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Fragmentation of silicon microclusters: A molecular-dynamics study
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A detailed molecular-dynamics (MD) study has been performed to (i) enumerate ground-state and
finite-temperature structures and (ii) investigate the nature of fragmentation for Siy clusters
(N =2—14), using the Stillinger-Weber three-body interaction potential. We investigate all underly-
ing mechanically stable structures visited by the system in the equilibrium state. Results indicate
that the presence of magic numbers, unusually stable finite-temperature clusters Siy, Sig, and Sijp as
determined by the photofragmentation experiment of Bloomfield, Freeman, and Brown is dependent
upon the topology and energetics of high-energy bound structures rather than upon the structure

and ground-state energies at zero temperature.

I. INTRODUCTION

Recent work on metallic' ™ and inert-gas clusters®—°
has stimulated a growing interest in the geometrical ar-
rangements and electronic configurations of group-IV mi-
croclusters.!~1® Inert gases are known to form predom-
inantly 13-, 55-, etc., atom clusters which are explained by
stable icosahedral packing.!” Unusually stable 4-, 6-, and
10-atom microclusters, referred to as “magic numbers,”
are found for covalently bonded semiconductors such as
silicon'? and germanium.'> Due to strong 7 bonding, car-
bon clusters exhibit chainlike structures with their own set
of magic numbers.!® In the photofragmentation experi-
ment on ionized silicon, Bloomfield, Freeman, and
Brown'? (BFB) determined relative cross sections and in-
dividual fragmentation channels for N=2—12. They re-
ported relatively low total photofragmentation cross sec-
tions for Sis*, Sigt, and Sijo* clusters in addition to an
abundance of Sig*,Si;ot from the fragmentation of
Si;_;+,Si, T, respectively, indicating the possible ex-
istence of particularly stable and compact structures for
Sig™, Sijo*, and possibly Si,*. Fragmentation occurred
by exposing the mass selected, ionized cluster to an in-
tense beam of pulsed-laser radiation. The size distribution
of the resulting fragments was reported to depend critical-
ly on the overlap between the laser beam and cluster. The
clusters dissociated at temperatures on the order of the
melting temperature, well above the T"=0 ground state,
and the fragmentation spectra were shown to be tempera-
ture dependent. An early sublimation study on silicon by
Honig'® supports the common occurrence of Sig* and re-
ports the dissociation energy of the Si, dimer to be 3.25
eV/atom.

In carrying out a theoretical calculation to explain these
results, one wants to determine for each cluster considered
(i) all mechanically stable configurations at T'=0, (ii) the
most probable configurations at finite temperatures, (iii)
the temperature at which the cluster would fragment into
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two or more smaller clusters, (iv) the fragmentation spec-
tra, and (v) the configurations from which it is most likely
to fragment.

Several models!? and theoretical calculations
have been offered thus far to explain the magic numbers
obtained from the photofragmentation experiment on Si.
Bloomfield et al.'? proposed a simple model, consistent
with the data, of silicon clusters reconstructed from mi-
crocrystals of the diamond lattice. The triangle, rhombus,
and trigonal bipyramid form the compact geometries for
N =3-5. For larger clusters, two geometries essential to
the model are the reconstructed six-atom “chair” ring and
ten-atom ‘“‘adamantane cage” subunits of the diamond
structure. Large clusters are believed to prefer breaking
bonds along the [111] direction into the six-atom ring,
which then reconstructs into a more compact and sym-
metric form, possibly a distorted trigonal bipyramid. The
geometries of clusters with seven atoms or more are found
by adding atoms to the six-atom configuration until a
new, relatively more compact cluster of the reconstructed
ten-atom cage is achieved. By construction, the six- and
ten-atom clusters are more compact, and the dominant oc-
currence of six-atom fragments from larger clusters is a
logical consequence of the 6 + N (N =1-3) structure.
Although this simple model of BFB is qualitatively con-
sistent with the experimental results, it is not unique, nor
are the actual structures and cohesive energies of the clus-
ters known.

Recent detailed calculations by Raghavachari and Lo-
govinsky!> (RL) and by Tomaének and Schliiter'® (TS)
enumerating the ground-state geometries of silicon clus-
ters have found close-packed structures with significantly
lower energy than the corresponding microcrystals, con-
sistent with the experimental data. Both calculations em-
ployed a quantum-chemical approach, seeking the solu-
tion to the Schrodinger equation whose Hamiltonian in-
cluded ion-ion, ion-electron, and electron-electron interac-
tions. A complete solution to the Schrodinger equation
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for finite temperatures is certainly a formidable task and
not available for even small silicon clusters. Present
methods attempt only to determine approximate ground-
state geometries and electronic configurations.

The results of RL were based on the all-electron molec-
ular orbital technique.?! Several likely geometries and
electron configurations were considered for each silicon
cluster N =2—6. Equilibrium structures were determined
by minimizing the total energy for both the neutral and
ionized clusters. To avoid the possibility of metastable
configurations, the harmonic vibrational frequencies of
each cluster were calculated and found to be positive.
Charged clusters were found to have nearly the same
structure as the parent neutral clusters. Detailed analysis
of charge distributions indicated that the least bonded
atom usually carried a positive charge. A few configura-
tions based on the results of Si,_, were considered for Si
and Si;p. The most stable zero-temperature structures
found for Si;_; were the isosceles triangle, planar
rhombus, “flattened” trigonal bipyramid, edge-capped tri-
gonal bipyramid, and tricapped tetrahedron, respectively.
Of the geometries considered, a tetracapped octahedron
had the lowest total energy for Si;,. The authors note that
each cluster Siy (N=3—7) can be constructed by adding
either an edge- or face-capped atom to the Siy_; struc-
ture, with small clusters preferring edge-capping. Since
the tricapped tetrahedron Si; can be viewed as a distorted
face-capped octahedron and Si,, is a tetracapped octahe-
dron, it is natural to imagine Sig and Siy as bicapped and
tricapped octahedrons, respectively. Again one has a
model for Si microclusters, where Sig fragments occur
naturally from a 6 + N structure. The fragmentation en-
ergy (the smallest energy necessary to break the ground-
state structure of each cluster) was also calculated and
found to be relatively large for Siy and Sig. The existence
of magic numbers (N =4,6) was explained by the relative-
ly low ground-state energies and the high fragmentation
energies of Siy and Sig.

Tomanek and Schliiter'® actually perform two separate
calculations to determine the ground-state energy of Siy
(N =2—11) microclusters. The results of a tight-binding
(TB) approach were used as input for a local-density ap-
proximation (LDA) in the density-functional theory
(DFT).22=%* The total energy was given by an empirical
tight-binding Hamiltonian as developed by Chadi.”’
Starting with a number of different bonding configura-
tions (10 to 20) Tomanek and Schliiter found equilibrium
structures through minimization of the total TB energy.
The resulting stable or metastable configurations (2 to 3)
were then investigated in more detail using the self-
consistent local-density-functional approach with a
Hamann-Schliiter-Chaing-type'® pseudopotential to calcu-
late total energies. Neutral, positively, or negatively
charged clusters were found to have similar structures.
The two methods agree quite well, with only small quanti-
tative differences in bond lengths and cohesive energies.
Ground-state structures for Si;_g¢ are the triangle, flat
rhombus, “squashed” trigonal bipyramid, and the tetrago-
nal bipyramid, respectively. The ‘“squashed” (TS) and
“flattened” (RL) trigonal bipyramids for Sis are indicative
of tightly bound caps relative to the pyramid’s base.

Larger clusters (Si;—Si4) in the TS model are constructed
by adding face-capped atoms to the octahedron, which is
then relaxed to give the final stable structure. Si4 is par-
ticularly symmetric, with every face of the octahedron
capped. All configurations have lower energy than their
corresponding microcrystalline fragments. The authors
indicate that the TB calculation gives relatively stable
configurations for N=4,6,10, while only N=6,10 are
found to be particularly stable from LDA.

Saito, Ohnishi, and Sugano19 have constructed a model
potential for calculating binding energies of silicon micro-
clusters Siy, N=2—-20. Each Si atom is considered to
have four attractive centers located on the corners of a
regular tetrahedron. The anisotropy lies in the attractive
part of the interaction and depends on the relative orienta-
tion of the atoms. Yukawa’s potential is adopted for the
repulsive term. For the Si, dimer, “corner-sharing” atoms
with mirror symmetry about the bond connecting the two
corners produces the most stable configuration, while
“face-sharing” atoms are the most repulsive. Lowest-
energy configurations were determined by minimizing the
total energy with respect to rotations and translations of
the atoms. Two stable configurations were found for each
cluster N >6. One set was found to contain only six-
membered rings with structures similar to subunits of the
diamond lattice. The remaining set, considered to be
amorphous, contained mainly four- and five-membered
rings with energies generally lower than the corresponding
crystal fragments. Based on relatively high binding ener-
gies per atom, the authors claim the magic numbers for (i)
the microcrystalline series are N=6, 10, 14, and 18, (ii)
the amorphous series are N=5, 10, 12, 16, 18, and 20.
The triangle, flattened tetrahedron, and regular pentagon
are the most stable configurations for N=3, 4, and 5,
respectively. Siy is formed from Sis by the addition of a
corner-shared atom, while edge-shared atoms added to Si,
forming four- and five-membered rings, were found to be
the most stable structures for N > 6.

The above four approaches restrict calculations to
zero-temperature ground-state configurations and impose
strict limitations on the sampling of points in the 3N-
dimensional configuration space. This is not surprising,
considering the enormous complexity of this few-body,
finite-temperature problem. At best, the global ground-
state configuration could be determined for small clusters
by well-chosen initial positions. It may then be possible to
determine the magic numbers and the most likely frag-
mentation channels from the ground-state binding ener-
gies and structures. However, the relationship between
the lowest-energy zero-temperature configuration and the
energetics of finite-temperature (7 ~2000 K) microclus-
ters is not obvious. Since the dissociation of Si clusters in
the photofragmentation experiment occurs at tempera-
tures the order of the melting temperature, a first-
principles finite-temperature calculation is needed that al-
lows determination of all possible structures, their corre-
sponding binding energies and the nature of fragmenta-
tion. There are two methods that may provide the means
to perform such a calculation in the future: the Green’s-
function Monte Carlo (GFMC) technique?®~2% and the
method of dynamical simulated annealing.*** An
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ab initio calculation using either of these two methods
still presents considerable difficulty.

A very informative study can be performed by accept-
ing a phenomenological potential for input in a detailed
molecular-dynamics (MD) simulation.’! In this way, one
can explore the 3N-dimensional configuration space in
great detail, determining the underlying mechanically
stable structures visited by the system in the equilibrium
state at high temperatures and their corresponding bind-
ing energies and fragmentation spectra for microclusters
(N =2-200) within a reasonable computation time. In
this paper, the results of such a MD simulation are
presented for Siy (N =2-—14), utilizing the Stillinger and
Weber? three-body interaction potential. The presence of
magic numbers, unusually stable finite-temperature N-
atom clusters, is found by determining the fragmentation
temperature (7), the temperature at which the clusters
fragment. Our results indicate that the magic numbers in
the fragmentation spectra are determined by the topology
and energetics of high-energy bound structures rather
than by the structure and ground-state energies at zero
temperature.

Section II presents the interaction potential and general
techniques employed. The Stillinger-Weber phenomeno-
logical potential is discussed in Sec. II A, followed by a
brief summary of the molecular-dynamics technique in
Sec. IIB. The steepest-descent quench, an important
technique for enumerating the underlying mechanically
stable structures of the finite-temperature clusters, is
presented in Sec. IIC. Section III contains a detailed
amount of the MD simulation, describing how the global
ground-state structures, the most probable structure
underlying the finite-temperature cluster, and the frag-
mentation spectra were obtained. Section IV presents re-
sults for the ground-state structures for Si,_;4 and a com-
parison of RL and TS. Section V contains results for
finite-temperature clusters. Section V A presents energy
versus temperature curves, discusses their interesting
features, and describes how the internal energy depends
upon temperature. The hidden structures underlying the
finite-temperature clusters are discussed in Sec. VB. The
evidence for the existence of unusually stable microclus-
ters Siy 10 (magic numbers) is discussed in Sec. VL.

II. INTERACTION POTENTIAL,
MOLECULAR-DYNAMICS TECHNIQUE,
AND METHOD OF STEEPEST DESCENTS

A. The Stillinger-Weber silicon potential

Considering two- and three-body interactions, Stillinger
and Weber’? (SW) recently devised a phenomenological
potential for silicon. The three-body contribution always
increases the total potential energy when the angle formed
by a central atom and two of its covalently bonded neigh-
bors differs from the perfect tetrahedral angle. All ener-
gies resulting from the present work are expressed in units
of ¢, the magnitude of the minimum in the two-body po-
tential, and all lengths are expressed in units of o. Values
of € (50 kcal=2.17 eV) and o (2.0951 A) were chosen to
give the correct atomization energy and density of crystal-
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line silicon at zero temperature and pressure. In reduced
units a temperature (T*) of 0.1 corresponds to 2500 K.
The two-body contribution to the SW potential has the
following functional form:
Vz(l',-,rj)z Vz(r,-j)
= ABr;?—rjNexp[(r;—a)™'], 2.1

i<j
and the three-body term is taken to be
V3(r,~,rj,rk)=h(rj,-,rki)+h(rkj,r,-j)+h(r,-k,rjk) N (2.2)
where

h(rir)= 23 Aexply[(ri—a)™'+(ry—a)™']

i<j<k

X (cos@j +1/3) . (2.3

We have used the notation 7;;= |r;—r; | and 6;; as the
angle subtended by rj; and r; with the vertex at i. The
three-body contribution obviously becomes zero at the
perfect tetrahedral angle 6, (cosf, = —+) and is positive
otherwise.

This functional form was chosen so that the potential
and its derivatives approach zero continuously as the dis-
tance r nears the cutoff a and is set to zero for r greater
than or equal to a. The parameters in this model poten-
tial, Egs. (2.1)—(2.3), were determined from the cohesive
energy of the diamond lattice, the melting temperature,
and the local structure of molten silicon. The parameter
set chosen by SW gives the diamond lattice as the most
stable structure at low pressure and sc, bcc, and fec lat-
tices with slightly higher lattice energies. When compared
with the diamond lattice, the sc, bee, and fcc lattices have
additional two, four- and eight two-body bonds, respec-
tively, which tend to increase the total binding energy,
while the deviations from perfect tetrahedral angles de-
crease the binding energy. These two competing effects,
additional bonds, and deviations from tetrahedral angles,
have the net result of decreasing the total binding energy
relative to the perfect diamond configuration. The melt-
ing temperature and liquid structure factor resulting from
the parameter set compared favorably with experimental
results. The values of the seven parameters 4, B, a, p, g,
A, and y for the SW potential are given below:

A=7.049556277, B =0.6022245584,
a=1.8, p=4, ¢=0,
A=21.0, y=1.20.

The range of interaction (a=3.77 A) is just short of the
second-nearest-neighbor distance (3.83 A) in the diamond
crystal. Bulk properties, such as cohesive energy for the
diamond lattice (4.34 eV/atom), the thermodynamic melt-
ing temperature (7, =2000 K), and the nearest-neighbor
distance (2.35 A) determined from this potential are in
good agreement with the experimental values of 4.63
eV/atom, 1688 K, and 2.35 A, respectively.
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B. The molecular-dynamics technique

Molecular-dynamics simulation allows calculation of
the static and dynamic properties of a system for a given
interaction potential. The particle trajectories in real
space are found by integrating Newton’s equation of
motion. In this way, the microscopic configurations as
well as the collective dynamics of a large number of parti-
cles, typically N =100—5000, can be thoroughly investi-
gated. The present work employed Beeman’s algorithm?>?
to integrate Newton’s equations of motion,

x(t+At)=x(t)+v(t)At +[4a(t)—al(t —At)]At?/6
(2.4)

and
v(t+At)=v(t)+[2a(t +At)+5a(t)—al(t —At)]At /6 .
(2.5

Initial positions x(t=0) and velocities v(¢t=0) were
chosen and the acceleration a (¢) was determined from the
SW force. After the initial conditions were chosen, the
system was well thermalized at a given value of the inter-
nal energy. The initial conditions had no effect on the
equilibrium properties. A time step (At) of 3.8 10716
sec was used, resulting in energy conservation to five sig-
nificant digits. Various bonding geometries, including the
lowest-energy configurations of RL and TS, were con-
sidered as initial conditions for each cluster, although fi-
nal results were independent of the initial geometry. Mi-
crocrystalline fragments were found to have the lowest
binding energies and were unsuitable starting configura-
tions for large clusters (N >8). To start the MD run,
each particle in the cluster was given both a small random
displacement and velocity ensuring that both total linear
and angular momenta of the cluster were initially set to
zero. Subsequent scalings of the velocities to raise or
lower the cluster’s energy did not impart any linear or an-
gular momentum to the system. All calculations were
performed on the Ridge 32/130.

C. The steepest-descent quench (SDQ)

The potential V(R) (R={ry,ry, ...,ry}) of an N-
particle system defines a surface in the 3 N-dimensional
configuration space. This surface may have many dif-
ferent minima identified with different stable or metasta-
ble structures. Such a collection of minima for bulk sil-
icon would include all the various amorphous packings
and the global minimum of the crystalline geometry. The
time evolution of a finite-temperature cluster is represent-
ed by its trajectory on the constant-energy hypersurface in
the 6 N-dimensional phase space. The projection of this
trajectory on the 3 N-dimensional configuration space will
pass in the neighborhood of all accessible potential-energy
minima corresponding to allowed structures. One obvious
advantage of MD simulations is the exact determination
of most, if not all, mechanically stable configurations.
The assignment of these finite-temperature structures to
the underlying mechanically stable structures requires the
partitioning of the potential-energy surface. Every point

in this configuration space must be uniquely identified
with a local potential minimum. In this way, the instan-
taneous positions of the finite-temperature system can be
considered as composed of vibrational (possibly anhar-
monic) displacements from the equilibrium positions of a
local minimum. This is a mathematically well-defined
problem that can be solved through the steepest-descent
quench.’* The SDQ assigns each point on the potential-
energy surface in configuration space to the first potential
minimum encountered when descending from that point
along the steepest available path. The determination of
the local minimum is performed by solving the steepest-
descent equation
JR

—— = —VgV(R) (2.6)
as

in the limit s— . The actual solution to this equation
was found through the conjugate-gradient method, an ef-
ficient numerical solution for a function of many vari-
ables.

At very low energies, the particles oscillate about the
equilibrium positions of their initial 7 =0 configuration,
and transitions between states prohibited by the potential
barriers. Mapping instantaneous positions of such a sys-
tem to the local equilibrium positions will always yield
one configuration, a mechanically stable structure with
(F;=0) and (v;=0). For higher energies, the potential
barriers are overcome and the system is allowed to change
structure. If that were to occur, the lowest-energy route
between neighboring minima would pass over a potential
barrier characterized by a saddle point lying on the line
separating the two neighboring regions of the partitioned
surface. In this case, mapping of the instantaneous posi-
tions will result in two or more distinct mechanically
stable structures. As the system is heated, more and more
structures become accessible until dissociation is permit-
ted. The investigation of these structures is one of the
principle objectives of the present work.

III. METHOD OF CALCULATION

An exhaustive search was carried out to (i) enumerate
all accessible mechanically stable configurations and the
relative probabilities of occupying any particular configu-
ration at given finite temperatures, (ii) find the highest en-
ergy (E;) and temperature (7,) at which the system
would remain bound, and (iii) determine the distribution
of fragmentation channels for each cluster (N=3—14).
Ideally, the fragmentation energy E; should be defined as
the lowest energy at which a system fragments on a mac-
roscopic time scale. However, this is an unrealistic re-
quirement for the present calculation, so we have defined
the fragmentation energy to be the highest energy before
the first fragmentation event at which the system remains

bound for 25000 MD steps.
Initially, each cluster was monotonically heated until

very high energies were reached, generating a large num-
ber of systems (10—20) of various energies to be used later
for determination of the fragmentation energy. At each
energy the system was thermalized for 1000 time steps.
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Subsequently, the temperature was defined through the
average Kinetic energy over many thousands of time steps.
The total energy of a cluster was increased until the sys-
tem fragmented. The mechanically stable structures and
corresponding binding energies underlying the finite-
temperature clusters were determined from SDQ map-
pings of the configuration-space trajectory to the local
minima, as shown schematically in Fig. 1. In this way,
approximately 1000 mechanically stable configurations
were recorded for each cluster, although only a small sub-
set was actually unique structures. The systems which did
not fragment had been well “thermalized” (11000 MD
steps) and served as seeds for subsequent determination of
the most likely fragmentation channels. These systems
were heated (or cooled, for superheated systems) once
every 11000 steps until fragmentation occurred. Between
20 and 30 fragmentations were observed for each cluster
Siy (N=3-—14). The fragmentation energy as defined
above was determined to within 0.0l1e (0.02 eV/atom) by
making a series of simulations of 25000 MD steps in the
energy range of interest.

To determine the relative probability of visiting certain
geometries, all clusters were started from their zero-
temperature ground-state configuration and monotonical-
ly heated. Through this procedure, one finds only those
structures accessible from the ground state. Four systems
were generated by stepwise heating the lowest-energy
structure until 25%, 50%, 75%, and 95% of the energy
required for fragmentation had been added. The energies
of the resulting four systems are referred to below as
0.25E;, 0.5Ef, 0.75E¢, and 0.95Ey, respectively. The rel-
ative probabilities of visiting particular configurations

MD  Trajectory

>
frat)) i) {rie) {ree
vy (vt vt} {v)}
I |
| | \
’ !
— |
*SDQ SII)Q SDhQ SDQ
| |
. |
I . |
v v v '
{r ) {r ) {r(t)} {r' )}
[V (1)=0} {V'(t,)=0} {v'(t)-0} fviit,)=0}
{F =0} (F=0}  {F=0} {F =0}
E E, E E
FIG. 1. Schematic representation of the steepest-descent

quench (SDQ) performed in parallel with the molecular-
dynamics (MD) simulation. MD generates positions {r;} and
velocities {v;} at each time step through integration of Newton’s
equation of motion. The SDQ maps the instantaneous positions
to the local minimum E, where the force {F;} on each particle
vanishes and the velocities are zero. This mapping does not in
any way affect the continuation of the MD trajectory.
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were determined at these four energies by frequent map-
pings to the local potential minima during a 5000-step,
constant-energy MD run.

IV. GROUND-STATE STRUCTURES

The lowest-energy structures for each cluster Siz_jq4
were determined from approximately 1000 mapped poten-
tial minima performed in the first part of this work.
Steepest-descent mappings were also carried out parallel
with a MD run for Si,. As expected for this model poten-
tial, the distance separating the two atoms in the dimer is
exactly the nearest-neighbor distance in crystalline silicon.
The ground-state configurations of Si;, Siy, and Sis have
the following symmetrical and planar geometries: the
equilateral triangle [Fig. 2(a)], the square [Fig. 3(a)], and
the regular pentagon [Fig. 4(a)], respectively. It should be
noted that the isosceles triangle [Fig. 2(b)], consisting of
only two bonds forming a perfect tetrahedral angle, is
only slightly higher in energy than the ground-state struc-
ture of Si;. The loss is the two-body binding energy of
this metastable state with respect to the lowest-energy
configuration due to the decrease in the number of bonds
is offset by the three-body interaction. A more complete
discussion of the high-energy structures for Si;_ 4 is given
in the section on hidden structures (Sec. VB). It is not
surprising the pentagon has the lowest energy for Sis since
the angle between adjacent bonds (108°) is only 1.5° small-
er than the perfect tetrahedral angle. The squashed trigo-
nal bipyramid [Fig. 4(b)], whose energy is higher than the
ground state of the pentagon by less than 1%, was also
commonly found during steepest-descent quenches from
intermediate temperatures. The structure of Siy (N
=3,4,5) can be understood in terms of relaxing the edge-
capped Siy _; structure.

The triangle is the basic subunit in the formation of the
Si, and Si; ground states. The ground-state structure of
Si¢ is the first to have three-dimensional geometry with all
atoms threefold coordinated. The symmetrical stacking
of two equilateral triangles, similar to a wedge, form the
Sig structure [Fig. 5(a)], while the Si; ground-state config-
urations [Fig. 6(a)] can be thought of as capping each of
the three edges on the base of the trigonal pyramid. The
Si; structure containing one equilateral, and six nearly
equilateral, isosceles triangles may be achieved from the
reconstruction of an edge-capped Sigq ground-state config-
uration.

£

(@) (b)

FIG. 2. Si; structures: (a) ground-state structure, equilateral
triangle, E = —0.6828¢; (b) isosceles triangle with the only two
bonds forming a perfect tetrahedral angle (Si; chain),
E=—0.6667¢.
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(a) (b)
(©) (d)

FIG. 3. Si4 structures: (a) ground-state structure, square,
E=-0.9387¢; (b) corner-capped equilateral triangle,
E = —0.7621¢; (c) and (d) lowest-binding-energy configurations,
degenerate in energy with three bonds and perfect tetrahedral
angles, £ = —0.7500¢.

One can form the symmetric ground-state geometry of
Sig, a perfect cube [Fig. 7(a)], by either reconstructing a
face-capped Si; structure or by attaching a Si, dimer to a
square face of the Sig wedge. The addition of one atom to
the edge of the Sig cube forms the lowest-energy structure
for Siq [Fig. 8(a)]. Allowing this structure to relax breaks

(7 <3

(a) (b)
(c) (d
(e) (f)

FIG. 4. Sis structures: (a) ground-state structure, pentagon,
E = —0.9996¢; shown in order of decreasing binding energy,
other structures are (b) trigonal bipyramid, E = —0.9899¢; (c)
corner-capped square, E=—0.9509¢; (d) two-atom chain
corner-capped to an equilateral triangle, E = —0.8097¢; (e)
reconstructed tetrahedron, E= —0.8029¢; (f) fragment of the
crystalline six-atom chair ring (Sis chain), E = —0.8000¢.

(a) (b)
(c) (d)

FIG. 5. Sie structures: (a) ground-state geometry can be
formed by symmetrically stacking two equilateral triangles,
E=—-1.0906e; (b) reconstructed face-capped pentagon,
E =—1.0867¢; (c) corner-capped pentagon, E= —0.9997¢; (d)
two-atom chain corner-capped to a square, £ = —0.9591¢.

the edge-capped bond, forming two identical, nearly per-
pendicular, nonplanar pentagons. The ground-state
geometry for Sis may be used to obtain Si,g in the same
way the ground-state structures for Siy (N=2,3,4) can be
used to obtain those of Si,y with the lowest-energy con-
figuration for Si;y made of two symmetrically stacked
pentagons [Fig. 9(a)]. This structure may also be formed
by face-capping the Sig ground-state configuration or by
adding a dimer parallel to one face of the Sig cube.
Reconstruction of an atom capped to a pentagon face
on the Sijy ground-state structure results in the lowest-
energy configuration for Si;, [Fig. 10(a)]. The ground-
state structure for Si;, is the smallest to contain a
fourfold-coordinated atom. The symmetrical ground-
state figure for Si;, [Fig. 11(a)] can perhaps be more easily
described by the addition of a Si, dimer to a square face

(c) (d)

FIG. 6. Si; structures: (a) ground-state structure,
E = —1.1788¢; (b) most commonly found low-energy structure,
E=-—1.1778¢; (c) dimer face-capped to a pentagon,
E=—1.1128¢; (d) square edge-sharing with a pentagon,
E=—1.1075¢.
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(c) (d)
FIG. 7. Sig structures: (a) ground-state structure, cube,
E = —1.3222¢: shown in order of decreasing binding energy, (b)
E=—-12364¢, (c) E=—1.2020g, (d) E=—1.1903e. These

three structures account for over 50% of the underlying struc-
ture at energies near E;.

of the Sijo ground state, but can also be obtained by face-
capping the Si;; ground state so that one of the
tetrahedral bonds is broken. The ground-state geometry
for Si;, has four identical pentagons bound in stacked
pairs orientated perpendicular to one another and pointing
in opposite directions. Similar to Si;;, the ground-state
structure of Si;; [Fig. 12(a)], contains one fourfold-
coordinates atom. The configuration is best described by
the edge sharing of four identical pentagons to create a
foursided cone, with the small end forming a square and
the open end capped by an atom connected to each of the
four protruding points. The Sij4 ground-state geometry
[Fig. 13(a)], similar to all even numbered clusters, is very
symmetrical, consisting of six identical pentagons and

(b)

FIG. 8. Siy structures: (a) ground-state geometry can be con-
structed from an edge-capped cube, E= —1.3271¢; the two
most common configurations, besides the ground state, that re-
sult from the SDQ at energies near E; (b) E= —1.2612¢ and (c)
E=—1.2455¢.

(c)
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(a) (b)

(c) (d)
FIG. 9. Sij, structures: (a) ground-state geometry can be
formed by symmetrically stacking two regular pentagons,

E = —1.3797¢; most commonly visited structures near E; (b)
E=—1.3309, (c) E=—1.328¢, and (d) E=—-1.3178¢.

three perfect squares, with all atoms lying on the surface
having only three bonds.

Several features appear common to all Siy (N=3—14)
microclusters interacting through the SW three-body po-
tential. First, one observes the existence of three basic
“building blocks”™ (triangle, square, and pentagon) in the
ground-state energy structures for each cluster Sij_ 4.
These not only form the lowest-energy configurations for
Sis, Siy, and Sis but one also obtains the ground-state con-
figurations of Sig, Sig, and Sij by trivially stacking these
three planar figures. All metastable configurations for
large clusters are formed by three-, four-, and five-
membered rings which are the distorted ground-state con-
figurations for Si;, Sis, and Sis. The concept of basic
building blocks underlying complex structures has been

(a) (b)

(c)

FIG. 10. Siy; structures: (a) ground-state structure, smallest
structure to contain a fourfold-coordinated atom,
E = —1.3829¢; (b) frequently found structure of nearly the same
energy as the ground state, E= —1.3789¢; (c) dominant under-
lying structure near E;, E= —1.3600. Note all three configura-
tions can be easily obtained by adding either an atom to the face
or edge of the Si o ground-state structure.
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(a) (b)

(c) (d)

FIG. 11. Si;, structure: (a) ground-state configuration has
four identical pentagons and four squares, E = —1.4178¢; most
frequently found structures near E; (b) E=—1.3968¢, (c)
E = —1.3730¢, and (d) E=—1.3290¢.

previously used by Chadi*®> to construct new crystalline
forms for Si and Ge.

A comparison of the present results with those of RL
and TS is presented in Fig. 14 for Si,_4. Our calculated
binding energies are consistently lower than the
quantum-chemical calculations due to the SW potential’s
inability to correctly evaluate the interaction energy be-
tween underbonded atoms. Nonetheless, the lowest-
energy configurations determined by the two previous cal-
culations'> !¢ do routinely appear in the MD results, with
the additional possibility of lower-energy structures for
Sis and Sis. The ground-state configurations for Si;_,
determined from the present MD simulation can be con-
structed by the addition of atoms to the lowest-energy Sig
structure similar to the previous work. Consequently, this
model potential could also predict the natural occurrence

(a) (b)
(c) (d)

FIG. 12. Si;3 structures: (a) ground-state contains one
fourfold-coordinated atom, E = —1.4234¢; two commonly
found low-energy structures are shown in (b), containing four
fourfold-coordinated atoms, E= —1.4138¢ and (c), containing
only threefold coordinated atoms, E = — 1.4136¢; (d) an example
of a low-binding energy, bound structure, E = —1.3988¢.

(a) (b)

(c)

FIG. 13. Sij, structures: (a) ground-state structure consists
of six identical pentagons and three squares, E = — 1.4455¢; two
examples of the other 155 possible configurations accessible to
this 14-atom cluster at high temperatures, (b) E = — 1.4069¢ and
(c) E=—1.3960¢.

of Sig fragments from the 6 + N (N =1-8) structure if
dissociation occurred from the ground state. The plot of
ground-state energy per atom (E;) versus number (N) in
Fig. 15(a) does not show any indication of the existence of
the magic numbers (N =4,6,10) that appear in the plots by
RL [Fig. 15(b)] and TS [Figs. 15(c) and 15(d)]. In the cal-
culations of RL and TS, a limited search of possible
ground-state geometries resulted in relatively stable struc-
tures for Sis ¢ 10. The unusually common occurrence of
these clusters in the photofragmentation spectra of silicon
was then explained by their particularly stable ground-
state configurations. We have found structures topologi-
cally equivalent to the ground-state structures of RL and
TS, although for Sis and Sig new structures of higher
binding energies were also obtained. We believe that the
existence of magic numers (N=4,6,10) cannot be ex-
plained from a consideration of the ground-state energies
[Fig. 15(a)], or zero-temperature structures. In the present
work, even-numbered clusters have relatively stable
ground-state structures due to their symmetrical forms,
which tends to maximize the number of bonds while
minimizing the three-body potential energy. Siq is the
only exception, due to the large contribution of the two
equilateral triangles to the three-body energy.

Our calculated ground-state structures contain only
four- and five-membered rings for large clusters
(N =8-—14), similar to the “amorphous” clusters of Saito
et al.,' and are in excellent agreement with their small
clusters Si,, Si;, and Sis. However, the large clusters
determined by these authors have open structures contain-
ing many two-bonded atoms. These structures also ap-
pear in our results, but only when the system at high tem-
perature is analyzed by SDQ to examine the underlying
mechanically stable structures of higher energy.

In contrast to RL, TS, and Saito et al., we are unable
from the zero-temperature ground-state energies and
structures to make any claims for the presence of magic
numbers, even though our calculated structures for silicon
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FIG. 14. Comparison of ground-state structures and binding energies resulting from the present calculation with those determined
from approximate solutions to the Schrédinger equation as carried out by Tomanek and Schluter (TS) and by Raghavachari and Lo-

govinsky (RL).

microclusters are in accord with the previous work. The
present static zero-temperature results indicate that all
even-numbered clusters (particularly Sig) are relatively
stable, with the exception of Sig. The ground-state config-
urations for Siy (N =7—14) can be constructed from

Siy _; with Sig as the basic subunit, but that is a weak ar-
gument for the mechanism of fragmentation and an insuf-
ficient explanation for the common occurrence of Sig
fragments, especially when fragmentation occurs at such
high temperatures. The structures underlying the high-
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FIG. 15. Ground-state energy per atom (E,) vs number (N)
for (a) present results, in the reduced units of energy (g); (b)
Raghavachari and Logovinsky, Hartree-Fock calculation; (c)
Tomanek and Schliiter, tight-binding calculation; (d) Tomanek
and Schliiter, local-density approximation. The unusually com-
mon occurrence of Sis ¢ 10 in the photofragmentation spectra ob-
tained by BFB is explained by RL and TS as due to the relative
stability of their ground-state configurations. In the present cal-
culation, the presence of magic numbers cannot be explained by
ground-state energies or structures but only by the topology and
energetics of finite-temperature clusters.

temperature cluster must play an important role in the
determination of fragmentation spectra, and they can only
be studied by investigating finite-temperature sytems.

V. CLUSTERS AT HIGH TEMPERATURES

A. Temperature dependence
of the total internal energy

The curves of total internal energy per atom (E) versus
temperature (T) are given for each cluster Si;_4 in Fig.
16. It is apparent that there exist several small jumps
similar to structural transformations, particularly for
small clusters, Si;_g. These steps are indicative of the
change in the majority of underlying mechanically stable
states from lower- to higher-energy structures, rather than
of a single structural transition. An investigation of the
clusters lacking this feature in the E versus T curve has
shown them to possess a large number of accessible struc-
tures, with small differences in energies that span the
range between low- and high-energy configurations. Since
the transition from the lowest- to the highest-energy
structures involves many intermediate configurations, the
shift in the majority of underlying structures occurs
smoothly and a sharp transition cannot be seen in E
versus 7. In some cases, many states are accessible but
are grouped into subsets of structures of nearly equal en-
ergies with each group separated by relatively large energy
differences, such that the transition between different sub-
sets also appears as a small step in E versus 7. As an ex-
ample, Sig has 16 different configurations, which can be
grouped into three subsets of nearly equal binding ener-
gies, giving rise to two small jumps in E versus T [Fig.
16(d)]. The energy distribution of the underlying struc-
tures giving rise to these jumps is discussed below (Sec.
VB).

B. Hidden structures

Of the systems generated in the monotonic heating
from the ground state of each cluster, four were chosen
for a 5000-time-step MD run, with SDQ performed in
parallel every fifth step (see Fig. 1) to enumerate the
underlying mechanically stable configuration and to deter-
mine the relative probability of visiting each structure.
Due to the large number of accessible configurations, only
the ground-state structure and the most interesting
higher-energy structures will be discussed for Sig_,o. The
choice of which high-energy configurations were most
pertinent was based on the relative number of visitations
found by SDQ. The number of possible configurations
given below for Sig_ 4 is for only those structures that ap-
peared more than once in a given MD run where 1000
configurations were determined. Allowed structures
which were not visited or seldom found are considered to
be statistically unimportant. To simplify the following
discussion, we will define “a chain of atoms” to be a
bound cluster with all atoms except the two end atoms ex-
actly twofold coordinated and all angles perfectly
tetrahedral, with the three-body contribution to the total
potential energy identically zero. In reduced units, the en-
ergy per atom of the Siy chain is (N —1)/N, setting a
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FIG. 16. Total internal energy per atom versus temperature curves are shown for Si;_4 in (a)—(1), respectively. Each cluster was
started in its ground-state configuration and monotonically heated by multiplying the velocities by 1.1. After each scaling, the tem-
perature was determined by averaging the kinetic energy over 11000 MD steps. A reduce temperature (T*) of 0.1 corresponds to

2500 K.

lower limit on possible binding energies. There are several
bound configurations for Siy with (N —1) two-body
bonds and only perfect tetrahedral angles, all degenerate
in energy. The chain is the most stable of these structures
since it has only two end atoms that are singly coordinat-
ed. These highest-energy structures are visited below Ef
in Si3;_g and can be identified in superheated clusters up
to Siy;. It should be noted that all of these high-energy
structures can be considered fragments of the perfect dia-
mond crystal.

N=2

The dissociation energy for Si, (the energy added to the
zero-temperature cluster when fragmentation occurs) was
determined to be € (2.17 eV/atom), the depth of the two-
body potential well. This value is to be compared with

Honig’s!® experimentally determined value of 1.5¢ (3.25

eV/atom).

N=3

The two previously discussed triangles (Fig. 2) were the
only mechanically stable structures available to Sis.
Without ambiguity, the equilateral triangle and isosceles
triangle, consisting of only two bonds forming a perfect
tetrahedral angle, may be referred to below as the triangle
and chain, respectively. At low temperatures, both struc-
tures are visited, while the relative distribution of underly-
ing structure shifts more toward the chain with increasing
temperatures. This can be seen in Fig. 17 where the num-
ber of visitations (N,) versus underlying potential-energy
minima (E) is plotted for three finite-temperature sys-
tems. In Fig. 18, the local potential-energy minimum re-
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FIG. 17. Hisograms of the visited potential minima for Si;
determined by 1000 SDQ mappings performed in parallel with a
5000 MD step simulation, see Fig. 1. Number of visitations N,
vs energy per atom ( E) after SDQ’s are given for three different
temperatures, (a) T*=0.026, (b) T*=0.065, and (c) T*=0.085.

sulting from the SDQ is plotted against the MD time
steps in order to show the frequency of transitions be-
tween the two structures. From this figure, one can see
that not only does the majority of underlying states shift

6233
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FIG. 18. Underlying potential minimum is plotted against
the number of MD steps (At=3.8 10~ ' sec) for the same three
simulations depicted in Fig. 17. Not only does the majority of
underlying state shift towards higher-energy configurations, but
the frequency of transitions also increases with increasing tem-
perature.

towards higher-energy configurations, but the frequency
of transitions also increases with increasing temperature.
At T*~0.065 both structures are equally likely to be
visited. A step, similar to a structural transition, appears
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near this energy in the graph of E versus T [Fig. 16(a)].
Recall T*=0.1 corresponds to a temperature of 2500 K.

N=4

Four structures and three energies, the highest one be-
ing doubly degenerate, are accessible to Siy. Excluding the
ground state, the structures listed in the order of increas-
ing energy are the corner-shared triangle [Fig. 3(b)], the
chain [Fig. 3(c)], and the trigonal pyramid [Fig. 3(d)].
The latter two geometries, fragments of the diamond
structure, have three bonds with only tetrahedral angles
and are therefore degenerate in energy. Corner-capped
atoms added to the center or the end of the Si; chain form
the pyramid or chain, respectively. The two small jumps
in the figure for E versus T [Fig. 16(b)], which appear at
T*~0.07 and 0.11, indicate changes in the most common
underlying structure, first from the ground state to the
corner-capped triangle and then to the high-energy struc-
tures, as depicted in the three histograms of Fig. 19.

N=35

Of the seven energies found for configurations of Sis,
the energy of the squashed trigonal bipyramid [Fig. 4(b)]
is the closest to that of the ground-state structure, a regu-
lar pentagon [Fig. 4(a)]. Another intermediate-energy
configuration can be obtained by corner-capping the
square [Fig. 4(c)]. Three high-energy structures can be
viewed as corner-capping a triangle with a two-atom
chain [Fig. 4(d)], corner-sharing two triangles and capping
two atoms on the same corner of a triangle [Fig. 4(e)],
both minor reconstructions of the crystalline tetrahedron.
These last two structures are the first to appear with a
fourfold-coordinated atom. The chain [Fig. 4(f)] and the
tetrahedral fragment of the diamond lattice have the same
highest energy with four bonds, but only the chain has
been observed. The center atom of the tetrahedron is
fourfold coordinated, but the remaining four atoms have
only one bond and therefore the structure is unstable with
respect to thermal fluctuations. Unlike Si; and Siy4, the
ground-state structure is dominant in the underlying
structures even up to 0.95E.

N=6

Sixteen different potential-energy minima were found
for Sig, but only subsets of these structures were actually
visited at any particular temperature. The lowest-energy
structure [Fig. 5(a)], two equilateral triangles stacked in
the form of a wedge, was not observed in systems near the
fragmentation energy where more open structures were
commonly found. A distorted octahedron, similar to that
of RL and TS, is found, although a corner-capped penta-
gon [Fig. 5(c)] is closer in energy to the ground state and
more frequently visited. Even at relatively low tempera-
tures (7* ~0.037), the cluster undergoes many transitions
between configurations of nearly equal energies. The
three most commonly found geometries at 0.95E;, as
determined by SDQ, were (i) the corner-capped pentagon,
(ii) a two-atom chain attached to the corner of the square
[Fig. 5(d)] and (iii) the capping of diagonally opposite
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FIG. 19. Histograms of the visited potential minima for Si,
at (a) T*=0.066, (b) T*=0.088, and (c) T*=0.116.

corners of the square to form a distorted tetragonal bipy-
ramid. It has been noted previously!? that the tetragonal
bipyramid is topologically similar to the six-membered
“chair” ring though the energy corresponding to this mi-
crocrystalline fragment was seldom found from the
steepest-descent mappings. The Si¢ chain was found only
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at the highest temperatures. The appearance of two small
steps in the figure for E versus T [Fig. 16(d)] at T* ~0.07
and 0.11 concur with the histograms in Fig. 20, indicating
the move of the majority of underlying states to higher-
energy structures. These transitions are between three
groups of structures [shown in Fig. 20(c)] and not just be-
tween single structures.

N=7

The most commonly found low-energy configuration
for Si;, only 0.1% higher in energy than the ground state,
is shown in Fig. 6(b). The other 22 structures found can
be described by various edge sharings and cappings of the
triangle, square, and pentagon. A dimer attached across a
distorted pentagon’s face [Fig. 6(c)] and a square sharing
an edge with a pentagon [Fig. 6(d)] accounted for over
50% of the underlying mechanically stable structures at
energies near E;. The E versus T plot [Fig. 16(e)] has
none of the interesting features exhibited by the smaller
clusters, due to the large number of accessible configura-
tions with an even distribution of binding energies.

N=8

The Sig ground-state geometry, a perfect cube [Fig.
7(a)], is a particularly stable structure since all atoms are
threefold coordinated and all angles are at 90°, differing
by 19° from the perfect tetrahedral angle. However, in
our calculation [see Figs. 21(a) and 21(b) and discussion
below] and in the experimental results, it is obvious that
N =8 is not a magic number. This is an example of our
assertion that E, versus N (Fig. 15) cannot predict the ex-
istence of magic numbers. At approximately 0.95Ey, the
three configurations shown in Figs. 7(b)—7(d) account for
almost 50% of the underlying stable structures while the
ground state is no longer visited.

N=9

The ground-state structure of Siy [Fig. 8(a)] is the only
one visited for energies upwards to 0.5E and remains the
dominant underlying structure for all energies under Ej.
The only other structures to commonly appear are shown
in Figs. 8(b) and 8(c).

N=10

The ground-state configuration of two stacked penta-
gons [Fig. 9(a)] is visited in all systems of energies below
E, though its presence decreases from 70% at 0.5E; to
8% at 0.95E,. At the latter energy, a particularly open
structure containing one singly bonded atom was also
present in 7% of the visited structures. The low-energy
configuration in Fig. 9(b) was found 10% of the time,
while the other 58 structures ranged from 0.2 to 8 %. The
two higher-energy structures shown in Figs. 9(c) and 9(d)
were commonly found at finite temperatures. A five-
membered ring, an irregular pentagon, is the basic subunit
underlying all these structures.
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FIG. 20. Histograms of the visited potential minima for Si,
at (a) T*=0.037, (b) T*=0.099, and (c) T*=0.110. The struc-
tures accessible to Sig can be grouped into sets of configurations
of nearly equal energies. Transitions between subgroups occur
with increasing temperature, indicated by the small jumps in E
vs T [Fig. 16(c)].

N=11

At high energies, the two lowest-energy structures for
Siy; [Figs. 10(a) and 10(b)] account for only 2% of the
underlying structures, while the most common geometry
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FIG. 21. (a) Fragmentation energy per atom (E;) vs number
(N); (b) fragmentation temperature (7) vs number (N). Peaks
in these curves at N=4,6,10 (magic numbers), clearly indicate
the particular stability of the Si, ¢ 10 microclusters at high ener-
gies and temperatures. Fragments of these sizes were reported
to be unusually common in the photofragmentation experiment
of Bloomfield, Freeman, and Brown (Ref. 12).

[Fig. 10(c)] is found less than 6% of the time. The high-
temperature cluster frequently alters its form between the
74 available structures. Most, if not all, of these struc-
tures may be constructed by various surface packings of
four- and five-sided nonplanar faces. The number of visi-
tations N, versus potential-energy minima E, shown in
Figs. 22(a)—22(d), are seen to be evenly distributed over a
wide range of energy. In Figs. 22(e) and 22(f) the transi-
tions between accessible potential-energy minima are
shown to increase with increasing temperature. These
latter two graphs show that the transition between low-
and high-energy structures involves many intermediate
configurations resulting in a relatively smooth E versus T’
curve [Fig. 163)].

N=12

Only 54 potential-energy minima were identified for
Si;,, with the ground state [Fig. 11(a)] forming a common
underlying structure for all energies below E;. Even
though all atoms are threefold coordinated in this struc-
ture, fully bonded fourfold-coordinated atoms appear in
some of the higher-energy configurations [see Fig. 11(d)].
The low-energy structure shown in Fig. 11(b) was also
commonly found at high temperatures. All stable config-
urations are accessible at 0.95E,, with the ground state
remaining the most common at 20% of the steepest-

descent mapped minima. The only other configuration
visited more than 10% of the time at this high energy is
shown in Fig. 11(c).

N=13

Two low-energy structures other than the ground state
[Fig. 12(a)] are commonly found at finite temperatures.
The more stable of these two high-energy structures has
two fully bonded fourfold-coordinated atoms with two
five-membered rings and one three-membered ring in ad-
dition to the six four-membered rings [Figs. 12(b)], while
the other structure has only three bonds per atom with a
surface formed by six five-membered rings and two four-
membered rings [Fig. 12(c)]. These three low-energy con-
figurations account for 50% of the underlying structures
at 0.75E; and 5% at 0.95E;. Close to Ey, nearly 70 of
the 95 identified potential minima are visited, but none
seems to be preferred, with the most common appearing
less than 6% of the time.

N=14

For energies on the order of 0.25E, all atoms vibrate
about the Si;4 ground-state equilibrium positions [Fig.
13(a)], but structural transformations occur for higher en-
ergies and the lowest-energy configuration accounts for
less than 1% of the visited structures. In total, 156
potential-energy minima have been found that span the
the energy range of 0.24¢ between lowest and highest en-
ergies. The majority of these structures is best seen as the
many possible combinations of taking four- and five-sided
figures to form a closed structure [Figs. 13(b) and 13(c)].

VI. MAGIC NUMBERS

The results of the present MD simulation indicate that
four-, six-, and ten-atom clusters are relatively stable
structures at temperatures on the order of the melting
temperature. Curves of fragmentation energy per atom
(Ef) and fragmentation temperature (7) versus number
(N) are shown in Figs. 21(a) and 21(b), respectively. The
fragmentation energy was determined from approximately
60 systems generated for each cluster Si;_ 4. The frag-
mentation temperature was found from averaging the ki-
netic energy over 25000 MD time steps for the system
with energy E;. Peaks in the curve for E; versus N
clearly indicate that six- and ten-atom microclusters have
particularly stable high-energy configurations, while the
peak at N =4 is not so apparent. However, sharp peaks
do appear in the T, versus N curve for the three experi-
mentally determined magic numbers N=4, 6, and 10. It
is also obvious in both curves that Si;4 is very stable at
high temperatures with respect to Sij;. There has not
been an experimental investigation of the relative stability
of Si4, but Martin and Schaber'® have found N=14 to be
a magic number for Ge. The ground-state energy per
atom (E,) found through the SDQ mapping is given with
the fragmentation energy per atom (E;) and temperature
(Ty) for Si, 4 in Table L.

The most common structures of Sig and Si;q at energies
near E; both contain a single atom capped to a pentagon.
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FIG. 22. Histograms of the visited potential minima for Si,; at (a) T*=0.038, (b) T*=0.070, (c) T*=0.093, and (d) T*=0.113.
The underlying potential minimum is plotted against the MD time step for the highest two temperatures in (e) and (f). The transi-
tions between high- and low-energy structures are shown to involve many intermediate structures.

Each atom in the pentagon has a considerable degree of
freedom similar to the local environment of an atom in a
high-energy chain, but with a small additional contribu-
tion to the potential energy due to the three-body interac-
tion. It appears to be the ability of the Sig and Si;o clus-

ters to access these low-energy, loosely bound structures
containing one single atom bonded to five-membered rings
that enables them to remain stable at relatively high tem-
peratures.

The most common channel for all Siy (N=2—14) is
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TABLE 1. The zero-temperature ground-state energy E, per
atom, fragmentation energy per atom Ef, and the corresponding
fragmentation temperature T, for Si>_ 4.

Minimum Fragmentation
Number energy Energy Temp.
N E, E, T,
2 —0.5000 0.000 0.113
3 —0.6828 —0.326 0.116
4 —0.9386 —0.449 0.120
5 —0.9996 —0.620 0.105
6 —1.0906 —0.632 0.116
7 —1.1788 —0.726 0.114
8 —1.3223 —0.807 0.104
9 —1.3271 —0.835 0.115
10 —1.3797 —0.803 0.123
11 —1.3829 —0.870 0.119
12 —1.4178 —0.934 0.112
13 —1.4234 —0.945 0.110
14 —1.4455 —0.866 0.133
the fragmentation into Si + Siy _;. When the parent clus-

ter separates into two or more compact subunits connect-
ed by single bonds before fragmentation, then nontrivial
fragments can result. As an example, Siy can only frag-
ment into Si, + Si, by severing the center bond of the Si,
chain. The relative probability of the cluster Siy dissoci-
ating into the fragments Siy _j + Sipy (M=1,2,3,4) is
given in Table II. Si; is found to dissociate into one- and
two-atom fragments from the chain at T*=0.116. Frag-
mentation of Siy can occur from any configuration except
the ground state, with the pyramid being the most likely
to fragment. Even though the pentagon is the most com-
mon underlying configuration for Sis, near E, the cluster
decomposes into one- and four-atom fragments. This
usually occurs from either the corner-capped square or a
triangle capped with a two-atom chain. The latter config-
uration can decompose into Si + Si4 or Si, + Si; by sever-
ing one bond. For Si,_ 7, the reported primary fragmenta-

TABLE II. Primary channels of fragmentation for Si,_, as
determined from 20—30 events for each size cluster. Fragmen-
tation from Siy to Siy_,) + Si, indicates the Sig¢, 10 are particu-
larly common fragments, while the fragmentation from Siy to
Si(y _3) + Si3 supports the common occurrence of Siy and Sis
fragments.

N (N—-1)+1 (N —-2)42 (N —=3)+3 (N —4)+4
2 1.00

3 1.00

4 0.90 0.10

5 0.82 0.18

6 0.64 0.25 0.11

7 0.62 0.19 0.19

8 0.55 0.35 0.05 0.05
9 0.64 0.12 0.16 0.08
10 0.74 0.22 0.00 0.04
11 0.65 0.15 0.10 0.10
12 0.70 0.25 0.05 0.00
13 0.76 0.12 0.04 0.08
14 0.76 0.14 0.00 0.10

tion channels are in accord with the results of BFB. Ex-
perimentally, the larger clusters were seen to dissociate
into fragments containing predominantly Si, remnants.
Whether these final states are the results of primary or
multiple fragmentation events is unknown. In the present
simulation, configurations from which fragmentation oc-
curred for Sig_;4 clusters usually consisted of a parent
cluster made up of smaller, compact clusters connected
through single bonds. In more than 50% of the fragmen-
tation events, one such subgroup contained only one atom
which was the cause of fragmentation.

Evidence for the stability of the magic numbers is also
found in the nontrivial fragmentation channels
N—2+(N—2)and N—3+(N —3). The Sig g |, clusters
were observed to have the highest probability of nontrivial
fragmentation, with at least 25% of the observed events
resulting in Siy + Siy ¢ 10, respectively [see Table II,
column titled “(N +2)—2"]. Si;q clusters were also
found to have a large probability of dissociating into Si;
and Siy¢ [see Table II, column titled ‘“(N —3)—3"].
These relatively high probabilities for nontrivial fragmen-
tation into four-, six-, and ten-atom clusters are in good
agreement with the experimental fragmentation spectra
and support the claim for the unusual stability of Siy ¢ 1o
microclusters. Since the previous quantum-chemical cal-
culations have found nearly the same structure for both
neutral and charged Si clusters, it is probable that
thermally driven fragmentation would also result in simi-
lar spectra.

From the ground-state energy (E,) versus number ()
curve [Fig. 15(a)] it is apparent that Si4,Sis, and Si;, do
not form unusually stable clusters. Thus knowledge of
the zero-temperature ground-state structures is not suffi-
cient to explain the existence of the experimentally ob-
served magic numbers for silicon clusters described by the
SW potential. However, the magic numbers clearly do ap-
pear in the finite-temperature results. The fragmentation
energy (Ef) and temperature (T;) indicate the Si4, Sig,
and Sijy are particularly stable clusters at high tempera-
tures, on the order of the melting temperature. This is
consistent with the experimental situation where clusters
fragment from high-energy configurations. The fragmen-
tation spectra further indicate that Siy ¢ 10 are particularly
stable. The angles, bond lengths, and structures found for
each cluster are a direct result of the SW potential and
could change with further improvements. However, we
believe that the SW three-body potential describes correct-
ly the essential features of the energetics and fragmenta-
tion of silicon microclusters. Many of the results
described above will be common to germanium clusters.

Note added. The recently completed study by E.
Blaisten-Barojas and D. Levesque used the SW potential
to determine the ground-state structures of neutral and
charged silicon microclusters through molecular-dynamic
quenching (MDQ).3¢ By slowly scaling the atomic veloci-
ties to zero from some high-temperature equilibrium state,
one expects to find the ground state of the cluster. The
lowest-energy structures obtained from this method for
neutral clusters differ from those determined by the SDQ
technique for Sig, Siy;, and Sij3. In Ref. 36, Fig. 5, the
lowest-energy configurations found from MDQ are shown
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for Si;_;7. All structures given for Si;_;, were found in
the present SDQ study, yet for Sig, Siy;, and Si;3, lower-
energy structures were also discovered. The structures in
Ref. 36 for Sig, Si;;, and Si;; are shown in Figs. 5(b),
10(b), and 12(b), respectively. The configurations corre-
sponding to the global minima [Figs. 5(a), 10(a), and
12(a)] have less than 1% higher binding energy than those
found from MDQ. In these three cases we have found
many structures with binding energies close to that of the
ground state. The authors also claim that 6-, 10-, and
14-atom clusters do not allow the formation of six-
membered rings, but our SDQ results have found all clus-
ters Siy, N > 6, to contain six-membered rings in some of
their high-energy structures. Simulation of charged clus-
ters was attempted through the addition of a one-body
term to the SW potential. This term assumed an isotropic
polarizability for each atom and did not distinguish be-
tween positively or negatively charged clusters. The
ground-state structures for Siy (N >5) were very different

from the neutral cluster results, with the charged atom
usually sitting in the center of a tetrahedron with four
bonds. We recall that the results of the quantum-
chemical calculation of RL and TS indicate that the
charged atom was the least bonded in the cluster and that
the binding energies were slightly higher than the neutral
clusters, in direct conflict with these authors findings.
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