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Nonlinear balance equations for hot-electron transport with finite phonon-relaxation time
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The balance-equation approach developed by Lei and Ting for steady-state hot-electron transport
is extended here to include nonequilibrium phonon occupation under the assumption that the effect
of phonon-phonon interaction can be represented by an effective phonon relaxation time ~~, which
may be mode dependent. Both single heterojunctions and multilayer quantum-well superlattices, as
well as three-dimensional (3D) bulk systems, are discussed. A 3D phonon model and a quasi-2D
phonon model are employed in describing the various interacting electron-phonon systems. The ex-
pressions for the frictional forces and energy transfer rates obtained in steady state are structurally
similar to those without hot-phonon effects and the balance equations with finite phonon relaxation
can be solved with the same computational effort as in the case of z~ =0. We have examined hot-
phonon effects on the energy-transfer rate, the electron temperature, and the linear and nonlinear
mobilities. It is shown that finite phonon relaxation generally decreases the phonon-induced Ohmic
resistivity at a given lattice temperature. However, it significantly increases the electron ternpera-
ture so that the nonlinear resistivity of the system is enhanced at large drift velocities. For an n-

type GaAs heterosystem the normalized electron-energy-loss rate at ~~ =3.5 ps is seen to be a factor
of 5—10 smaller than that at ~~=0. The functional dependence of the energy-loss rate on carrier
temperature shows considerable difference from the prediction of a carrier temperature-type theory,
and is in reasonably good agreement with experiments.

I. INTRODUCTION

Considerable current interest is focused on the develop-
ment of a full understanding of the hot-electron energy-
loss rate in quasi-two-dimensional heterosystems, under
conditions of steady-state high-field electronic transport
and also for time-resolved photoluminescence. ' The
energy-loss rate in multilayer GaAs quantum wells, mea-
sured by Shah et aI. in experiments on steady-state trans-
port, is about a factor of 8 smaller than the theoretically
predicted value. They proposed an explanation for this
anomalously low electron-energy-loss rate based on the
presence of a nonequilibrium population of optical pho-
nons in excess of what is to be expected at the lattice tern-
perature. Although the question is still open as to wheth-
er the reduced energy loss rate is due to the presence of
hot phonons or due to reduced dimensionality and screen-
ing, ' substantial study has been stimulated on the inter-
play between hot electrons and nonequilibrium pho-
nons. " Hot-phonon dynamics have been extensively
explored for bulk semiconductors by means of a
phenom enological Boltzm ann equation and by Monte
Carlo techniques. ' The theoretical analysis of the in-
teraction of quasi-2D electrons (localized in a thin layer)
with three-dimensional (3D) phonons is still in an early
stage of development. It is believed that the lattice modes
in a GaAs heterosystem are essentially those of the bulk,
and most earlier work is based on a 3D plane-wave
description of the phonon modes. For heterostructures
this brings up the matter of how one integrates into the
theory an appropriate description of the spatial extension
over which the phonon modes participate in interaction

with the quasi-2D electrons. Very recently, Cai, Mar-
chetti, and Lax" advanced an alternative description of
the optical phonon coupling with quasi-2D electrons in a
single-heterojunction system based on a localized "physi-
cal phonon wave packet" matching with the wave func-
tion of the 2D electrons.

The main concern of this paper lies with closely packed
multilayer quantum-well systems, which are experimen-
tally widely used, and are theoretically something in be-
tween a 3D bulk system and a single quasi-2D layer.
Furthermore, we shall explore the ramifications of hot-
phonon dynamical interactions on other transport proper-
ties in the presence of an electric field. The investigations
reported here are based on the recently developed balance
equation description of high-field electronic transport of
Lei and Ting, ' without invoking the phenomenological
Boltzmann equation. The balance equation approach has
proven useful in the analysis of steady-state transport in
bulk, ' quasi-2D heterojunctions, ' and semiconductor su-
perlattices' in the presence of a uniform electric field.
This theoretical approach has also been successfully ex-
tended to studies of high-frequency conduction, ' tran-
sient' and fluctuation' phenomena, as well as magneto
transport. ' In this paper we shall extend the hot-
electron-transport balance-equation formulation to en-
compass finite-phonon relaxation, setting the stage for the
examination of all the transport properties cited above in
the presence of a nonequilibrium phonon population. The
organization of this paper is as follows: In Sec. II we dis-
cuss 3D bulk systems, in Sec. III quasi-2D systems are ex-
amined, and in Sec. IV the problem of multilayer quan-
tum wells is treated, all for hot electron transport with a
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nonequilibrium phonon population. Numerical results are
presented and discussed in Sec. V for linear and nonlinear
mobilities, electron temperatures, and electron-energy
transfer rates in single and multilayer heterostructures.

—Nqg ~,~ = — [N—qk, H,p]

M (q, A, )e''t bqkpev'"

II. 3D SYSTEMS

Hp ——g fif),q), b qkbqt, ,

H,p —,QM(q, k)(bq +kb qx)e'~' Pq .
V' (4)

The form of H„and all the results related to impurity
scattering are exactly the same as in Ref. 12 and will not
be given in the present paper.

In these equations, P and R are the center-of-mass
momentum and position, ck and ck are creation and an-
nihilation operators for relative electrons with wave vector
k, spin o and energy sk ——fi k /2m. pz ——gk ckt+z~ck~
is the electron-density operator, v, (q)=e /eycq is the
Coulomb potential (ir is the dielectric constant of the ma-
terial); beak and bz~ are creation and annihilation opera-
tors for phonons of wave vector q, branch X, and energy
A'Qz~. Finally M(q, k. ) is the electron-phonon matrix ele-
ment, whose dependence on volume V is explicitly written
in Eq. (4). The number operator of phonons in mode q, A.

1s

%qp ——bqpbqp, (5)

and the rate of change of Nq~ due to electron-phonon in-
teraction is given by

We consider first a bulk 3D electron-phonon system in
the presence of a uniform electric field E. There are N
electrons, interacting with each other through the
Coulomb potential and scattered by randomly distributed
impurities (H„). The phonon normal modes (Hamiltoni-
an Hz) are the usual lattice waves specified by wave vec-
tor q and branch index k. They are coupled among them-
selves (Hz~), and their coupling with electrons (H,~) pro-
vides the only mechanism for energy exchange between
these two subsystems. If the electronic degrees of free-
dom are separated into those of center-of-mass motion
(H, ) and relative motion (H, ), the total Hamiltonian of
the system can be written as

H =H, +H, +Hp+H„. +H,p+Hpp,

where

2

H, = —NeE R,
2Nm

cc c 1
e g k kyar ka+ P vc((7)ck+q, hack & ~ Ck ~ Ck~

k, o. k, k', q
O', O'

M( —q, X)e ' t bqgp q .
g y1/2

The density matrix p for the relative electron plus pho-
non system satisfies the Liouville equation

i R p = [H, +Hp+Ht, p],Bp
at

(7)

(Z„Zz, and Z are defined by the requirement that the
trace of the density matrices be unity. ) Here T q is the
phonon temperature of mode qX, H(qg)=&+ zb kb &

and we have defined Hp by

Ho =H, + g a&~H (qA. ),—
q, A,

aq~=—T, /Tq

For an adiabatic introduction of the interaction HI from
t = —m, this pp will serve as our initial condition for the
differential equation (7). To the first order in Ht, the
Liouville equation (7) with the initial condition
p( t = —aa ) =pa has the solution

where HI ——H,~+H„+Hz&. We consider the electron-
electron Coulomb interaction to be strong and we always
include it in H, . However, the electron-impurity interac-
tion H„, the electron-phonon interaction H,z, and the
phonon-phonon interaction H&& are all assumed to be rel-
atively weak and we treat them on an equal footing. The
initial condition for the Liouville equation can be obtained
as follows. Imagine we turn off the interaction HI after
the system has reached the steady state. Then, not only
are the center-of-mass and the relative electrons decoupled
from one another, but so are the different phonon modes.
Therefore, they will independently approach their own
equilibrium states with separate temperatures. To be
more specific, the relative electron system will quickly
reach a thermal equilibrium state with a single tempera-
ture T, due to the strong Coulomb interaction between
electrons. The different phonon normal modes, however,
may have different temperatures since they are decoupled
from each other. The density matrix for these decoupled
systems takes the form

1 1
po —— exp( H, /k~ T, ) ex—p —g H (qA, ) /Tz~

Zp p

1 —Hp/kB T
e

Z

p(t) =po+ —f e"exp —g ( l —azk)H(qi, )(t' —t) [po,Ht(t' —t)]exp ——g ( l —a~k)H(qA, )(t' —t) dt', (l l)

where
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(i IA)Hot —(if%)Hot
Hr t —=e 'Hre

The statistical average of any dynamical variable 0 can be calculated from

( 0 ) =Tr[p(t)O ] .

(12)

The results for (a) the frictional forces experienced by the center-of-mass, F=F;+Fz (F; is due to impurities and Fz is
due to phonons), and (b) the energy transfer rate from the electron system to phonon system W, are readily determined as
in Ref. 12:

2 AQ, qgg IM(q ~)
l
'q»(q &qi, —q'v)

k T,,
=2 %Aquan i rl, (q, 0 i.—q.v) n

q z BTqA,

iri(Qqi —q v)

k~T,

iri( Qqi —q.v )

k~T,

(13)

(14)

The expression for F; is the same as that in Ref. 12. The rate of change of the phonon number in mode qk due to
electron-phonon interaction can similarly be obtained as

= ——([N „,H, ])
ep

=2 %Aqua
~
M(q, A, )

~
IIi(q, flqi —q v) n

iri(Q i„—q v)

kgT,

In these equations n(x)=(e —1) is the Bose function, II(q, m)=11,(q, co)+illz(q, co) is the electron density-density
correlation function, and v is the velocity of the center of mass, i.e., the drift velocity of the whole electron system. It is
interesting to note that Eqs. (13) and (14) can be written as

F~ = —g A'q

q, A,

q, X

aNq,
at

aNq

at

AA, q&
n

k~ Tq
7 p )

where T is the lattice-bath temperature. The phonon relaxation time ~p may be mode dependent. In steady state, the oc-
cupation number for each phonon mode should be constant, whence

The determination of the rate of change of phonon occupation number due to all effects other than the electron-phonon
interaction, (r)Nqr Idt)~~, cannot be carried out without a detailed analysis of anharmonic coupling, as well as structure
and boundary effects, which are sample dependent. Therefore we will represent them by an effective phonon relaxation
time parameter ~p, writing

aN g AOg—n (17)
at kgT

d0=—NqqA.

leading to

aNqg

at ep p

%Aqua
n

k~ Tq

AO, qg'
kBT

AQq&
n

ka Tq~

iri( Aqi —q. v )

k~T,
fiQq&+ [1+r~I (qA, , Qqi —q.v)] ' n

B

A(QqA, —q v)
k~T,

in which

I (q~ ~)= — l M(q ~)
l
'Ilz(q ~) .

2
AV

I (qk, Qqi+q v)

1+rz I (qA, , Qqi +q.v)

Therefore the phonon-induced frictional force and the energy transfer rate in steady state may be written as

iii(Iraqi +q.v) iiiQqx—n
k~T, kgT

(18)
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I (qk, IIqi +q.v)
W= gfiIIqi„n1+rpi (ql, , Iraqi, +q.v)

iri(Iraqi +q.v)

k~T,
AQq&

k T (20)

Equations (18)—(20) are the main results of this section.
If the phonon relaxation is fast enough that r~ I && 1, Eqs.
(18)—(20) reduce to the results of Ref. 12. Otherwise the
energy transfer rate for given T, T„and U, is evidently re-
duced. For a finite phonon relaxation time, the force and
energy balance equations in the steady state

g„k(r,z)=, e'"'g„(z) (n =0, 1, . . .),n S
(21)

confined to the vicinity of the surface. The single-
electron states can be represented by a 2D wave vector
k= (k„,k» ) and a subband index n:

N, E+F=O,
v.F+ 8' =0,

with energy

Rk
2m

with the Fp and W given in Eqs. (19) and (20), constitute
a complete set of equations to determine electron tempera-
ture and drift velocity for a given electric field E and
phonon relaxation time wz.

III. QUASI-2D SYSTEMS

In a quasi-two-dimensional system, e.g. , a single
GaAs-Al Ga& „As heterojunction, electrons move freely
parallel to the interface (x-y plane) but their z motion is

Here g„(z) is the subband envelope function, ' S is the
layer area and m is the electron-band effective mass.

The balance equations for electron transport parallel to
the interface in the presence of a uniform electric field E
(within the x-y plane) will be discussed on the basis of a
separation of 2D center-of-mass variables, ' P=(P„,P~)
and R=(X, 1'), from the relative variables of the elec-
trons. The Hamiltonian for the relative electron system
can be written as

1

He g EnkenkaCnk + i
n, k, o. m'm, n'n

k, kl, q

e
Hm'm, n n(q)Cm'k'+qa n'k~ —qa nk&a nka r

with

„„(q)=J dzi f dzig* (zi)g (zi)g„*(zi)g„(z2)e (23)

and ~ is the dielectric constant of the GaAs system. In
the following, the envelope functions, g„(z) are chosen to
be real so that

Hp ——P fiIIbqq bqq
qrq

(25)

H „„(q)=H „„(q)=H„„(q) .
and the electron-polar-optic-phonon coupling takes the
form

The phonons in a GaAs-A1GaAs heterosystem are
reasonably assumed to be the same as those in bulk GaAs.
Their normal modes can be described by a 3D wave vector
Q=(q, q, ) and a branch index k:

1
H,p ——

SL

1/2

g M(q, q, )I„„(iq,)
n', n

Hp = g iridal(pibgibgg
Q, A,

qq + —q, —q )Pn'nq r

where b~k (b~i ) are creation (annihilation) operators of
the mode Q, A, . For acoustic phonons, hot phonon effects
are believed to be relatively unimportant and their contri-
butions in force and energy balance equations have been
examined in Ref. 13 in detail. In this paper we will con-
centrate on polar optic phonons, which are the dominant
lattice scatterers in GaAs-Al„Ga& As for electron tem-
perature T, ) 50 K. Polar-optic phonons are essentially
dispersionless

where

e AA
/M(q, q, )

/

Q 2ep
'

K

is the Frohlich matrix element and ~ is the high-
frequency dielectric constant of GaAs. In Eq. (26),

Pn nq g Cn'k+'qaCnka (28)
k, a
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is the electron density operator, and

I„„(iq,)= f e ' g„*(z)g„(z)dz (29)

is a form factor, 1. being the size of the system along the z
direction.

Needless to say, the electron-phonon coupling is spatial-
ly inhomogeneous in nature due to electron localization in
the z direction, so that emission and absorption of pho-
nons occur mainly in the region where the electrons have
substantial density. If phonon relaxation is very fast this
makes no essential difference since the lattice is then al-
ways in its equilibrium state everywhere and we can
proceed exactly as was done in Ref. 13. However, in the
case of finite phonon relaxation, as Cai, Marchetti, and
Lax" have pointed out, the electron-phonon interaction
results in a spatially inhomogeneous phonon distribution
in the z direction, and the one-body density matrix of the
phonon system is nondiagonal in the z component of
momentum in the plane wave representation. Its off-
diagonal elements are inversely proportional to the spatial
extension over which the electron-phonon interaction is
effective. Therefore, it is natural to choose a set of
dynamical variables

P =b b, (m =q, q„q,')
z z

(30)

to describe the phonon system. In order to select an ap-
propriate initial state density matrix, we imagine turning
off the electron-phonon interaction and phonon-phonon
interaction. The decoupled electron system will quickly
go to a thermoequilibrium state described by a Gibbs en-
semble with a single temperature T, . The phonon system,
on the other hand, will be much slower to relax (note that
we turn off the phonon-phonon interaction also). For a
quasi-2D electron distribution of small spatial extension,
the nonequilibrium phonon state is rather far removed
from plane-wave normal modes. Therefore it is reason-
able to assume that the phonon system will first approach
a quasiequilibrium state described by a density matrix of
the form

ing on the interaction and electric field adiabatically) in a
shorter time starting from the initial quasiequilibrium sta-
tistical state (33) than it would starting from a state (8).

The solution of the Liouville equation for the nonequili-
brium density matrix p with the initial condition (33) can
be obtained following the same procedure described in
Refs. 20 and 21 to the lowest order in HI ..

0
p(t)=p + —f dre"[p, Ht(r)], (34)

where

l lHt(r) =exp (H, +H—p)r Ht exp — (H, +—H~)r

In obtaining this result we have made use of the fact that
TrIp [Ht, P ]]=0. The average value of a dynamical
variable 0 can therefore be calculated within this frame-
work as

(0)=Tr[p(t)O]

=Tr[p 0]+—f dre "TrIp [Ht(r), O) I. (35)

In the following we define

M(q, q, )
'q qz =

&~/AM nn qz( )= I ~ (i )
M„„(q

(36)

L,
z

F„
2g

Hn nn'n(q') , ~ (37)

~n'n (q) = g gn'n (q~qz )b qq

(38)

and introduce the creation and annihilation operators of
"quasi-2D" phonons

A„„(q)=gg„„(q,q, )b

p~= exp —gF P
Zp

(31)

before it reaches the ultimate equilibrium state for each
normal mode. The parameters F here are functions of
the expectation values of the operators (P ) . , which
are determined by the condition

which satisfy the commutation relations

[&„„(q),& (q)] =P„„(q)&qq,
with

H„„(q)
~n'n, m'm(q) =

[H„„„„(q)H ~ (q)]

(39)

(40)

(P )=T.(p,'P. ). (32)

This kind of quasiequilibrium statistical operator has been
discussed extensively in Refs. 20 and 21. Thus we will use
the density matrix

„„(q)=A (q)A„„(q), (41)

whose diagonal parts

whose diagonal part is I3„„„„(q)=1.We also need the
operators

p = exp( —H, /k~ T, )pz. (33) ~„„„„(q)=&„„(q)&„„(q) (42)

as the initial condition of the Liouville equation (7) for the
nonequilibrium density matrix p(t) instead of using po in
Eq. (8). This is to say that we expect that the electron-
phonon system will approach its steady state (after turn-

describe the occupation number operators of the quasi-2D
phonons. The physical significance of these phonon
operators is elucidated by considering the occupation
number operator associated with subband n:
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N„(q) = g N„.„„„(q)= f dz
~
g„(z)

~

'b, (z)b, (z) .
n'

(43)

Here

bq(z) = g e bqq

bq(z): g e bqq

operator for phonons having wave vector q, located
within the region where the electron density of subband n

is nonzero. It is reasonable to identify these phonons as
quasi-2D phonons. In obtaining Eq. (43) we have made
use of the completeness of the envelope functions
g„g„*(z)g„(z')=&(z —z').

In terms of these quasi-2D phonon operators, the
electron-phonon interaction [Eq. (26)] can be written as

H p =, g M„„(q)e'q [A„„(q)+A„„(—q)]p„„q,
n', n, q

are the creation and annihilation operators, respectively,
of phonons with wave vector q which are localized at z.
Thus, it is apparent that N„(q) is the occupation number and the force operator acting on the center of mass is

(44)

Fp ——— [P,H,p ] =——
I&2 g M„„(q)qe' ' [A„„(q)+A„„(—q)]p„„

n, n, q

with the energy-transfer rate operator given by

(45)

W= — [H,H, ]—=, , g M„„(q)Qe'q [A„„(q)—A„„(—q)]p„„q .s (46)

&e also identify the rate of change of the generalized occupation number operator for quasi-2D phonons X„„ in
terms of two parts, one due to the electron-phonon (ep) interaction and the other due to phonon-phonon (pp) interaction

dt ' Bt
Nn nm'm(q', ) =

&
Nn nm'm('q, )

I ep +
~

Nn nm'm ('q,) I ppat

The first part is given by

(47)

—N„„.(q)
~
„=——[N„„(q),H„]

g Ml'l(q)[P1'I, ',.(q)A (q)e' pl l, P', ll (q—)A.".(q) " pl'l, —ql .
AS'

The second part,

N„„(q)—
~

= ——[N„„~ (q),H +H ], (49)

cannot be explicitly evaluated without a specific expression for Hpp We will employ a relaxation time approximation for
it.

The expectation values of F, W, and (BN„„ IBt),p may now be obtained by a straightforward calculation as

A fi(II —q.v)
Fp ——(Fp) = ——g qM„„(q) Hq(n', n, q, A —q v) N„„~ (q) —n

2W=(W)= —g OM„„(q) H( 2'n, ,nqQ —q.v) N„„~ (q) —n
n', n, q

h(Q —q.v)
k~T,

(q) ~,p = QMl l(q) [/3l l „„(q)Nl l ~ (q)H(l', l, q, —II+q v) —p ~ ll (q)N„„ ll (q)H(l', I,q, A —q v)]
1', I2, 2, ,

A'(0 —q.v)g Ml l(q) Pl l ..(q)Pm', ll'(q)H2(l', l, q, & —q.v) n
I'I k~T,

(S2)

In these equations, H = H]+i H2 is the Fourier transform of the diagonal part of the electron density-density correlation
function defined by

II( n ', n, q, t) = ——e(t) ( [p„„q(t),p„„q] ) (53)
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[e(t)= 1 for t & 0, otherwise e(t) =0]; its off-diagonal parts are neglected. Finally,

N„„(q)= (N„„(q)) = (N„„(q))o (54)

is the generalized occupation number of the quasi-2D phonons in the nonequilibrium state. ( . )o denotes the average
with the initial density matrix p . The last equality is due to the definition of the quasiequilibrium statistical opera-
tor. ' Including the contribution of the last term of Eq. (47) in a relaxation time approximation, we obtain a kinetic
equation for the generalized occupation number of quasi-2D phonons

d 0 1
Nn'n, m'm ( q ) = Nn'n, m'm (q)

l ep [Nn'n, m'm (q) —
Neq ]dt ' Bt 7

(55)

in which N, q is the equilibrium average of N„„~ (q):

N, q
——(N„„(q)),q

——( A„„(q)A (q) ),q

= g g„*„(q,q, )g (q, q, )(bq~ b, ),q= gg„*„(q,q, )g (q, q, )n

q, q'
(56)

fiA=j3„„(q)n
k~T

(57)

In deriving Eq. (57), we assumed the optic phonon to be
dispersionless (II is independent of q, ). This limitation
does not apply to Eq. (56) for N, q. In Eq. (55), the quasi-
2D phonon relaxation time ~p may be q dependent.

In the steady state dN ~ (q)/dt=0, and the kinetic
equation (55) reduces to algebraic equations for occupa-
tion numbers N ~ ~ (q), which, taken jointly with the
force- and energy-balance equations Ne E+F=0 and
v.F+8'=0, form a complete set of equations to deter-
mine the steady-state transport of the system.

These equations are greatly simplified if the electron
sheet density is low and thermal excitation across sub-
bands is negligible, so that only the lowest subband needs
to be taken into account. In this case Eqs. (50) and (51)
reduce to [with M(q)=Moo(q), H(q, co)=(0,0,q, co), and
N(q) =Noo, oo(q)]

1 (q, Q+q. v)
I+rpI (q, Q+q v)

Fp = fiq

R(II+q v)
k~T,

AB
k T

(62)

and

with

I (q, II+q v)
1+rp I (q, II+q.v)

fi(II+q v)
&( n

k~T,
RA

kbT
(63)

These result in simple expressions for the steady-state
force- and energy-transfer rate:

Fp ———g Aq
BN(q)

Bt
(58) I (q, co)= — M(q) H2(q, co) . (64)

with

w=~~fi aN(q)
Bt

ep

(59)

BN(q)
Bt

M(q) H2(q, O —q.v)=2 2

ep

X N(q) n—A'(0 —q v)
kbT,

(60)

and the steady-state nonequilibrium phonon occupation
number N(q) can be solved from Eq. (55):

2 2 fi(II —q v)
M(q) H2(q, Q —q v) N(q) n—

AS' k~T,

It should be noted that the nonequilibrium phonon occu-
pation number N(q) does not appear in the electron
force- and energy-balance equations. A11 that is required
is a knowledge of the optic phonon relaxation time ~p.

Equations (58) and (59) and the commutation relation
[A(q), A (q')]=6qq (A(q)=Aoooo(q)) indicate that the
phonon system is two dimensional in nature (with normal
modes labeled by 2D wave vector q ) in its coupling with
the 2D electrons. In fact, if we assume that the Hamil-
tonian of this 2D phonon system is
Hp = g ftAA (q)A (q), then, instead of a quasiequilibri-
um statistical operator, we have a Csibbs ensemble as the
starting point. Exactly the same results could be obtained
by a derivation based on the procedure described in Sec. I.

IV. SUPERLATTICE SYSTEMS
1 AA

N(q) —nj kgT
=0. (61) The superlattice model which we will use to represent

multilayer heterostructure systems consists of an infinite
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number of periodically arranged quantum wells of width
a, and d is the spatial period. We assume that the elec-
trons occupy only the lowest subband in each well and
that excitation to higher subbands and tunneling to neigh-
boring wells are unimportant. In the effective mass ap-
proximation the electron wave function can be written as

Here J =NL d is the superlattice extension in the z direc-
tion, and NL the total number of quantum wells.

Balance equations for electron transport in a uniform
parallel electric field E have been discussed in detail in
the case of fast phonon relaxation. ' Our present interest
is mainly in the interplay of electrons with polar optic
phonons, for which the hot-phonon effect is important.

Pii (r z)=, e'"'g(z —ld) (1 =0, +1,. . .),
S1/2 (65)

A. 3D phonon model

where g(z) is the envelope wave function for the lowest
subband. The corresponding energy c~ ——A k /2m is de-
generate with respect to the layer indices. The Hamiltoni-
an H, for the electron system has been given in Ref. 14.
The coupling between electrons and a specific branch of
phonons (b~, b&) can be written as

' 1/2
1

SL, g M(q, q, )I(iq, )

iq R —iq /d
&&e'~' (bq+b g)e '

piq, (66)

Plq= ~ Clk+qcrClko
k, a

(67)

as the density operator for electrons in the lth quantum
well and

I (iq, ) = f e '
I
g(z)

I
dz .

In contrast to the case of a single heterojunction, where
the electron density vanishes everywhere except in a thin
layer near the interface, the case of a closely packed mul-
tilayer system is characterized by an electron density
which exists periodically over the full space. This period-
ic density distribution of electrons seems not to be severe-
ly mismatched with 3D phonons. In other words, an in-
finite periodic wave packet may decay relatively rapidly to
spatially uniform plane wave normal modes. Therefore, it
seems plausible to use a 3D phonon model for a close-
packed superlattice, just as for the 3D bulk system. In
this model, the nonequilibrium phonon effects are taken
into account by a mode-dependent phonon temperature
TQ such that the initial condition of the Liouville equa-
tion for the density matrix takes the form of Eq. (8). We
can obtain the frictional force, the energy transfer rate
and the rate of change of phonon occupation number

Nq& by closely following the derivations in Sec. II and in
z

Ref. 14. Thus we find

I
M(q q, )

I

'
I
~(iq. )

I

'q g e
' ' '

H, (l, 1', q, II —q v) n
B TQ

iri(Q —q.v)
kb Te

(69)

whe«Hi(l, l, q, ~) is the imaginary part of the Fourier transform of the electron density-density correlation function:

II(l, l', q, t)= — B(t)(pi (t),pi (—0)]) . (70)

For an infinite periodic system II(l, l', q, t) = II(l 1', q, t) is a fun—ction of the difference 1 —1' aione, so we can introduce

H(q„q, co)= ge * H(l, q, ~)
I

and write the per-layer force due to phonons as

(71)

dq,
f& ————g q I M(q, q, )

I I
I(iq, )

I
H2(q„q, Q —q.v) nS kB TQ

iri(Q —q v)—n
kBT,

(72)

A similar derivation leads to the per-layer energy transfer rate as

oo dqZ AQ
w = —g f II

I
M(qq) I I

I(iq)
I

H (q„qO —q v) nS „—~ 2m. kB TQ

A'(0 —q.v)
kBT,

(73)

and the rate of change of the phonon occupation number due to electron-phonon coupling is obtained as

I M(q. q. )
I

'
I
r(iq. )

I
'H, (q„q,Q+q v) n

J ep B Q

fi(ft+q v)
kBT,

(74)
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f dq, A'q Xqq
q ep

(75)

Obviously, for total force Fp and energy transfer rate W,
Eq. (16) still applies, and the per-layer quantities fz and w

are alternatively expressed as

B. Quasi-2D phonon model

The discussion in Sec. III for a single heterojunction
can also be applied to a superlat tice. We introduce
creation and annihilation operators for quasi-2D phonons:

Al(q)= &gi(q q

dq, AO
a

ep
Ai (q)= g gi (q q )bqq

(82)

The kinetic equation which results by using a relaxation
time approximation for phonon-phonon scattering, where

d
&qq = a

a +" n
kB Tg

AO,

kBT

(76)
and

M(q, q,);q ig
gi(q, q, ) = I(iq, )eL'i M(q)

(83)

leads to the steady-state phonon occupation number M(q) =—g I
M(q, q, )

I
I(iq, )

I

'
I.

z

AA
n

kB Tg

A'(0 —q.v)
kBT,

F„
277

I
I(iq, )

I

Gg
(q'+q, ')

(84)

+ [1+r~l (q„q, 0—q.v)] (This last equality is for polar optic phonons only. ) They
satisfy the commutation relations

fi(A —q v)
kBT,

and the following expressions for fp and N:

(77) [Ai(q), Ai (q')]=Pii(q»q, q

with

(85)

f~ = g Pique(q, f1+q.v)
q

fi(fl+ q.v)
X

kBT, kBT
(78)

, 2 IM(q q. ) I'II(iq. ) I'
LM(q) q

i(l' —l)q d
Xe (86)

with

w = gfiQK(q 0, +q v)
q

fi(fl, +q v)
n

kBT,
fiO,

kBT
(79)

In terms of these quasi-2D phonon operators, the
electron-phonon interaction (2) can be written as

Hap =, P M(q)e q [Ai(q)+A/ ( —q)]Piq (87)
g 1 /2

I (q„q,A+q. v)
K ( q, 0+q.v) = dq, (80)

2vr — ' 1+r~l (q„q,0+q.v)

and

1 (q„q,Q+q. v)

The operators for the phonon-induced frictional force Fp,
the energy-transfer rate W and the rate of change of the
generalized occupation number of quasi-2D phonons

X&~(q), defined by

AS'd I
M(q, q, )

I I
I(iq, )

I
Hz(q„q, Q+q v) .

(81)

Xi (q) = Ai (q)A (q),

are given by

(88)

F~ = ——[P,H, ]= — g M(q)qe' "[A&(q)+Ai ( —q)]pi
l, q

(89)

W= ——[II,II, ]= QM(q)&e' "[Ai(q) Ai (
'—q)]plq—

I, q

(90)
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—NI (q) I, = ——[Ni (q), SX,~]

M(q) g [/3, i(q)A (q)e' p, —/3, (q)Al (q)e '
p, ] . (91)

The average of the above dynamical variables with respect to the nonequilibrium density matrix to lowest order in the in-
teraction [Eq. (34)] yields the following expressions (c3=—0—q.v):

2
F~ = ——g M(q) qH, (l', l, q, ~) N, , (q) f3, ,—(q)n (92)S )(,, q kBT,

W= —g M(q) qHz(l', l, q, G) Ni i(q) /3i I(q—)n=2 2

kBT,
(93)

Bt g M(q)'[/3i'(q»i. (q»(s' s, q ~) —/3r'(q—»I.(q)H(s' s, q ~)]

2 g M (q) /31, (q)/3I, (q) H2(s', s, q, co)n2 Ado

AS', , B Te

In these equations NI (q) is the generalized occupation
number of the quasi-2D phonons:

Ni (q)=&NI (q)) =&&i(q)~ (q)), (9&)

/3(q, q, ) = g/31 (q)e

With these, Eqs. (92) and (93) can be written as the per-
layer force and energy transfer rate given by

n jd
f = ——g f dq, M(q) qHq(q„q, co)

AGx N(q, q, ) —/3(q, q, )n
B e

which, similar to Pl (q) and H(/, m, q, co), depends only on
q=

I q I

and / —m due to translational invariance and
periodicity of the superlattice. Therefore it is convenient
to use the Fourier representations:

N(q, q, )= QNi (q)e

—N(q, q, ) I,~ = M(q) /3(q, q, )H, (q„q, co)
Bt

X N (q, q, ) —/3(q, q, )n
%co

B Te
(99)

—N(q, q, ) =—N(q, q, ) I,~
1

[N(q, q, ) —N, q(q, q)] .
Tp

(100)

Here N, q(q, q, ) is the equilibrium value of N(q, q, ), which
can be shown to be

N, ~(q, q, ) =/3(q, q, )n
WO,

BT
(101)

and

The contribution to the rate of change of N(q, q, ) from
other effects than the electron-phonon interaction is as-
sumed to be represented by a relaxation time zz, such that
the kinetic equation for N(q, q, ) takes the form

2 d
W = —g f dq, M(q) AH2(q„q, G)

%co
N(q, q, ) —/3(q, q, )n

and the expression (94) reduces to

(97)

(98)

/3(q q.)=,P IM(q q. +1~.~) IdM (q)

&&
I
1(iq. +i&~)

I

'

The summation is over all possible values of Kd ——2~n/d,
n =0, +1,. . . . Substituting Eq. (101) into Eq. (100) we
have for the steady state

0=—N(q, q, ) = M(q) /3(q, q, )Hz(q„q, co) N(q, q, ) —/3(q, q, ) n
dt

' ' AS' B e

1 fiA,
N(q, q, ) /3(q, q,)n—

7 p 8

(103)
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This immediately gives the steady-state solution of X(q, q, ) and the corresponding steady-state expressions for per-layer
force and energy-transfer rate as

f~ = g iriqK(q, O, +q.v) n
iri(Q+q. v)

k~T, kBT
(104)

with

w = Q ARK (q, I1, +q. v) n
A'(0, +q v)

k~T,
AA"
kBT

(105)

~/d I (q„q, I1+q.v)
K(q, A+q. v) = dq,

2ir — &~
' I+r&I (q„q,I1+q v)

1 (q„q,Q+q. v)= g 1 x (q„q, I1+q v),
Ed

and I z depends on K& in accordance with
d

(106)

(107)

1 x- (q„q,O+q. v)= —
~
M(q, q, +Kg)

~ ~
I(iq, +i')

~
Hi(q„q, Q+q v), (108)

where K~ ——2vrn/d, n =0, +1,. . . .
It is worth noting that the corresponding expression (80) for K(q, II+q v) in the 3D phonon model can be rewritten

as
1 x' (q q, Q+q. v)

K(q, Il+q.v)= dq,
2ir —~~~ '

z I+r&I x- (q„q,A+q. v)
(109)

Therefore, if ~z
——0 the results of the 3D phonon and the

quasi-2D phonon models are identical and reduce exactly
to those given in Ref. 14.

V. NUMERICAL RESULTS AND DISCUSSION

From the structure of our balance equations in steady
state, one can expect that the finite nature of the phonon
relaxation time ~z has a significant impact on carrier
transport in GaAs heterosystems. It is particularly im-
portant for the energy-transfer rate induced by the
electron —polar-optic-phonon interaction. This effect may
be understood from the fact that scatterings with sma11
momentum transfer have a considerable weight in contri-
buting to the electron energy loss, and in the case of a
Frohlich coupling between electrons and polar optic pho-
nons, the effective scattering matrix element M(q) and
consequently I (q, fl+q. v) -M(q) Hp(q, A+q. v) are
large at small q. The effects of such large values of I are
sharply reduced when taken in conjunction with the
finite-phonon relaxation time. Of course, the phonon-
induced frictional force is also modified by the finite ~~.
However, this effect is not as pronounced as in the energy
transfer rate because of the relatively small weight of
small q scattering in the constitution of the force, in con-
trast to the energy loss.

We have calculated the electron nonlinear mobility p
and carrier temperature T, as functions of drift velocity v

based on the force and energy balance equations (62) and
(63) for two different n type GaAs hete-rosystems, assum-
ing the electron —polar-optic-phonon coupling to be the
dominant mechanism of inelastic scattering. One of the
systems is a heterojunction with electron sheet density
N, =3.9)& 10" cm and zero-temperature ohmic mobili-

ty pp ——2.2)&10 cm /Vs. The calculation is carried out
at lattice temperature T=10 K. The Fang-Howard-Stern
variational wave function' is used as the electron lowest-
subband envelope function: g(z)-z exp( —bz/2), and b is
determined by N, and the depletion-layer charge density
N~ with N~ ——0.5&(10" cm . The second system is a
quantum well of width a=250 A with electron sheet den-
sity N, =3.9 & 10" cm and zero-temperature ohmic
mobility pp=7. 9&10 cm /Vs. The well potential is as-
sumed deep enough so that g(z)-cos(irz/a) adequately
represents the lowest-subband envelope function. In
GaAs heterosystems various kinds of elastic scattering
mechanisms are needed to account for these relatively low
experimental pp values. The detailed estimation of the
contributions due to different kinds of elastic scatterings
is a complicated task and beyond the scope of the present
paper. What we require here is the dependence of p; (due
to elastic scattering) as a function of electron temperature
T, and drift velocity v. For this we use the results given
in Refs. 13 and 14, with remote and background impurity
scatterings included, and assume equality of the contribu-
tions of these two kinds of impurities to the ohmic
mobility at T=O K. The remote impurities are assumed
to lie on sheets at a distance of 100 A from the interfaces.
The relevant parameters used in the calculation are elec-
tron effective mass m, =0.07mo (mo is the free electron
mass), longitudinal optic phonon energy A'Do=35. 4 meV,
GaAs low-frequency dielectric constant ~=12.9, and op-
tic dielectric constant ~ = 10.8. In all our calculations in
this paper, the electron density-density correlation func-
tions employed are those of the random phase approxima-
tion with full temperature, wave-vector, and frequency
dependencies intact.

The calculated results for nonlinear mobility p (defined
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as the ratio of the drift velocity to electric field p, =v/E),
normalized to po, and for carrier temperature T„are
shown in Figs. 1 and 2 as functions of drift velocity v for
phonon relaxation times ~p

——0 and ~p
——3.5 ps. The most

striking effect of the finite-phonon relaxation time is that
for a given drift velocity the electron temperature is much
higher than in the case of ~p

——0. Such an increase of elec-
tron temperature tends to raise the frictional force in a
measure which outweighs the tendency toward dimunition
due to finite wp, and the normalized mobility p/po is
lower for finite 7p than for wp:0.

In order to gain direct insight into the behavior of the
electron energy-loss rate and to compare with experi-

FIG. 1. Nonlinear mobilities normalized to the ohmic limit

p/po (solid curves) and electron temperatures T, (dashed
curves) are shown as functions of drift velocity v for phonon re-

laxation times ~~ =0 and ~~ =3.5 ps at lattice temperature
T= 10 K for a n-GaAs heterojunction with carrier sheet density

N, =3.9)&10"cm and po ——2.2~10 cm /Vs.

ments, we replot the above results as inverse carrier tem-
perature 1/ T, versus energy-transfer rate per carrier in
Fig. 3, together with the experimental data of Shah et al.
and Yang et al. For given T„ the energy-loss rates due
to polar-optic-phonon scattering for ~p =3.5 ps do show a
factor of 5 to 10 times smaller than those for ~p =0.

We have also carried out a similar calculation for a
GaAs quantum-well hole system. For holes both polar
optic phonon and nonpolar-optic-phonon scatterings, as
well as acoustic phonon scattering, contribute to trans-
port. For simplicity we still use the parabolic band ap-
proximation with effective mass m~ ——0.5 m o to take ac-
count of the effect of light holes. The p-like behavior of
the valence-band wave function is accounted for by use of
the semiempirical modified coefficient for the electron-
phonon coupling as in the earlier analysis of 3D sys-
tems. ~ We take (a) E, =5.8 eV for the acoustic phonon
deformational potential (without hot-phonon effects), (b)
D =9.0 & 10 eV/cm for the optic-phonon deformation
potential, (c) a correction factor of 0.455 to the Frohlich
expression for the polar-optic coupling. The longitudinal
sound velocity v, j

——5.29 X 10 cm/s and AO, O, ~ and K

are given above. The calculated hole energy-loss rates for
a p-GaAs quantum-well system of width a=95 A, carrier
sheet density N, =3.5&& 10" cm and zero temperature
ohmic mobility po ——3.6& 10 cm /V s are shown in Fig. 4
for lattice temperature T=2 K and phonon relaxation
times ~z ——0 and ~p =3.5 ps together with the experimen-
tal points of Shah et al. The reduction of the hole
energy-loss rate due to nonequilibrium phonons is much
smaller than for electrons, in agreement with experiments.
This is a consequence of the fact that large wave-vector
transfer contributions become important in acoustic and
optic deformation potential scatterings, as pointed out by
Shah et al.

In the following, we shall briefly discuss the hot-
phonon effect on linear mobility. From the structure of
our force- and energy-balance equations in steady state, it
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FIG. 2. Nonlinear mobilities normalized to the ohmic limit

p /po (solid curves) and electron temperatures T, (dashed
curves) are shown as functions of drift velocity v for phonon re-

laxation times ~~ =0 and r~ =3.5 ps at lattice temperature T=2
K for a n-GaAs quantum well of width a =250 A,
N, =3.9)& 10"cm, and po ——7.9 && 10 cm /V s.

ENERGY TRANSFER RATE PER CARRIER
(wL

FIG. 3. Inverse electron temperature 1/ T, vs electron-
energy-transfer rate per carrier for two n-GaAs heterosystems
(1, for the system described in Fig. 1; 2, for the system described
in Fig. 2) at phonon relaxation times ~~ =0 and ~~ =3.5 ps. The
dots are the experimental data from Ref. 5 and the rectangles
are those from Ref. 6. The dashed lines are calculated accord-
ing to Eq. (111)for the system 2 ~
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is easily seen that in the weak current limit the energy bal-
ance equation gives T, = T up to the first order in drift
velocity. Therefore the ohmic mobility pz due to optic-
phonon scattering is obtained directly from the force-
balance equation by setting T, = T:

f2

N, ek~r
AA

kBT f K(q, II)q dq .

(110)
Obviously, finite phonon-relaxation time effects will show

up in the optic-phonon-induced ohmic mobility. In Fig. 5

10—

ENERGY TRANSFER RATE PE R CARRIER
{w)

FIG. 4. Inverse hole temperature 1/ T, vs hole-energy-
transfer rate per carrier for a p-GaAs quantum-well system of

0
width a=95 A, carrier sheet density N, =3.5&10" crn and 0
K ohmic mobility po ——3.6)&10 cm /Vs at lattice temperature
T=2 K with two different values of phonon relaxation times
r~=O and ~~=3.5 ps. The rhombuses are experimental data
from Ref. 5.

I

10 10 10 lp
ENERGY TRANSFER RATE PER CARR)ER

{w}
FIG. 6. Electron-energy-transfer rate per carrier vs 1/T, as

calculated from Eq. (111)at T=O K with ~~=0 and ~~=3.5 ps
for a superlattice of a=100 A, d=200 A, and N, =2.3X10"
cm in quasi-2D and 3D phonon models.

AA,
u) =RA n

k~T,
RQ

kBT

with

we plot the calculated values of ohmic mobility due to po-
lar optic-phonon scattering (a) for a n GaAs -single hetero-
junction with N, =3.9)& 10" cm and N& ——5 && 10'
cm, using the quasi-2D phonon model and (b) for an
n-GaAs superlattice of width a=100 A and d=200 A
with N, =2.3 & 10" cm, using both quasi-2D and 3D
phonon models.

Considering the energy-transfer rate w given by the ex-
pressions (79) or (105), the neglect of q v in the argument
0+q.v directly yields the carrier energy-loss rate with no
need to solve the balance equation. This corresponds to
the usual procedures of a carrier temperature model, ' "
and it leads to

CO
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E
O 4
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CV

O 3

10:
5x lp-

I I I I I i I I

5p lpp 2pp 50 100 200
TEMPERATURE T IK)

FIG. 5. Electron ohmic mobilities p~ due to polar-optic-
phonon scattering are shown as functions of lattice temperature
T with different phonon relaxation times ~~ =0 and ~~ =3.5 ps:
(a) for a single heterojunction as described in Fig. 1, quasi-2D
phonon model; and (b) for a superlattice of a=100 A, d=200
A, and N, =2.3)& 10" cm in the quasi-2D phonon model (2D)
and the 3D phonon model (3D).

0
0 lpp 200 300

CARRIER TEMPERATURE Te

400

FIG. 7. Calculated values of q as defined in Eqs. (111) and
(112) vs electron temperature T, at ~~=0 and &~=3.5 ps for a
superlattice of width a =200 A, but for different values of d, us-

ing quasi-2D and 3D phonon models. 1 —~~ =0; 2 —d=2000 A,
~~=3.5 ps, 3D model; 3 —d=800 A, ~~=3.5 ps, 3D model;
4—d=300 A, ~z ——3.5 ps, 3D model; 5 —~~=3.6 ps, quasi-2D
model.
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r) = QIC(q, A) . (112)

To examine the difference between the 3D phonon model
and the quasi-2D phonon model we plot in Fig. 6 the
energy-loss rate versus 1/T, as obtained from Eq. (111)at
zero lattice temperature for a n-type GaAs superlattice of
a=100 A, d=200 A, and N, =2.3&&10" cm, for pho-
non relaxation times ~z

——0 and ~z
——3.5 ps. We also plot

p as a function of electron temperature T, in Fig. 7 for a
series of superlattices of width a=200 A~ but having dif-
ferent values of d=300, 800, and 2000 A. For the cases
of r~&0 and/or for the quasi-2D model, the d depen-
dence is too small to exhibit. The resulting energy-loss
rate in the 3D phonon model, however, does show a d
dependence at ~z

——0. The energy-loss rates obtained
from the quasi-2D phonon model are always smaller than
those of the 3D phonon model for a given phonon relaxa-
tion time ~z. However, further reduced rates can be
achieved in the 3D phonon model if one uses a larger ~z.

It is worth mentioning that, although the carrier-
temperature-model-type formula for energy-loss rate is at-

tractive and widely used in the literature due to its simpli-
city, the error arising from the neglect of q v is signifi-
cant for T, &70 K. To see this we plot in Fig. 3 as
dashed lines the results of 1/T, versus the per carrier
energy-transfer rate calculated from Eq. (111) for the
same quantum-well system of a=250 A as described in
Fig. 1 at w&

——0 and ~&
——3.5 ps. The difference may be as

large as a factor of 3. Therefore, the balance equation
analysis carried out here is requisite for a correct deter-
mination of the functional dependence of the energy-loss
rate in steady-state hot-carrier transport in the presence of
an electric field.
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