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Ab initio calculations on bent-chain models of solid hydrogen fluoride
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Ab initio Hartree-Fock and Moiler-Plesset perturbation-theoretical correlation calculations have
been performed on a bent hydrogen fluoride chain, modeling solid hydrogen fluoride. It has been
found that the lowering of the ionization potential with respect to the monomer is a pure correlation
effect, due in considerable part to third-order contributions in the case of the monomer. Finally, the
influence of the second-order irreducible vertex part on the exciton binding energies is discussed.

I. INTRODUCTION II. MUFLLER-PLESSET PERTURBATION THEORY
FOR THE QUASIPARTICLE BANDS

Hydrogen fluoride in the solid phase forms long bent
hydrogen-bonded chains with large interchain distances.
Therefore, one-dimensional zigzag chains can be con-
sidered as models for solid hydrogen fluoride. This and a
general interest in simple models of hydrogen-bonded sys-
tems has triggered several calculations on (finite and in-
finite) chains of hydrogen fluoride molecules. Al-
though most of the calculations have been performed at
the ab initio level, electron correlation has been included
in only one of them for tetrameric clusters, never, howev-
er, for the infinite chain. The present study is concerned
with the influence of correlation on important electronic
properties of the infinite hydrogen fluoride chain as band
structures and exciton binding energies.

The calculated quantities will be related to correspond-
ing observables of the free HF molecule. Nevertheless
these relations are by no means trivial, and in some cases
even have been the subject of controversies. For instance,
the ionization potential of the infinite HF chain is by
some calculations predicted to be lower, ' by other calcu-
lations to be higher, than the ionization potential of the
free HF molecule. Accurate calculations including elec-
tron correlation are desirable here, the more so because ex-
perimental results for the ionization potential of the HF
crystal seem not yet to be available.

Finally, there is another more theoretical motivation for
studying the infinite HF chain, namely that it represents
one of the simplest, but still realistic, model systems for
polymer calculations. In fact, some higher-order correla-
tion corrections, as, e.g., the third-order corrections to the
quasiparticle bands' or the second-order irreducible ver-
tex parts in exciton calculations, " could until now be ap-
plied only to model systems consisting of hydrogen atoms
and the treatment of the HF chain with these methods
constitutes then a test for their capability to treat more
complex systems.

To calculate electron correlation effects in an infinite
system requires a size-consistent method. ' %'e have used
the Mufller-Plesset scheme, ' which means to chose as un-
perturbed problem the Hartree-Fock equations. These
equations, formulated for an infinite chain in the linear
combination of atomic orbital (LCAO) approximation, are
known as the crystal orbital equations' and will be solved
for the HF chain with three different basis sets
(minimal, ' double zeta, and double zeta with a p func-
tion at the hydrogen) using the experimental geometry'
(1.02 A for the H—F bond length, 2.49 A for the F-F dis-
tance, and 120. 1' for the F—F—F angle). Up to three
(HF)2 elementary cells were included in the Hartree-Fock
calculations, and the first neighboring (HF)2 cells were in-
cluded in the calculation of the quasiparticle band shifts.

The four-index transformation from the atomic-orbital
to the crystal-orbital basis is performed stepwise first
to determine localized Wannier functions, then to
transform the two-electron integrals from the atomic orbi-
tal to the Wannier-function basis, and finally to transform
them from the Wannier-function to the crystal-orbital
basis.

The quasiparticle bands are then calculated as solutions
of the inverse Dyson equation' in diagonal approxima-
tion:

co~—E r +M r y (co~ )

where W is a composite index, comprising the band index
and k index, i.e., W=(i, k;); E~ describes the crystal-
orbital band structure, co~ the quasiparticle band structure
and M~~ is the irreducible self-energy part (the spin in-
dices can be eliminated for a closed-shell system).

The expansion of M up to third order is'

Mpg ——Mpg +Mpg +Mpg +Mpg
(2) (3A ) (3C) (3D)

with

Mp(2(co) = g VpJKL (2 VKLt2J —VKLJg )5k, k ~k, kk+kt —k
(2)

JKI
p~ q j' k I p

+ [n1n Kn L ( co +EI —E'K —EL +i tl )
' + nInK nL ( co +EJ —EK EL —i ri ) ']
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MPQ g (2VPNQM VPNMQ)(2VMJKL VMJLK)VKLNJ5k, k 5k„,k 5kk,k+kl —k
J,K,I,M, N

X[—nj11KnLnM1lN(EM+EJ —EK —EL+11)) (EN+Ej —EK —EL+l'g)

+njnKnLnMnN(EK+EL EJ EM +11)) (EK+EI, Ej EN+l g}

+n JnK nL nM nN (EM +EJ —EK —EL +i q ) '( EM —EN +i l) )

+ J K L M N(EN+EJ EK EL+ 9) (EN EM+ill)

J KnLnMnN(EK+EL EJ EN+1 )) (EM EN+ill)

nJnKnLnMnN(EK+EL EJ EM+19) (EN EM+1 1) ]

MpQ (~)= g (2VpjMN —VPJNM ) VMNKL VKLQJ5k, , k, 5k, , k +k„—k 5k, , k +k„—kk

(3C)

J,K,L, M, N

X [n jKnnL MnnN(~+ Ej—EK —EL +i&i ) '(co+EJ —EM —EN +i')

+ 11J1lK n L n M n N ( EK +EL —EM —EN + l 'g ) (~+EJ —EM —EN +1 'g )

+1l Jn1Kl L nMn(Nco+ E—j EK —EL +i 1) ) '(EM +EN EK EL—+i 1—))

+njnKnLnMnN(~+Ej EM EN —1 n) —'(EM—+EN EK EL+—in) —'

+1lJ11K1lL1lM1lN(EK +EL EM EN +i') '(co+EJ EK EL 1'g )

—11jnKnL nMnN(Eo+ Ej —EK —EL —i'li) (co+EJ —EM —EN —17/) ]'
~PQ (~) Q I VPNMJ[ VMLNK( VKJQL JKQL )+ VMLKN( VJKQL VKJQL )]

(3D)

J,K;L,M, N

+ VPNJM[ VMLNK(4VJKQL 2 VKJQL )+ VMLKN( VKJQL 2VJKQL )] I

x5 5, , 5k, k k(, kI, +k —k ~k. , k +k —k

X [1lJnK nL nM n N (cj+EtN —EM —EJ + i 'g ) ( co +EL —EJ —EK +i 1) )

+ 1ljllK11L 1lM11N(CO+EN —EM —Ej+l 7/') (EK + E'N —EL —EM +11))

+ 1lJ11K1lL1lM1lN (EL +EM —E'K —EN +i q ) '(CO +EL —Ej —EK +i q )

+ 1lJ11K llL nM 1lN ( EL +EM —EK —EN +1't/ ) (Cj +EN —Ej —E'M + 1 'g )

+ 1lJ11K1lL1lMllN(CO +EL EJ EK —il) ) '(EK +EN —EL —EM +i q )

njnKnL nM nN(cg) +—EL —EJ —EK i ri) '(cu+ E—N —EM —Ej i ti) '], —

where V~JKL ——(W(1)J(2)
~
IC(1)L(2) ) are the two-particle

integrals over crystal orbitals, n~ the occupation numbers
(n~= 1 for a doubly occupied n~=0 for an empty band),
n~= 1 —n~, and g is a positive infinitesimal, tending to
zero in the distributional sense.

The results for the upper valence band edge and the

lower conduction-band edge are given in Table I. We
have in all cases omitted the core bands in the summa-
tions and as a further approximation for the third order
we have evaluated M' ' at fixed position e~ and took only
six bands into account for the virtual excitations occur-
ring in M' '. Besides the energies also the renormaliza-
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tion factors

()M~~
p~= 1—

BQ)

evaluated in second order are given in parentheses.
The correlation effects shift the valence band up and

the conduction band down, thus decreasing the band gap.
The third-order contributions go into the same direction
as the second-order corrections, but are much smaller in
magnitude. In the case of the second-order results for
minimal and double-zeta basis sets we have, in addition,
listed the band widths, which also show appreciable
changes upon inclusion of correlation.

It is interesting to compare the trends for the ionization
potential with the corresponding trends for the HF mono-
mer. We have performed calculations at the correspond-
ing levels of approximation (experimental geometry from
Ref. 17) and listed the results also in Table I. [For other
Green s-function calculations on the ionization potential
(IP) of the HF monomer see, e.g. , Refs. 18 and 19.]

As mentioned in the Introduction, Bassani et al. and
Zunger obtain using Koopman's approximation a lower
IP for the HF chain than for the HF monomer. This cor-
responds to our minimal and double-zeta results for —eI.
Karpfen, on the other hand, obtains a slightly higher IP
for the chain, as is reproduced by our double-zeta plus p-
function calculation.

After taking correlation into account the IP is given by
—co~ where co~ is the corresponding pole of the one-
particle Green's function as listed in the table. In this

case the IP of the chain is lower than the IP of the mono-
mer by about 1 eV for all basis sets. In view of the dif-
ferent results in Koopman's approximation this lowering
must be seen as a pure correlation effect. A considerable
part of the shift comes from the behavior of the third-
order contributions in the case of the monomer, which is
opposite for the chain than for the monomer.

Although the convergence of the perturbation expan-
sion for the IP's is generally not so fast as for the
ground-state correlation energy (where in the case of the
HF monomer already the second order covers about 97 fo
of the fourth-order correlation energy ), it still seems pos-
sible to estimate the remaining error due to a finite-order
expansion and, first of all, due to basis set effects to be of
the order of 0.2—0.3 eV. (The total Hartree-Fock mono-
mer ground-state energies for our basis sets were
—99.3756 a.u. , —100.0011 a.u. , and —100.0265 a.u. while
the Hartree-Fock limit ' is —100.0705 a.u. ) This is sup-
ported by comparison of the Koopman's IP of the mono-
mer (17.54 eV) with the Hartree-Fock limit value of 17.70
eV (Ref. 20) as well as by estimates for similar correlation
calculations on the monomer IP. ' ' [One should point
out that though by correlation calculations the total ener-

gy becomes larger in absolute value (more negative), the
IP with correlation becomes smaller in absolute value, in
our case 16.01 eV for the monomer and 15.09 eV for the
polymer; see Table I.] An experimental value for the IP
of HF crystal is not available to our knowledge, but from
the agreement of the calculated monomer IP with the ex-
perimental value of 16.19 eV (Ref. 19) we can expect for
the crystal an IP of about 15 eV.

TABLE I. Quasiparticle band-structure data for the bent HF chain in comparison to the HF mole-
cule. (A11 energies in eV.)

HF
Vc

(HF)„
cd

MB'

DZh

f
~&(z)

p(2)

Akp(3)

COJr.

E~
~~(2)f

p(2)

Ado( 3)

CO~

—16.04

—14.91
(0.971)

—14.99

—17.63

—15~ 33
(0.946)

—16.17

15.16
(0.972)

15.27

3.39

3.34
(0.996)

3.40

—15.48
0.33

—13.90
(0.952)
1.23

—13.85

—17.35
0.25

—15.07
(0.933)
1.45

—15.06

11.43
3.26

11.34
(0.979)
3.22

11.30

3.46
2.86
3.22

(0.988)
2.97
3.21

26.91

25.24

25.15

20.81

18.29

18.27

DZP '

(2)
CO~
p(2)

(3)
CO~

—17.54
—15.29

(0.947)
—16.01

'Highest occupied orbital.
Lowest unoccupied orbital.

'Upper valence-band edge.
Lower conduction-band edge.

'Minimal basis (MB) set results.

21.14
18~ 15

3.50
3.42

(0.996)
3.49

—17.57
—15.10

(0.918)
—15.09

3 ~ 57
3.05

(0.986)
3.03 18.12

Band widths in the Hartree-Fock approximation.
Band widths in the second-order approximation.

"Double-zeta (DZ) basis set results.
'Double-zeta plus p-function (DZP) basis set results.
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III. EXCITON BINDING ENERGY

Excitons constitute per se a correlation effect because
the Coulomb and exchange integrals, which would be re-
sponsible for the electron-hole binding in a single-
determinant picture, tend to zero in the infinite-size lim-
it, and only electron correlation leads to a nonzero bind-
ing energy.

The corresponding framework for cib initio calculations
is the so-called intermediate exciton theory. Several
calculations on infinite chains have been performed within
this framework, " ' most of them, however, only with
first-order irreducible vertex parts.

The inclusion of second-order corrections to the irredu-
cible vertex parts has only recently been discussed, and ap-
plications have so far been reported only for alternating
hydrogen chains. " Application of the formalism to the
HF chain may, therefore, provide a useful further test
case. The exciton energies were calculated (for given K)
from the following secular equation:

where S' ' and ~ are the matrices of the interaction-free
particle-hole Green's function and the irreducible vertex
part, respectively, both in exciton representation, i.e.,

9~~'II(K, co)=alii ' y exp[ikl(~' —~)]&k,—kI, KPIPJ J(co cio+—cJo+'"I) .
k,-, k

(4)

Here H and ~ are cell indices, g =(c,k; ) is a conduction-band index, J =(v, kJ. ) a valence-band index and X is the num-
ber of elementary cells (which will go to infinity, but is canceled if the remaining k summation is changed into integra-
tion). The corresponding expression for the elements of M is

MH H(K, co) =N ' g exp(ik;H' —ikkH )6k
ki, k. , kk, k(

+g A 8 1 [VIBAJ VA J'I'8 +G ( ~ VBIAJ VJ'Al'8 VBIAJ VAJ'I'8 VIBAI VJ'41'8 ) ]n 4 n8
(&, T)

A, B

~I ~I' coB+coJ +coJ'+coA +~ g) VIJ'48( VABI'J G' ' 'V„BJI )

X [n 4 n8 ( co —co„—coB +coI + coI +i I) )

+n„n8(co coI —coI +co—A+coB+iri) ']

IAI'8 VBJ'AJ VIAI'8 VBJ'JA VIABI VBJAJ +G VIABI'VBJ'JA )
(S, T)

X [ A 8(~ ~1 ~A +~8 +~J'+ 9)

+ n 4 n8 ( co —coI —co 4 +coB +coJ + & g ) ] )

where I'=(c,kk) and J'=(v, kI).
In the calculations several different levels of approxi-

mation have been employed.
(A) The irreducible vertex part A has been truncated

after the first-order term and unrenormalized one-particle
Green's-function data have been used (co~= @~, P~ ——I).

(B) ~ has been truncated after the first order again,
and the co~ have been renormalized, but setting P~ = 1.

(C) A has been truncated after the first order again,
but both co~ and P~ have been renormalized (according to
Table I).

(D) The complete second-order expression has been
used for A and unrenormalized one-particle Green's-

function data have been used.
(E) The second-order expression has been used for ~

again and both the co~ and P~ have been renormalized.
The results for the lower limit of the first exciton band

obtained with these levels of approximation for the
minimal and double-zeta basis sets are listed in Table II.
Craven are the excitation energy E,„[the solution of Eq.
(3)] and the binding energy of the exciton, defined as:Eg p E,„,where Eg p is taken from Table I in the
corresponding approximation (renormalized or unrenor-
malized). For renormalization we have always employed
the second-order results of Table I.

One should observe that the excitation energy is de-



35 AB INITIO CALCULATIONS ON BENT-CHAIN MODELS OF. . . 6407

TABLE II. Lower limit of the first singlet exciton band of the bent HF chain. (All energies in eV. )

D E

MB'

DZb

E,„
Ebind

Ebind

17.80
9.11

13.55
7.26

16.16
9.08

11~ 13
7.16

16.76
8.48

11.70
6.59

17.01
9.90

10.91
9.90

16.05
9.19

9.17
9.12

'Minimal basis (MB) set results.
"Double-zeta (DZ) basis set results.

creased by renormalization as well as by inclusion of
second-order irreducible vertex parts. However, the exci-
ton binding energy is not always increased simultaneously
because the energy gap is considerably reduced by renor-
malization. This reduction is even larger than the reduc-
tion of E,„by renormalization. Therefore, the exciton
binding energy decreases in approximations B and C, with
respect to approximation A. In addition, we note that
Eb;„d also decreases when going from the incomplete re-
normalization (B) to the complete renormalization (C).
This corresponds to the reduction of E,„ in C by taking
into account the screening of the electron-hole interaction
by polarization in C by the P~ factors.

In approximation D and E the excitation energy is
again reduced with respect to A and C, respectively. In
this case, however, the band gap is no more changed and
the corrections give large contributions to the exciton
binding energy, which therefore increases if we compare
A to D and C to E. It is interesting to observe that, due
to these compensation effects, approximation A gives the
best exciton binding energies (compared to approximation
E) among all approximations employing first-order ir-
reducible vertex parts (A, B, and C).

IV. CONCLUSIONS

Our correlation calculations on the bent HF chain have
led to an estimate of the ionization potential of solid HF
lying about 1 eV below the ionization potential of the
monomer. This is a pure correlation effect, largely due to
third-order contributions in the case of the monomer.

For the first time it has been possible to include third-
order self-energy diagrams and second-order irreducible
vertex parts in ab initio Mufller-Plesset calculations on a
realistic system also containing nonhydrogen atoms. The
trends observed in these calculations may be useful in
selecting approximation schemes for more complex
quasi-one-dimensional systems.
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