclude that there is no essential
discrepancy between the Green's function approach and
the mean-field approach.

Of course, in practice, there can be an important renor-
malization of the interactions through (A13). For a
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gf(k —k') = g (21+ 1 )[g ]tPt(k. k ')
1=0

(A17)

Peforming the same sort of analysis that leads to (24), I
find that [jt(x) is the lth spherical Bessel function]

dispersionless self-energy one might expect the reduced
vertex gf(q) to be constant over the Fermi surface. To
gauge this notion, for simplicity I assume a spherical Fer-
mi surface and expand in spherical harmonics

suit in nonlocal corrections as jt (ko
~

R—R'
~

) acts as a
Kronecker 5 function which peaks near R=R'+5t,
where

~
5t

~

&0. Thus the coefficients in the expansion
(A17) provide some crude measure of intersite correlation
for I & 0, to the extent that they do not vanish.

In closing, I note that in the limit implied by (22), the
spin lattice relaxation obeys a lattice analogue of the Shiba
relation to the extent that the self-energy is dispersionless,
since (A16) can be rewritten as

l Jnf]FS g ( —I)'(2l +1)[kflt
1=0

l
lim
T~o T) T , [&(0)]' V"f]Fs

(gPB ) g«jef

I f(R)jt'(ko
l

R —R'
l

)I'f(R )

(A 1 8)

Truncating at 1=0 reproduces (24); keeping 1& 0 will re-

(A19)

This should be compared with (4), noting that all other
factors just give the hyperfine field constants, albeit with a
possible nontrivial renormalization of the bare hyperfine
couplings.
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