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The band structures of the semiconducting layered compounds MoSe2, MoS2, and WSez have been
calculated self-consistently with the augmented-spherical-wave method. Angle-resolved photoelec-
tron spectroscopy of MoSeq using He I, He II, and Ne I radiation, and photon-energy-dependent
normal-emission photoelectron spectroscopy using synchrotron radiation, show that the calculation-
al results give a good description of the valence-band structure. At about 1 eV below the top of the
valence band a dispersionless state was measured, almost completely of Mo 4d character. Such a
state, which is not predicted by band-structure calculations, has also been observed in metallic lay-
ered compounds. Suggestions are given for the explanation of this phenomenon.

I. INTRODUCTION

The disulphides and diselenides of molybdenum and
tungsten and the low-temperature phase of MoTe2
(a-MoTe2) form a class of semiconducting layered com-
pounds with a trigonal prismatic coordination of the met-
al atoms. In the most common 2H polytype the hexago-
nal unit cell consists of two chalcogenide-metal-
chalcogenide sandwich layers. Upon the ct~ f3 phase
transition at about 850'C MoTe2 becomes semimetallic.
Like WTe2, which is also semimetallic, /3-MoTe2 has a
distorted octahedral coordination of the metal atoms.

The physical and structural properties of the
transition-metal dichalcogenides have been reviewed ex-
tensively by Wilson and Yoffe. ' The optical gaps range
from about 1 eV for a-MoTez to about 2 eV for WS2. By
a detailed analysis of his band-structure calculation of
MoS2, Mattheiss showed that the semiconducting gap re-
sults from the combined effect of the ligand-field splitting
and the d-d hybridization of Mo 4d states. Huisman
et al. showed that this ligand-field splitting of d levels in
a trigonal prismatic coordination can be described better
as an effect of metal-d —nonmetal-p covalency rather than
as a crystal-field effect. The occupied part of the d band
is often referred to as a d 2 band, although it also contains
a considerable amount of mixed Mo d„~-d 2 & character
and, in particular at I, much S p, character. The
splitting-off of this band, which contains two states per
metal atom, stabilizes the trigonal coordination with
respect to the octahedral coordination in compounds with
a d' or d configuration of the metal atom. Band-
structure calculations for MoS2 (Refs. 2 and 4—8) situate
this band (width about l eV) at the top of a 5—7-eV wide
S 3p —derived band, which contains a considerable amount

of Mo d character because of strong covalent metal-
nonmetal interactions. Band-structure calculations of the
other compounds in the MoS2 family have been per-
formed only by Bromley et al. , who did not take into ac-
count interlayer interactions. From their results, it can be
concluded that the electronic structures of these com-
pounds are very similar.

In the experimental work, too, MoSz was often regarded
as the prototype for this class of compounds, as it is ob-
tained easily as natural molybdenite. Optical-absorption
and reflection spectra have been measured on all corn-
pounds in the MoSz family' ' On the basis of energy-
dependent angle-integrated ultraviolet photoelectron spec-
troscopy (UPS), and a comparison of these results with x-
ray absorption spectroscopy, optical-absorption and re-
flection spectroscopy, and electron-energy-loss spectros-
copy, McMenamin and Spicer' constructed a model for
the electronic structure of MoS2. Important features of
their model are a semiconducting band gap of at least 1

eV, a slight overlap of the Mo d & and S p valence band

and a valence-band maximum at I . As to these points
the band-structure calculations ' show no general
agreement. Angle-resolved ultraviolet photoelectron spec-
troscopy (ARUPS) of MoS& and a-MoTez has been per-
formed by McGovern et al. ' ' However, they were not
able to interpret their results in terms of a band structure
of these compounds. They attributed this difficulty to the
complexity of the band structure and the photoemission
process.

In this paper we present the results of self-consistent
band-structure calculations of MoSez, MoS2, and WSe2,
and photoelectron spectra of MoSe2. The experimental
band structure E(kii), measured with ARUPS using Het,
Her?, and Net radiation from a gas-discharge lamp, is
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compared with a projection of the calculated band struc-
ture. The band structure E(k~) along the line I 3 in the
Brillouin zone is derived from photon-energy-dependent
measurements of the normal emission spectrum of MoSe2,
using synchrotron radiation with 18.5 eV&hv&60 eV.
The theoretical and experimental band structures of
MoSe2 are in good agreement, and the calculated band
structures of MoS2 and WSe~ are indeed very similar to
that of MoSe2, so therefore we have obtained a detailed
picture of the electronic structure of the three compounds.

In Sec. II we give a description and the results of the
band-structure calculations, and a brief discussion of ef-
fects of anion polarization on the calculated band struc-
tures. The photoelectron spectra, taken with radiation
from a gas-discharge lamp in our own laboratory, are
presented and compared with theory in Sec. III. An
analysis of photoelectron spectra that were measured at
the synchrotron laboratory in Daresbury (U.K.) is given in
Sec. IV. Section V contains some concluding remarks. In
a subsequent paper' the nature of the band gaps is dis-
cussed in more detail.

II ~ BAND-STRUCTURE CALCULATIONS

A. Computational method
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FIG. 1. (a) Part of a MoSeq sandwich layer, showing the tri-
gonal prismatic coordination of the Mo atom. (b) (110) cross
section of the hexagonal unit cell.

Ab initio self-consistent band-structure calculations
were performed using the augmented-spherical-wave
(ASW) method. ' The local-density approximation for ex-
change and correlation effects, as given by Hedin and
Lundquist' was used. Scalar relativistic effects (mass
velocity and Darwin terms) were included in the calcula-
tion.

MoSe2, MoS2, and WSez crystallize in the hexagonal
2Hb-MoS2 structure with space group P6, /mmc D6h (no.
194 in the International Tables of Crystallography) A.
part of a S-Mo-S sandwich layer, and the (110) cross sec-
tion of the hexagonal unit cell are shown in Fig. 1. There
are two equivalent Mo atoms at the 2c sites (+ —, , + —, ,
+ —,

'
) and four equivalent S atoms at the 4f sites (+ —,',

+ —', , +u) and (+—', , + —,', +(u + —,
' )}. The distance be-

tween metal and nonmetal layers is zc, with z =
4

—u, see

Fig. 1.

Within the ASW method the crystal is subdivided into
Wigner-Seitz spheres, centered around each atom, in
which the potential is spherically symmetric. The differ-
ence between the real crystal potential and the ASW
spherically symmetric atomic potentials is determined by
the choice of the cation-to-anion atomic-radius ratio and
by the possible inclusion of empty spheres at large inter-
stitial sites. Calculations of MoSez with different cation-
to-anion atomic-radius ratios and with and without empty
spheres at the (2a) sites (0,0,0) and (0,0, —,

'
) in the van der

Waals gap showed differences up to 1 eV with respect to
the relative band energies and widths. However, these
differences did not affect our conclusions with respect to
the positions of the direct and indirect gaps (see Ref. 16).
In our final calculations the empty spheres were omitted.
The Wigner-Seitz radii are given in Table I. The polariza-
tion of the nonmetal atom, which is an important factor

TABLE I. Input parameters for the ASW band-structure calculations.

Lattice constants' a (A)
c (A')

z

MoSeq

3.288
12.900
0.121

MoS2

3.1604
12.295
0.121

WSe2

3.280
12.950
0.121

c/a ratio 3.924 3.89 3.948

Basis functions

0

Wigner-Seitz sphere radii (A)

Mo/W
S/Se

Mo/W
S/Se

5s, 5p, 4d
4s, 4p, 4d

1.200
1.851

5s, 5p, 4d
3$, 3p, 3d

1.044
1.794

6s, 6p, 5d
4s, 4p, 4d

1.196
1.851

'Unit cell parameters a and c from F. Hulliger, Structural Chemistry of Layer Type Phases, edited b-y

F. Levy (Riedel, Dordrecht, 1976). The input parameter z =0.121 for the ASW calculations differs
from the experimental value of z =0.129, in order to take account of polarization effects.
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in the stabilization of layered structures, ' is not taken
into account self-consistently in the calculation of the po-
tential. From a comparison of ARUPS spectra of some
layered compounds with calculated ASW band structures,
it was found that disregarding the polarization may lead
to, for instance, a lower energy separation between the
metal d and nonmetal p bands. A decrease of the crys-
tal parameter z (which corresponds to a decrease of the
nonmetal-to-metal distance), was found to result in calcu-
lated band structures which show a much better agree-
ment with ARUPS spectra. This decrease of the z param-
eter corresponds to a shift of the electrons of the nonmetal
atoms in the direction of the nonmetal atoms (shell model
of polarizability), and may be regarded therefore as a
crude simulation of anion polarizability. In Sec. III it will
be shown that for MoSe2 a good agreement between
theory and experiment can be obtained with z =0.121.
The experimental value is z =0.129 for MoS2, ' MoSe2,
and WSez. The input parameters of the ASW calcula-
tions are given in Table I ~

B. Results

Figures 2, 3, and 4 show the calculated band structures
of MoSe2, MoS2, and WSe2, respectively, along symmetry
lines in the hexagonal Brillouin zone. For the symmetry
labels we used the notation of Miller and Love. Differ-
ences with the notation of Herring were listed in Table
III of Ref. 26. The top of the valence band at I is taken
as the energy zero.

A quick insight into the character of the wave function
of the bands can be obtained from the partial Mo and Se
density of states (DOS), given for MoSez in Fig. 5. The
band at —14.8 eV to —12.4 eV is composed mainly of
Se4s —derived states. At the top of the valence band
there is the so-called d, band (see Sec. I), from about
—1.6 to 0 eV [Fig. 5(b)]. This band overlaps slightly with
the higher binding-energy part of the valence band, which
is predominantly of Se 4p character with covalently
mixed- in Mo 4d character. The conduction band be-
tween 0.4 and 3.8 eV also shows considerable
Mo4d —Se4p covalency. The lower part of the conduc-
tion band is predominantly of Mo(4d) character. Qualita-
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FIG. 3. Scalar relativistic band structure of 2H-MoS2.

tively the same conclusion holds for MoS2 and WSe2.
For MoSe2 the importance of spin-orbit interaction was

estimated by treating it as a perturbation, using the self-
consistent scalar-relativistic zero-order wave functions, by
adding a term A, L S to the Hamiltonian. This operator
was taken to operate only on Se 4p states [with
A, = ( —, )0.42 eV] and Mo 4d states [with k = (

—', )0.26 eV],
corresponding to atomic splittings of 0.42 and 0.26 eV,
respectively. The largest effect was found at I . There
the twofold degenerate I & ( —1.43 eV) and I +6( —1.49 eV)
states are split into states at —1.34, —1.40, —1.52, and
—1.62 eV. The other states in the valence band at I, and
the states at M and K, show shifts of 0.1 eV or less.

The calculated band structures indicate that the indirect
gap originates from transitions from the top of the
valence band at I to the bottom of the conduction band
halfway between I and K. The direct optical gap is
situated at the K point of the Brillouin zone. In a subse-
quent paper on the nature and magnitude of the semicon-
ducting gaps we will show that these findings are con-
sistent with optical-absorption and reflection data. ' In
this paper it will be shown from photoelectron spectros-
copy that the calculated band structures give an accurate
description of the electronic structure of the valence
bands.
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III. PHOTOELECTRON SPECTRA—
ANGULAR DEPENDENCE

Single crystals of MoSe2 were grown by the vapor-
transport technique, with Br2 as the transport agent. The
crystals were cleaved in the preparation chamber of a
Vacuum Generators ADES 400 spectrometer, at a pres-
sure of 10 Pa, and transferred quickly to the main
chamber, where the base pressure was 10 Pa. In this
section we give results obtained with a gas-discharge
lamp, supplying unpolarized photons of 21.2 eV (HeI),
40.8 eV (He II), and 16.8 eV (Ne I). The energy resolution,
obtained with the hemispherical analyzer, was 0.1 eV, and
the acceptance angle was +1'. All spectra were taken
with a light angle of incidence of a =45'.

In Figs. 6 and 7 we show the dependence of HeI-
ARUPS spectra on the polar angle 6t, for emission in the
I EHA and I MLA planes of the Brillouin zone, respec-
tively. We also measured spectra at negative emission an-
gles, up to 0= —30. The band structure is symmetric
around 6)=0, but due to the different angle of the emitted
electron with respect to the photon beam, the transition
matrix elements are different. We observed indeed that
the experimental band structure (peak positions as a func-
tion of k~~, the component of the wave vector parallel to
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FIG. 5. (a) Total density of states of 2H-MoSe2. (b) Mo-
partial density of states. (c) Se-partial density of states. Units:
states eV ' (unit cell) '. Scalar relativistic calculation without
spin-orbit splitting.
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FIG. 6. HeI ARUPS spectra of MoSe2 with o. =45' at dif-
ferent angles 0 in the I EHA plane.

the surface) was symmetric around 0=0', but that the
peak intensities were different. Since we will concentrate
the discussion on the peak positions, the spectra at nega-
tive 0 are not shown.

In order to investigate the dependence of the spectra on
the photon energy, ARUPS spectra of electrons emitted in
the I AHA plane were also measured with Her? and Net
radiation. The He II spectra (Fig. 8) were measured with
an analyzer energy resolution of 0.4 eV. The NeI spectra
were taken with a resolution of 0.1 eV in the interval
0 &0&75'. In Fig. 9 the normal-emission (0=0 ) spec-
trum is shown.

In Figs. 10 and 11 the peak positions from the Her
spectra are compared with a projection of the calculated
band structure of the surface Brillouin zone, for the
I MLA and I EHA emission planes, respectively. HeII
and Net data for the EHA plane are shown in Figs. 12
and 13, respectively. Open circles are weak shoulders.
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functions are plane waves that propagate normal to the
surface. The normal component kz; of the wave vector of
the photoelectron in the initial state is assumed, within
the direct transition model, to be equal to kzf, which fol-
lows easily from the assumed final-state dispersion rela-
tion E(k~f). In our analysis we also have to include the
transition probabilities from initial to final states. At I,
the final states are degenerate pairs with I

&
and I z, or

r+, and I 4 symmetry. From the dipole selection rules

I ) I and I3 I

with z polarized light, and

I + I, I I, ,
I"+ I, and I I +

Q)

~~
65
Q)

to

I
I

I
I

I
I5—

I
I

I
~«» ~~~

/
~ ~ ~~ Q

35 40

with x,y polarized light, it follows that electrons in each
initial state can be excited to either a I

&
or I"2 state, or to

a I 3 or I 4 state. These matrix element effects can be ex-
pressed conveniently by drawing the bands in a double
Brillouin zone, with only those bands between which
(strong) transitions are possible [Fig. 15(b)]. Here it has
been assumed that away from I, along 2, the rules are
still quite effective, although they are less strict. Note
that we now analyze the situation as if a MoSez-unit cell
consists of one sandwich layer. Figure 15(c) shows the ex-
perimental band structure (dots) and the theoretical one
(lines) along A. The agreement is quite good, apart from
a dispersionless band at about 1-eV binding energy. These
peaks were also observed in the Hei and Net spectra.
Another notable point is that the dispersion within the
bonding p, band is much smaller than calculated.

The photon-energy dependence of the peak intensities
gives information about the atomic character of the initial
states. The Mo 4d cross section exhibits a resonant
behavior at hv=41 eV due to interference with 4p-4d
Coster-Kronig Auger decay. The spin-orbit split Mo 4p
core levels have binding energies of 35.9 and 39.8 eV. At
h v= 38 eV the Mo 4d cross section is low, and the spectra

photon energy (eV)
FIG. 16. Peak height of the dispersionless peaks at —1 eV,

———,and —1.5 eV, . The figure shows the effect of
the 4p-4d resonance on the Mo 4d cross section.

are dominated by peaks from states with much Se 4p
character. In Fig. 16 we show the height of the disper-
sionless peaks at about —1 and —1.5 eV, as a function of
the photon energy. The heights are relative to the height
of the peak at about —3.5 eV, which is due to excitations
from states close to the I 3 state. Owing to its symmetry
this state does not have Mo 4d character. According to
the band-structure calculations, the states from which the
—1.5-eV peak originates (at I with I

&
and I 6 symme-

try) contain 67% Mo d character. The much more pro-
nounced resonant behavior of the —1-eV peak indicates
that these states contain even more d character. In Sec.
III we have already used this observation as an important
piece of information in our discussion of the origin of the
—1-eV dispersionless state.

V. CONCLUSIONS
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FIG. 15. (a) Free electron band structure along I A. Only
plane waves that propagate normal to the surface are included.
(b) Initial and final states for normal emission from MoSe2. As
discussed in the text the Brillouin zone is doubled in order to
take matrix element effects into account. (c) Experimental
(dots) and theoretical (lines) band structure of MoSe2, along I A.

From angle-resolved photoelectron spectroscopy it was
shown that the band structure of the occupied states of
MoSe2 is described very well by the calculated ASW band
structure. The calculated band structures of MoSz and
WSe2 are very similar and, because of the good agreement
with experiment in the case of MoSe2, the results of the
calculations for these compounds too are expected to be
reliable. The photon-energy dependence of the normal-
emission photoelectron spectra can be analyzed within the
direct transition model if dipole selection rules are taken
into account. An interesting result of the photoelectron
spectroscopy experiments is the discovery of a dispersion-
less state at about —1 eV below the top of the valence
band, consisting almost completely of Mo 4d character.
Such a state, which cannot be explained from the band
structure, was also observed in some metallic layered com-
pounds. However, this is the first observation of such a
state in a semiconducting compound. Possible explana-
tions for the state are excitation from a polaronic state,
the occurrence of self-intercalation or excitations from
surface states.

Finally, the calculations and experiments give useful in-
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formation about the nature of the semiconducting gaps, as
discussed in detail in a subsequent paper. '
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