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Weak localization of photons and backscattering from finite systems
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We solve exactly the equation for diff'using photons in a slab and calculate the backscattering
intensity which results from weak localization interference. It is shown that the shape of the
backscattering peak depends strongly on the finiteness of the system. Our analysis establishes the
relationship between the shape of the backscattering peak and the photon loop size.

The phenomenon of weak localization of electrons' was
recently applied to photons. Weak localization of elec-
trons leads to quantum interference effects which result in
new transport phenomena. The quantum interference
effects are caused because of the wavelike character of the
electron wave functions. It is therefore expected that these
interference effects will show up even in classical systems
and, in particular, in light scattering. The first observa-
tion of weak localization of photons was for polystyrene
spheres suspended in water. A coherent backscattering
peak of a triangular shape was observed and theoretically
explained. Very recently it was found ' that the weak lo-
calization effects of photons in a disordered solid are rich-
er than for a liquid. The backscattering interference pat-
tern results in amplitude fluctuations similar to the phe-
nomena of universal fluctuations in the electrical conduc-
tance of a disordered metal. These intensity fluctuations
are characterized by unique statistics which change with
the degree of disorder. The problem of ensemble average
of conductance fluctuations seems to have a photonic ana-
log. Performing an ensemble average of the scattered in-
tensity fluctuations for a disordered solid results in a
coherent narrow backscattering peak, similar to the ob-
served peak for disordered fluids. The shape of this peak is
triangular, in agreement with the theory of Akkermans,
Wolf, and Maynard.

In this Rapid Communication, we study finite-size
efIects on weak localization of photons. We solve the
equation for diffusing photons in a finite slab with t~o
boundary absorbing planes and find that the shape of the
backscattering peak depends strongly on the width of the
slab. We also calculate the width of the backscattering
peak as a function of the length and the width of the sys-
tem. It is shown that finite-size effects eliminate the tri-
angular shape present for infinite systems.

Our present analysis establishes the relationship be-
tween the classical photon trajectories and the coherent
backscattering peak. The removal of large loops results in
a wider peak. The importance of this effect is that the as
yet unobserved factor of 2 in the backscattering intensity
enhancement, which is predicted by the scalar theory of
weak localization, will now be easier to test experimental-
ly, even with a milliradian resolution. We use the diffusion
approximation to describe the photon motion in the
disordered medium and study the finite-size effects by in-
corporating in the theory t~o boundary conditions. The
backscattering peak is caused by interference of two pho-

ton trajectories. Each is the time-reversed trajectory of
the other. The finite slab removes large loop-size trajec-
tories and therefore rounds off the sharp peak.

In Fig. I, we plot the backscattering intensity I(8,zo) as
a function of the backscattering angle 0 for different
values of the width of the slab zo and the wavelength X.
Curve a corresponds to zo pp, a case calculated by Akk-
ermans etal. Curves 6-d correspond to zo/X=400, 80,
and 16, respectively. It is clear from the figure that the
effect of the finiteness of the slab is to eliminate the tri-
angular shape. We find that the half-width of the rounded
portion of the peak is given by

where A 3/2tr.
In Fig. 2, we plot the backscattering peak 1(8,L) as a

function of L (the size length of the surface). Similar
effects are found. The half-width of the rounded portion
of the peak is given by

h8=B(X/L), (2)

where B =2/tr.
The backscattered peak from a disordered medium is
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FIG. 1. The backscattering intensity I(8,zp) as a function of
the backscattering angle 8 for (a) zp ~, (b) zp/X 400, (c)
zp/X =80, and (d) zp/k =16.
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2.0 The exact solution of (6) with the conditions given by
(7) is
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Inserting (8) into (5) leads to
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where Kp is the Bessel function. Inserting (9) into (4)
yields the final result for Itv (O, z p),

I~ (O, zp) =2C(z p/D)
1.2 I
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given by

FIQ. 2. The backscattering intensity 1(O,L) as a function of L
for (a) L/k-400, (b) L/A. -80, and (c) L/X-16.
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This leads to

I (O, z ) =1+ [2qa(1 —a/z )]
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(10)

P(p) =„dtn(p, t),
where n (p, t ) is a solution of the diffusion equation
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t
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1(8)=IoQPt [1+cos(k;+kI)(rt —r )],
l, m

where k; and kI are, respectively, the incident and scat-
tered photon wave vectors, rI and r are the random posi-
tions of the scatterers, 8 is defined by q = (2tr/X) sinO where
q k;+k/, and Pt is the probability that a photon which
enters at rt is emitted at r . From (3) it is evident that
I(B) possesses a peak around 8=0. This peak results from
elastic multiple scattering. First order (single scattering)
contributes insignificantly to the scattered background in a
system with strong multiple scattering. The shape of the
peak, however, depends on the assumptions made for the
probability PI . We use the continuum approximation
which leads to a normalized intensity

Itv (8) =C„[l+cos(q p)]P(p)d'p, (4)

where C '= fP(p)d p and we have used the fact that
Pt =P(

~ rt —r ! ). The probability P(p) is given by

x [coth (qz p ) [1 —cosh (2qa )] + sin h (2qa )]

z 2a
Iz(8,zp) = 2 —

q a+
3(1 —a/zp)

q&zp ' .

Comparing (13) with (12) leads to the width of the peak
as given by (1).

We now turn to finite-size effects in the (x,y) plane by
taking the upper limit in (4) to be p=L. The normalized
intensity Iv (O, L) is given by

We may distinguish between two limiting cases, the first
being qzp» 1 (8» X/2trzp) and the second being qzp
« 1(8«k/2trzp). The first case yields

Ijv(O, zp»q ') =[I+(2qa) '[1 —exp( —2qa)]],
(12)

which is an exact result for zp ~ and coincides with the
solution [Eq. (4)l of Akkermans et al. for an infinite
medium. The other limit is given by

For a finite slab we need the solution of (6) with the fol-
lowing boundary conditions:

3L —4a 2 +
24(1 —a/2L )

(14)

n(r, 0) =b(z —a)B(x)8(y),
n(p, z =O, t) =0,
n(p, z =zp, t) =0

(7)

where we impose t~o absorbing planes at z =0 and z =zp
and assume that both the incident and emitted photons
are at the same plane z =a. The parameter a is of the or-
der of the elastic mean-free path l and is given by
a =1.7l.

Comparing (14) with (12) leads to the width of the peak
that is given by (2). Figures 1 and 2 demonstrate that
finite-size eftects eliminate the triangular shape obtained
for an infinite medium. It should be noted that within the
scalar theory presented here the maximum increase of
I)v (O, zp) and 1&(O,L) is always 2, independent of zp or L.
This result disagrees with a diagrammatic approach by
Tsang and Ishimura, who were the first to deal with
eAects of finite size on multiple scattering. It was recently
shown " that such diagrammatic analyses must lead to
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an artificial singularity in Irv(8, zo ee) as 8 0. When
the right geometry" ("half-space" geometry rather than
"infinite-space" geometry) is taken into account the singu-
larity is removed and this fact leads to results in agreement
with the diff'usion approach. Experiments support the
fact that the maximum increase of ljv(8) is at most a fac-
tor of 2. A slight reduction from the maximum enhance-
ment of factor 2 may be due to polarization effects. "

We hope that our results will encourage experimental
eAorts in this field to analyze the coherent backscattering
peak for finite slabs or for absorbing media. In the last
case of absorbing media, inelastic processes take place. In
analogy with electrons ' one can define an inelastic dif-

fusion length L; =(Dz;)'i in which a photon travels be-
tween inelastic scattering events which occur during a time
T$ ~

Thus, the maximum photon trajectory in which the time
reversal is properly preserved is of order L;. Thus, L; acts
as a cut-oII' length and replaces zo or L in Eq. (13) or (14)
when L; ( zo or L; & L, correspondingly. Under these con-
ditions one can deduce L; from Eq. (1) or (2) and extract
the photon inelastic scattering time r;.
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