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Acoustic deformation potentials and heterostructure band offsets in semiconductors
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It is argued that the absolute hydrostatic deformation potentials recently calculated for
tetrahedral semiconductors with the linear muffin-tin-orbital method must be screened by the dielec-
tric response of the material before using them to calculate electron-phonon interaction. This
screening can be estimated by using the midpoint of an average dielectric gap evaluated at special
(Baldereschi) points of the band structure. This dielectric midgap energy (DME) is related to the
charge-neutrality point introduced by Tejedor and Flores, and also by Tersoff, to evaluate band
offsets in heterojunctions and Schottky-barrier heights. We tabulate band offsets obtained with this
method for several heterojunctions and compare them with other experimental and theoretical re-
sults. The DME's are tabulated and compared with those of Tersoff's charge-neutrality points.

I. INTRODUCTION

The matrix elements for the interaction between car-
riers and acoustic phonons at band extrema of semicon-
ductors can be evaluated from the deformation potentials
for uniform strain (dependence of band extrema on
strain). While this is straightforward for the shear (trace-
less) components of the strain, problems arise when han-
dling the hydrostatic components which accompany longi-
tudi nal phonons. The corresponding deformation poten-
tials are defined, for an infinite solid, to an arbitrary con-
stant which represents the variation of the arbitrarily
chosen zero of energy with hydrostatic stress. This arbi-
trariness should, of course, disappear when dealing with
the finite solids found in nature. It should, therefore, be
possible to define absolute deformation potentials for a
uniform hydrostatic strain with respect to a fixed energy,
e.g. , the energy at infinity or at a point sufficiently far
from the sample. Such deformation potentials would cor-
respond, for the bottom of the conduction band, to the
variation of the electron affinity with strain and for the
top of the valence band to that of the ionization potential
(photoelectric threshold). They should, therefore, be af-
fected by surface properties rather than being a bulk prop-
erty. Their evaluation as surface dependent quantities
represents a formidable theoretical problem. The defor-
mation potentials required to evaluate the electron-phonon
interaction for phonons of wavelength much smaller than
the sample size should be, however, bulk quantities in-
dependent of surface details.

In a recent paper, Verges et al. suggested that the
linear muffin-tin-orbital (LMTO) method provides a
natural way of overcoming this problem. In this method,
the solid is broken up into atomiclike spheres and all po-
tentials are referred to the reference level which is chosen
so that the Hartree potential of a single atomic sphere is
zero at infinity. The solid can be terminated at any sphere

while leaving the electronic charge distribution in this
sphere equal to that it would have in the bulk. An at-
tempt was made to evaluate in this manner the electron-
phonon interaction constants relevant to longitudinal
acoustic phonons. In doing so, the problem of screening
by the dielectric function of the solid was overlooked: un-
screened hydrostatic deformation potentials were used.

While the perturbations produced by the shear com-
ponents of phonons are only insignificantly screened,
strong screening should take place for the hydrostatic
strain of long-wavelength longitudinal phonons. The
present paper addresses this problem. Using the one-
dimensional Penn model for the dielectric function, it is
shown that the average of the hydrostatic deformation po-
tentials of the valence and conduction states which form
the Penn gap must be screened by the full dielectric func-
tion [we call the average of the conduction and valence
energies at the Penn gap the dielectric midpoint energy
(DME)]. Thus the deformation potential of the DME,
aD, must be partly compensated by the screening response
aD[ 1 —e '(q)]. This screening response must be subtract-
ed from all deformation potentials calculated in Ref. 2 in
order to obtain the appropriate electron —LA-phonon cou-
pling constants.

In this paper, results obtained by this technique for the
electron-phonon coupling constants of group-IV elements
and III-V and II-VI compound semiconductors are tabu-
lated and compared with the few experimental and some
theoretical data available. The calculations are performed
with the LMTO method at the first Baldereschi special
point. The relevance of the screened deformation poten-
tials to the problem of the dependence of the lattice con-
stant of semiconductors on doping with either donors or
acceptors is also discussed.

The concept of a midgap energy has been recently in-
troduced by Tejedor, Flores, and Louis ' and by Ters-
off ' in connection with the lining up of the band struc-

35 6182 1987 The American Physical Society



35 ACOUSTIC DEFORMATION POTENTIALS AND. . . 6183

tures across semiconductor-semiconductor (heterojunc-
tion) and semiconductor-metal interfaces (Schottky bar-
riers). This midgap point has also been referred to as the
charge-neutrality point. We suggest that this midgap
point is basically the same as the DME discussed here for
the screening of the electron —LA-phonon interaction. We
in fact use the DME's calculated with the LMTO method
for the first Baldereschi special points to evaluate
valence-band offsets in several lattice matched heterojunc-
tions and compare them with other available experimental
and theoretical results. In doing so, we discuss the value
of the dielectric constant to be used for the screening, an
average of that of both constituents somewhat reduced
from that for q =0 because of the abruptness of the junc-
tions. We also present a tabulation of DME's with respect
to the top of the valence band obtained with the LMTO
special point method and compare it with calculations of
the charge neutrality point performed by Tersoff.

II. THE DIELECTRIC MIDPOINT ENERGY (DME)

As discussed in Refs. 1, 2, and 11, the LA phonon pro-
duces a perturbation on electronic band edges equivalent
to a sinusoidal potential. This perturbation is different
for each band edge. For long-wavelength phonons, this
perturbation can be easily obtained by multiplying the
strain associated with the phonon by a deformation poten-
tial which gives the change of the band edge energy-per-
unit strain. It is helpful to decompose the local strain into
irreducible symmetry components. For a cubic crystal
they are the hydrostatic strain (multiple of the unit ma-
trix), and two traceless strains which correspond to shear
deformation along the (100) and (111)axes. The form-
er will be strongly screened by the dielectric response of
the crystal while the screening of the latter should be in-
significant. Here we discuss the screening of the hydro-
static component, which was neglected in Ref. 2. We
shall argue that there is a band energy, obtained as an
average of the upper valence band and the lowest conduc-
tion band, whose deformation potential must be divided
by the zero-frequency intrinsic dielectric response func-
tion e(q). This energy will be called the dielectric mid-
point energy (DME or E~), and its hydrostatic deforma-
tion potential dEpldlnV ( V is the volume) will be called
a~. For the wave vectors q involved in standard trans-
port processes, e(q) will be practically equal to its value e

for q =0. Large concentrations of free carriers will modi-
fy e(q) by adding to it their Lindhard polarizability. '

We shall not consider this case here since our discussion
can be trivially extended to deal with it. The unscreened
deformation potential of all band extrema must be
corrected by addition of the screening potential which acts
on the DME.

The screening of an external electrostatic potential, act-
ing equally on all band states, is rather trivial: it is per-
formed simply by dividing the potential by e(q). In the
case of the perturbations generated by the hydrostatic
strain which accompanies an LA phonon, the situation is
not so simple since this perturbation is different for each
band edge. Thus the notion of singling out some energy

(the DME) which can be screened by division by e(q)
naturally arises. We give here a heuristic derivation of the
DME used in this work. A more rigorous derivation is
given in the Appendix.

Let us first discuss briefly the nature of the intrinsic
dielectric response of zinc-blende-type semiconductors for
co=0 (the acoustic phonons of interest here have frequen-
cies much smaller than any characteristic frequency of the
dielectric response) and q =0. This response is generated
by direct virtual transitions from the filled electronic
states to the empty conduction states plus a small correc-
tion for the lattice polarizability (phonon contribution) in
the case of ionic materials. We shall neglect this ionic
contribution for the time being.

The simplest model for the dielectric response of semi-
conductors is the isotropic Penn model. In this model,
the valence band is described in a Jones zone which is
symmetrized in k space by making it spherical. An aver-
age isotropic gap is then introduced between this band and
the conduction bands, produced by the crystal potential.
Thus the model is basically one-dimensional and the tran-
sitions around the "Penn gap" dominate the dielectric
response. These concepts, in spite of their highly simpli-
fied nature, have been successfully applied to interpret
many features related to the dielectric response of semi-
conductors. ' ' The main feature we want to use now is
the existence of a group of filled states clustered around a
given valence-band energy Ez and a corresponding group
of conduction states (E, ) which mainly produce the
dielectric response. Let us consider the unscreened pertur-
bation induced by an LA phonon on these states, i.e., their
hydrostatic deformation potentials. The valence electrons
will polarize so as to partially screen this perturbation.
One may, at first glance, think that this will take place by
setting up an electrostatic potential whose effect will be to
replace the hydrostatic deformation potential of the
valence band az by az/e(q), regardless of the value of the
deformation potential of the conduction band. This is of
course wrong, since filled valence states and empty con-
duction states must contribute symmetrically to the
dielectric response. (An empty state is a hole. Electrons
and holes must be treated on the same footing. ) Hence we
infer that the dielectric screening represented by division
by e(q) must be applied to the average of a~ and a„ i.e.,
to the deformation potential of a fictitious midgap state
situated halfway between the conduction and valence
states. The question of how to determine this state will be
considered next.

The dielectric function e(co, q) can be calculated by per-
forming a straightforward Brillouin-zone integration of
energies and matrix elements for interband transitions. '

An analysis of this integration (see, for instance, Fig. 6 of
Ref. 16) suggests that the main contribution to e is for
transitions from the two top valence bands (spin degen-
erate in Ge and Si but not in the zinc-blende structure)
and the bottom two conduction bands (with the same de-
generacy properties). Thus we shall consider only these
bands here. The Brillouin-zone integration can be re-
placed by a sampling over a small number of so-called
Baldereschi special points. For the sake of simplicity, we
shall use here the first Baldereschi point (and implicitly
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the other 23 generated from it by the operations of the O~
point groups}:

k& ——(2~/ao)(O. 622, 0.295,0) . (I)

We have calculated the energies of the two top valence
bands and the two bottom conduction bands at kz for a
number of group-IV elements and, III-V and II-VI com-

pound semiconductors with the LMTO method. ' The
results are given in Table I for the lattice constants at zero
pressure and temperature. For completeness, we have
added to this table the energies of these bands at the I, X,
and L points of the Brillouin zone, points which are also
of importance to the dielectric response. ' ' The table
also contains the deformation potentials a (i.e., the

TABLE I. Energies (in eV) of (a) the top of the valence band and (b) the bottom of the conduction
band calculated with the fully relativistic LMTO method at the I, L, L, and B points. At the B (first
Baldereschi) point, the average values of the inversion asymmetry split spin doublet are listed. The cor-
responding volume deformation potentials are also given.

(a)
Valence bands

X7 L4, s I g

Deformation potentials a
X7 L4, s

C
Si
Ge
g-Sn

Alp
AlAs
A1sb

GaP
GaAs
GaSb

InP
InAs
InSb

ZnSe
ZnTe
CdTe
HgTe

3.73
—0.85
—0.79
—1.39

—1.78
—1.51
—1.65

—1.59
—1.07
—1.46

—2.08
—1.94
—1.95

—2.80
—2.28
—2.94
—2.45

—2.73
—3.76
—4.03
—4.26

—3.95
—3.84
—3.96

—4.32
—3.85
—4.18

—4.39
—4.56
—4.41

—5.08
—4.64
—4.94
—5.04

0.91
—2.02
—2.18
—2.59

—2.53
—2.35
—2.57

—2.68
—2.19
—2.62

—2.99
—2.94
—2.94

—3.67
—3.22
—3.7 1-

—3.43

—0.70
—2.99
—3.19
—3 ~ 53

—3.26
—3.18
—3.43

—3.51
—3.08
—3.56

—3.68
—3.72
—3.79

—4.33
—4.05
—4.41
—4.25

—15.42
—7.95
—8.09
—7.34

—7.67
—6.46
—7.35

—8.07
—8.77
—7.95

—6.91
—7.83
—7.31

—8.62
—9.49
—8 ~ 16

—10.45

—8.77
—5.06
—4.28
—3.60

—5 ~ 39
—4. 13
—4.41

—4.43
—4.92
—4.10

—3.77
—4. 18
—3.67

—4.79
—4.79
—4.45
—4.69

—12.59
—6.97
—6.45
—5.68

—7.02
—5.71
—6.21

—6.57
—7.15
—6.21

—5.59
—6.29
—5.72

—7.09
—7.51
—6.61
—8.02

—11.02
—5.62
—5.15
—4.46

—5.98
—4.73
—5.02

—5.34
—5.89
—4.97

—4.63
—5.20
—4.60

—6.11
—6.13
—5.60
—6.79

Conduction bands
x, L6

(b)
Deformation potentials a

x, L6

C
Si
Ge
a-Sn

Alp
A1As
Alsb

GaP
GaAs
GaSb

InP
InAs
InSb

ZnSe
ZnTe
CdTe
HgTe

17.67
2.15

—1.11
—2.53'

—1.38
+ 0.49
—0.59

—0.03
—0.94
—2.01

—1.58
—2.60
—2.72

—1.91
—1.68
—2.73
—3.66

8 ~ 54
—0.25
—0.23
—0.91

—0.32
—0.30
—0.73

—0.05
+ 0.20
—0.85

—0.42
—0.85
—0.93

—0.02
—0.31
—0.68
—0.81

12.14
0.51

—0.85
—1.81

0.92
—0.54
—0.69

—0.11
—0.35
—1.47

—0.76
—1 ~ 34
—1.82

—0.53
—0.44
—1 ~ 56
—2.18

10.96
1.74
1.66
0.50

1.96
2.00
0.95

1.78
2.04
0.75

1.26
1.08
0.30

1.61
0.93
0.18

—0.33

—39.71
—20.97
—17.20
—15.28'

—16.81
—13.83
—15.78

—15.90
—15.93
—16.35

—12.37
—14.49
—13.12

—13.26
—14.74
—10.88
—12.88

—17.69
—5.73
—6.55
—5.84

—5 ~ 31
—4.59
—5.02

—5.82
—6.59
—6.51

—5.23
—5.90
—6.51

—6.28
—6.54
—5.88
—9.27

—39.92
—11.49
—10.99
—9.18

—11.51
—9.96
—9.91

—11.14
—11.49
—9.80

—9.38
—10.18
—8.75

—10.59
—3.56
—9.06

—10.24

—20.41
—8.17
—8 ~ 71
—8.00

—8.06
—7.15
—7.59

—9.11
—10.06
—9.08

—9.92
—10.45
—9.39

—12.85
—11.21
—11.10
—12.35

'This I 6 state is now below the top of the valence and in agreement with experiment, see Groves and
Paul (Ref. 64). In other cases in which this happens in the tables (e.g. , Ge), it is an artifact of the LDA.
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volume derivatives) of all the energies mentioned above.
The LMTO calculations were fully relativistic, thus
including spin-orbit interaction. In the ionic materials
(III-V and II-VI compounds), the gap states at ks are
split by spin-orbit (s.o.) interaction, the splittings being in
all cases less than 0.3 eV. We have listed in Table I the
average of the split bands since we feel that these are the
values which should be used to determine the Ez. For the
I, X, and L points, the top of the valence bands are s.o.
split. We list the true top without spin-orbit averaging.

The LMTO calculations just mentioned were performed
with the local-density approximation (LDA) to the
exchange-correlation potential. This approximation is
known to lead to large errors ( —100%) in the gaps for
direct excitations from the valence to the conduction
bands. ' ' These errors can be removed, in an "ad hoc"
manner, by introducing additional potentials at the atomic
cores. ' We have not followed this procedure here since
we do not know what its effect on the Baldereschi point
states is. The energies listed in Table I are uncorrected
LDA results.

The effect of LDA inaccuracies on the DME will be ex-
amined next. We list in Table II the values of the average
dielectric gap or Penn gap calculated from the data of
Table I at kz(E&) We also . list in this table the experi-
mental values of the average dielectric gap E~ (page 42 of
Ref. 20) and the strongest structure in the imaginary part
of the dielectric function, usually labeled Eq (page 169 of
Ref. 20) for the materials considered here. We note that
the calculated Ez's represent rather well the experimental
Ez's and Ez's (deviations less than 10%). The absolute

errors due to the LDA are thus less than for the funda-
mental (lowest) gap at I . The relative errors are of course
even smaller, actually insignificant within the semiquanti-
tative nature of the present treatment.

We have also listed in Table I the hydrostatic deforma-
tion potentials of the various states under consideration,
also calculated with the LMTO method. We should keep
in mind that the residual LDA-induced errors seem to be
rather small for these deformation potentials. '

We have listed in Table II the position of the DME
with respect to the top of the valence band (Ez Ey)—and
the corresponding value for the charge neutrality points
(Ez Ev)—calculated by Tersoff. ' We find an excellent
agreement between these two quantities. This agreement
is even more remarkable when one considers that Ez in
Ref. 10 was obtained from first principles band structures
after applying a rigid shift between valence and conduc-
tion bands so as to correct for the LDA error in the
lowest gap (the so-called "scissors" operator). No such
shift has been applied here. We have not investigated the
source of this paradox.

III. SCREENED ELECTRON LA-PHONON
INTERACTION

As already mentioned, the screening potential which ac-
companies the LA-phonon perturbation corresponding to
an unscreened hydrostatic deformation potential a (listed
in Table I for several extrema) is obtained from the defor-
mation potential of the DMP az with the expression:

TABLE II. Representative values Eq, Eg, and E2 (in eV), for the Penn gap of several group-IV ele-
mental and III-V and II-VI compound semiconductors. Ez has been calculated from the top valence
and the bottom conduction bands at the Balderschi point kq. E~, from the tabulation in Ref. 20,
represents the average gap obtained from e(0) with the Penn model. E2 is the energy of the major
structure in e;(co) (also from Ref. 20). We also have listed in this table the lattice constant of these ma-
terials, the dielectric midpoint energy Ez obtained from the Baldereschi point data, its difference to the
top of the valence band (Ez —Ev), and the corresponding difference for Tersoff's charge neutrality level

0

E& —E& (from Ref. 10). ao is the lattice constant in A.

C
Si
Ge
a-Sn

Alp
A1As
Alsb

GaP
GaAs
Gasb

InP
InAs
InSb

ZnSe
ZnTe
CdTe
HgTe

E

11.66
4.73
4.85
4.03

5.22
5.18
4.38

5.29
5.12
4.31

4.94
4.80
4.09

5.94
4.98
4.59
3.92

Eg

13.5
4.77
4.31
3.06

5.67
5.14
4.14

5.75
5.20
4.12

5.16
4.58
3.73

7.05
5.74
5.79
5.0

12.5
4.40
4.3
3.75

4.7
4.25

5.27
4.85
4.1

4.8
4.5
4.08

6.4
5.3
5.0
5.0

Eg) —Ev

1.40
0.23
0.03

—0.12

1.13
0.92
0.41

0.73
0.55
0.06

0.87
0.62
0.20

1.44
0.73
0.83
0.16

E —E

0.36
0.18

1.27
1.05
0.45

0.81
0.50
0.07

0.76
0.50
0.01

1.70
0.84
0.85
0.34

E

+ 5.13
—0.625
—0.765
—1.515

—0.65
—0.59
—1.24

—0.865
—0.520
—1.405

—1.210
—1.32
—1.745

—1.36
—1.56
—2.115
—2.29

ao

3.57
5.43
5.65
6.47

5.47
5.66
6.13

5.44
5.65
6.10

5.86
6.05
6.47

5.65
6.10
6.48
6.48
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AaD ——aD[E' '(cu, q) —1] . (2)

For acoustic phonons co =0. For intraband phonon
scattering, we can also take q=0 and use the static, q-
independent dielectric constant e. In Ge and Si, e is pure-
ly of electronic origin and thus the Penn gap or the first
Baldereschi gap is its main source. The analysis of Sec. II
applies to this electronic e. In ionic (III-V, II-VI) materi-
als, there is a small contribution below coTo (transverse op-
tic frequency) which can be easily estimated from cuTQ

and cuLo (longitudinal optic frequency) with the Lyddane-
Sachs-Teller relation. ' It is not clear whether the DME
analysis given in Sec. II also applies to the ionic contribu-
tion to e. Nevertheless, its effect in Eq. (2) is rather small
since it amounts typically to =10% of E and Eq. (2) is
dominated by the —1 inside the brackets. We shall there-
fore neglect the ionic contribution of e and use for e only
the ir, purely electronic contribution, sometimes called e;,
ore

This dielectric constant is listed in Table III (from Ref.
22, p. 114) for the materials of interest here. We also list
in this table the screening deformation potential AaD ob-
tained with Eq. (1) from the data of Tables I (aD) and III
(e), the screened value of aD (aD ——aD+AaD, screened
values are represented by a bar over the corresponding un-

screened ones), and the screened deformation potentials of
the top valence extrema (I s) and that of the lowest con-
duction valleys (I 6, b, 6, or L6 as indicated). We also list
in this table values obtained recently by Tersoff (a~') by
matching his charge neutrality points and Van de Walle
et al. (a~') by calculating superlattices consisting of the
same material stressed and unstressed. Since Tersoff's
calculation implies infinite screening (e= oo ), we have list-
ed under az the values which result from adding AaD to
az and thus should be closer to the correctly screened
a z's.

We note that all theoretically predicted values of a& are
small and rather similar in magnitude. The corrected
values from the Tersoff data (at, ) fall between our calcu-
lations and those of Van de Walle et al. (a~'). The sign
reversals which appear now and then between different
calculations should not be taken too seriously: the abso-
lute values are very small when compared with unscreened
deformation potentials. Hence, even if the signs are dif-
ferent, the differences between the various estimates are
small. If we add to these az's the deformation potential
of a direct gap at I, we obtain in the cases in which the
lowest conduction-band minimum is at I (all the materi-
als under consideration with the exception of Ge, Si, A1P,
A1As, A1Sb, GaP) the deformation potential of the lowest

TABLE III. Infrared dielectric constant e and various hydrostatic deformation potentials for the ma-
terials under consideration. av and a, represent the screened deformation potentials of the highest
valence and the lowest conduction states, aD that of the dielectric midgap point. AaD represents the ef-
fect of screening on the deformation potentials. All deformation potentials (in eV) were obtained as
described in the text, unless otherwise indicated. In the cases of conduction-band minima along (100)
(Si, A1P, A1As, A1Sb, GaP, C) we took the deformation potentials to be those at X6 since these points
are either the minima or very close to them.

C
Si
Ge
o.-Sn

Alp
A1As
A1Sb

GaP
GaAs
GaSb

InP
InAs
InSb

ZnSe
ZnTe
CdTe
Hg Te

5.7
12
16
20

8
9.1

10.2

9.1

10.9
14.4

9.6
12.3
15.7

5.9
7.3
7.2
9.3

AaD

13.0
6.3
6.5
5.9

6.1

5.3
5.7

6.6
7. 1

6.5

6.5
7.2
6.5

7.9
7.5
7.2
8.5

—2.8
—0.5
—0.4
—0.3

—0.9
—0.6
—0.6

—0.6
—0.7
—0.5
—0.7
—0.6
—0.5
—1.6
—1.2
—1 ' 1

—F 1

av

—2.4
—1.6
—1.6
—1.5

—1.5
—1.2
—1.2

—1 ~ 5
—1.6
—1.4

—0.4
—0.6
—0.8
—0.7
—2.0
—1.0
—2.0

av

—0.4
+ 0.65

+ 0.4

+ 0.65

av

—1.0
+ 0.2

—0.2

—0.1

av

+ 0.8
+ 1.8

+ 0.7

ac

—4.7
+ 0.6
—4.5

+ 0.8
+ 0.7
+ 0.7

+ 0.8
—8 ~ 8
—9.8

—5.9
—7.3
—6.6

—7.4
—7.3
—3.7

'From Ref. 22.
Present calculations. Note that Cardona and Christensen (Ref. 65) have found that the calculated un-

screened av for diamond is larger than the experimental one. The screened one given here is smaller
but leads to better agreement with experiment.
'Theoretical, from Ref. 23.
Theoretical, from Ref. 23 after adding aD.

'Theoretical, from Ref. 24.
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I conduction-band valley ac. Since the deformation po-
tential of this gap is large ( ——9 eV), the differences just
mentioned are not too important in giving the value of a, .
We note that in Ref. 24, a, = —7.6 eV is given for RaAs,
which compares well with our result (a, = —8.8 eV). The
differences in az reflect themselves more strongly in the
values of a, for Ge (L~ band): in Ref. 24, a, = —1.0 eV
is found, as compared with our value of a, = —4.5 eV.
For Si (h~ band), we find a, = +0.6 while +3.1 is found
in Ref. 24. We should point out that a calculation of az
which was implied to include screening has been per-
formed by Wiley for a few group IV and III-V materi-
als. It yields values of az around +2.5 eV. However,
this calculation uses the vacuum level as reference and the
empirical dependence of the ionization energy on lattice
constant as a basis. Its connection with the az's required
for the electron-phonon interaction problem is not obvi-
ous.

IV. COMPARISON WITH EXPERIMENT

We shall now compare the calculated values of a, given
'n Table III with experimental data. The most precise
data should be found for the cases in which the conduc-
tion band minimum is at I since then no shear deforma-
tion potentials contribute to the scattering by LA pho-
nons. Still, polar optical phonon and impurity scattering
must be removed from experimental electron transport
data in order to obtain the a, 's, hence the accuracy in the
experimental determination of a, is not expected to be too
large. This fact has been best illustrated by Zawadski
who has given a plot of the variation of the reported
values of a, versus calendar year for InSb. They fluctuate
between 4 and 30 eV, averaging around 12 eV, a value
which comes close to the calculated unscreened one
( —13.1 eV) and thus must be too high. Two values are
reported in the literature which are close to the calculated
one for InSb ( —6.6 eV). They were found by rather reli-
able methods:

~
a,

~

=(4.5+0.5) eV was obtained by
measuring the attenuation of an acoustic wave traveling
through doped InSb in a magnetic field,

~
a,

~

=8.2 eV
was obtained from thermoelectric power in the phonon
drag region. Hot electron transport data have yielded

~
a,

~

=6.9 +0.4 eV, in excellent agreement with our cal-
culations. We feel that other existing experimental deter-
minations are more indirect and thus more subject to error
than the ones just given, which bracket our calculated
value of 6.6 eV. In the case of GaAs, there is by now also
a considerable amount of data, especially since the
discovery of the modulation doping technique which en-
ables one to dope CxaAs by placing the impurities in an
adjacent AlAs layer, thus partly avoiding impurity
scattering. Analysis of low temperature mobility data for
such A1As-CxaAs multiple heterojunctions yields

~
a,

~

=13.5 eV, ' a result which has been criticized in
Ref. 32 as disagreeing with data for single heterojunctions
which yield

~
a,

~

=7 eV. Analysis of bulk mobility data
in high-purity bulk GaAs also give the value

~
a,

~

=7.0
eV, in acceptable agreement with our value of 8.8 eV. We
point out that 8.6 eV has also been given by Rode. His
values, however, are simply meant to be the pressure coef-

ficient of the gap and thus not very relevant to the prob-
lem at hand except for the nontrivial fact, proven here,
that the I » valence state, after screening, is affected very
little by the hydrostatic strain of the LA phonon (a~-0).
We should also point out that Vinter has recently rein-
terpreted the data of Ref. 30 by using more accurate wave

functions for the quantized electrons. He finds
~
a,

~

=12
instead of 13.5 eV, as found in Ref. 31. We feel that our
value of 8.8 eV is also sufficiently close to 12 eV, al-
though the discrepancy between 12 eV and the value
found for bulk GaAs (7 eV) cannot be accepted.

We note that analysis of infrared absorption data for
GaAs, to which many scattering mechanisms contribute,
yields

~
a,

~

=15.7 eV. We believe this value to be too
high. High values (

~
a,

~

=17.5 eV) were also found from
transport measurements in Ref. 36.

Low-field transport data are also available for InP.
Their analysis yields the values

~
a,

~

=14.5 (Ref. 37) and
18 eV (Ref. 38) which would be compatible with our un-
screened data (

~
a,

~

=12.4 eV) but cannot be reconciled
with the screened value (5.9 eV). For InAs, the value

~
a,

~

= 11.5 has been reported in Ref. 37, also higher than
the calculated (screened) one (7.3 eV). It is not very likely
that quadrupole scattering, of the type discussed by
Lawaetz, will provide the additional scattering mecha-
nism to harmonize the theoretical and experimental values
of fa, f.

The uncertainties just described get even worse for elec-
tron valleys off k=0, such as found in Ge, Si, CiaP, and
the Al compounds, as one has to include in the analysis
the shear components of both TA and LA phonons. The
value

~
a,

~

=5.7 eV found in Ref. 40 for Ge is in reason-
able agreement with our calculations (4.5 eV). That given
for Si in the same work

~
a,

~

=3 eV seems a little high
(ours is 0.6 eV) although it agrees with the predictions of
Ref. 24 (a, =2 eV). Other experimental data are given in
Ref. 2. We point out that a method to determine a„ in-
cluding its sign, has been suggested in Ref. 41. It involves
the measurement of LA-phonon self-energies versus q in
heavily doped silicon with neutron scattering. The experi-
mental data seemed to favor a, =—5 eV. We have
reevaluated these data for a, =0. While the calculated
curve seems to deviate from the experimental data twice
as much as that obtained for a, = —5, we feel that the un-
certainty of the data and the theoretical processing (which
ignores electron mean-free path) is large enough to make
a, =0 acceptable.

The value
~
a,

~

=9+1 eV has been obtained by Kocsis
for an analysis of transport data in GaP. It is also much
higher than that predicted here (0.8 eV).

V. DEPENDENCE OF LATTICE CONSTANT
ON DOPING

Doping with electrically active atoms (donors or accep-
tors) is known to change the lattice constant of semicon-
ductors. ' ' We treat here the case of heavy doping, by
"shallow" hydrogenic impurities, in which the excess elec-
trons or holes have no ionization energy. As first suggest-
ed by Yokota, the effect can be broken up into two com-
ponents, one due to the cores of the dopant ions and the
other to the hydrostatic deformation potential of the band
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edge occupied by the free carriers. We shall describe the
effect by the parameter /3:

(hap)/ap ——PX;, (3)

where X; is the dopant concentration and P will be given
in units of 10 cm . Thus /3=P„„+P, h, where /3„„
corresponds to the hard-core effect of the ions and P, (/3p, )

is the deformation potential effect for electrons (holes)
given by:

/3, h
——+(a, „)/3B, (4)

where B is the bulk modulus and the —(+) sign corre-
sponds to electrons (holes). It was shown in Ref. 2 that
the unscreened deformation potentials a, (a„) give the
correct sign of /3, (/3h) but too large a magnitude (a factor
of 2). As we shall see below (Table IV), agreement is im-
proved if the screened a, ~ are used. If no pinning of the
Fermi energy at the surface would take place, the argu-
ment for using an unscreened deformation potential may
be made since the corresponding strain would be uniform.
In samples exposed to air, however, the Fermi energy is
pinned at the surface, somewhere in the gap, and the
strain produced by the free carriers will not be uniform,
relaxing when the surface is approached to within a few
tens of an angstrom (screening length). The material in
this region will thus polarize and screen the deformation
potential in the manner discussed in Sec. II. Thus we con-
jecture that the screened a, (a, ) should be used in Eq. (4).

We present in Table IV the total values of P determined
experimentally (P,„~,) and those of g"~'(/3~"~') obtained
from the experimental ones after subtracting the hard-
core effect calculated from the ionic radii as discussed in
Ref. 2 (see also Ref. 44) for Si, Ge, GaAs, and GaP with
different dopants. With the exception of electrons in X
valleys (Si and GaP), the agreement between P',"g' and the
values calculated from the a, , with Eq. (4) is rather satis-
factory, especially in view of the scatter in the experimen-
tal data. For the case of the X valleys, the opposite sign is
obtained for P;"g' and g'q'. We should keep in mind,
however, that in this case a, is very small. A slight de-
crease in the screening e would suffice to reverse its sign
and thus restore sign agreement between theory and exper-
iment. In any case, the agreement in Table IV is consider-
ably better than that shown in Table V of Ref. 2 for un-
screened deformation potentials.

VI. VALENCE-BAND OFFSETS
AT HETEROJUNCTIONS

A. Lattice-matched heterojunctions

As can be seen from the lattice constants ao in Table I,
many lattice-matched heterojunctions can be constructed
with the materials under consideration here. It will be-
come obvious in Sec. VIB that mismatches in ao of less
than 1% are negligible within the type of accuracy aimed
at here (=0.1 eV). We shall consider heterojunctions with

ao mismatches of less than 1% to be lattice matched; for
the materials under consideration, the list of such hetero-
junctions is given in Table V. For each pair of materials,
we give first that with the deeper valence-band top (I ~q)
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TABLE V. Valence-band (AEl. '
3 offsets (in eV) for nearly lattice matched heterojunctions between

several group-IV elements and III-V and II-VI compounds calculated by different methods compared
with recent experimental data. The compound with the deeper valence band is listed first. A value of
0.7 eV has also been calculated ab initio by Ihm and Cohen for ZnSe-GaAs (Ref. 70).

LMTO' LMTO' SCIC' CNP Experiment

A1P/Si
A1P/GaP
AlAs/Ge
A1As/GaAs
A1Sb/GaSb
GaP/Si
GaAs/Ge
InSb/o. -Sn
In As/GaSb
ZnSe/Ge
ZnSe/GaAs
CdTe/a-Sn
CdTe/InSb
CdTe/Hg Te

0.92
0.38
0.87
0.43
0.34
0.53
0.51
0.34
0.55
1.46
0.99
0.99
0.66
0.64

0.91
0.34
0.84
0.43
0.30
0.57
0.45
0.39
0.54
1.57
1.13
1.12
0.73
0.61

1.03
0.36
1.05
0.37
0.38
0.61
0.63

0.38
2.17
1.59

0.23

0.91
0.46
0.87
0.55
0.38
0.45
0.32

0.43
1.52
1.20

0.84
0.51

0.95'
0.55, 0.42g

0 4h

0.80'

0.56'

0.51, 0.57'

1.52, 1.29
1 ~ 10
1.0"
0.87"

0.35,' 0.12~

'Present calculations, Eq. (5) with e equal to e of Table III.
"Present calculations, Eq. (5) with @=3.5.
'Self-consistent interface calculations (SCIC3, from Refs. 45 and 46.
Calculations based on charge-neutrality point, from Ref. 10.

'Reference 71.
Reference 72.
Reference 73 ~

"Reference 74.
'Reference 75.
"Reference 76.
Reference 77.

'References 63 and 78.
Reference 79.

"Reference 80
'Reference 81.
Reference 82.

~Reference 83.

after heterojunction formation.
The band offsets for the I ~5 states calculated by us, by

Tersoff' and by Van de Walle and Martin ' are given
in Table V compared with the most recent (or reliable, as
judged by the present authors) experimental data. Other
theoretical and experimental data can be found in Refs.
10, 45, and 46.

The procedure we have used for our calculations is
based on the calculation of the I » valence bands using
the LMTO method with respect to the reference level of
the ASA which, except for surface dipoles, should
represent the potential at infinity. ' When bringing two
materials together to form a heterojunction, a potential
difference will appear which will be screened by the elec-
tronic polarizability in a way similar to that discussed in
Secs. II and III for acoustic phonons. The phonons of
relevance, however, are of wavelength much larger than
the lattice constants while for the heterojunction the po-
tential variation occurs in a region of a depth typically
equal to about a o/2. "' It is therefore questionable
whether it is legitimate to screen with the full dielectric
constant. We thus use now an effective dielectric constant
e and consider this question in more detail below. The ex-
pression for the band offset between two materials A and

B can thus be written:

b, Ev' =Ev Ev —(ED —ED)(e —I)/8—A, B B 3 B (5)

where Ev's represent the energies of the I ~& top of the
valence band (including s.o. splitting), which are listed in
Table I. The sign of Eq. (5) has been chosen such that if
A has a deeper valence band, AEz' is positive. The ef-
fective dielectric constant e can be taken to be an average
of the q =0, co=0 data for both materials, listed in Table
III. As already mentioned, however, this probably overes-
timates the screening. A possible approach to correct this
deficiency would be to estimate or assume a one-
dimensional variation of Ez with z at the interface,
decompose it into one-dimensional Fourier components
and screen each according to the calculated e(q) averaged,
of course, for both materials. For an interface with a
transition region of width =go/2, as expected for [100]
heterojunction planes, and a linear variation of the poten-
tial within this region, we find a maximum in the Fourier
component of the potential for q~ —5.6&&d '. Figure 7
of Ref. 47 shows that for Cie, CxaAs, and ZnSe,
e(q~)=2. 3. One may, therefore, be tempted to use this
value for e' in Eq. (5), regardless of material. This is a
point of view similar to that adopted in Ref. 7, where it
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was suggested, as a result of microscopic calculations for
the interface, that e =3.5 regardless of material. The
work of Tersoff, however, requiring exact lineup of ET
and ET, implies F= oo in the spirit of Eq. (5). (ET=ED
according to Table II.) (See Note added in proof)

Fortunately, the band offsets AEz' calculated with our
formulation do not depend critically on the value of e be-
cause the values of ED are very similar for materials
which yield well-ordered heterojunctions (see Table II). In
order to illustrate the differences in band offset estimates
produced by the uncertainty of e, we present in Table V
calculations for lattice-matched pairs of materials per-
formed by replacing into Eq. (1) the energies of Tables I
and II, with two values of e, the average of those listed in
Table III for both components (q =0 assumption), and
F=3.5 as suggested in Ref. 7. The difference between
both predictions is small and no trends are apparent that
may help us to describe which ansatz is preferable for e.
Table V clearly exposes the fallacy of the so-called com-
mon anion rule ' (small band offset for common
anions), a fact which has been also recently recognized by
Tersoff. The band offsets for pairs of materials with

common anions are not particularly smaller than for other
cases in which the anions are not common (e.g., InAs-
GaSb).

B. Lattice-mismatched heterojunctions

Several heterojunctions with constituents differing in
their lattice constants up to -7% can be prepared. We
discuss here the pairs Ge-Si (6=dao/ao ——0.04), GaAs-Si
(6=0.04), and GaAs-InAs (6=0.07). If the thickness of
one of the materials is small (&50 A for the cases men-
tioned) and that of the other large (substrate), the lattice
constant of the thin component along the interface will
match that of the substrate: the thin material will thus be
strained. As it becomes thicker, the lattice mismatch
(strain) is relieved through misfit dislocations. In the
latter case, the theory of the previous subsection is applic-
able. In the former, one must correct for the hydrostatic
and shear components of the strain. We thus decompose
the strain tensor of the strained component as follows:

0 0 1 0 0 —1 0 0
6 0

0
1 0 =&0 0 1 0 +&s 0 —1 0
0 —2C) /C» 0 0 1, 0 0 2

—,
' 6(1 —C,2/Ctt ) 6s = —3~ 6(1+2C&2/C~

~ ), (6)

where C&2 and C» are elastic stiffness constants. Equa-
tion (6) is valid for a (001) interface; generalization to oth-
er interfaces is trivial.

The correction of the values of AEz' obtained with
Eq. (5) from the energies of the unstrained components
(Tables I and II) for the hydrostatic component of the
strain is straightforward. If 3 is the strained component
of the heterojunction, one must add to AEz' .

The values of the volume coefficients of the I » valence
band a z' and those for the DME aD ' are listed in
Tables I and III. We note that the az's and aD's have the
same sign and about the same magnitude for all materials.
Hence, effects of 6H on I » and the DME are nearly the
same and compensate each other. Actually, the av's are
somewhat larger in magnitude than the aa's and this ef-
fect is accentuated through multiplication by (e' —1)/F.
Hence a residual effect remains which tends to lower the
1,5 valence edge for the A material in the case 6& & 0 (i.e.,
ao ~ ao). We consider next the cases of special interest.

Z. Silicon-germanium

Let us take material 3 to be silicon (strained) and 8
germanium (unstrained). We find

AE~' ——1.66~ ——+0.02 eV .

Thus in this case 6~ slightly increases the band offset be-

tween Si and Ge which for the unstrained materials is cal-
culated to be 0.19 eV. If the strain is in the germanium
side (compression), we find similarly:

AE~' ———1.66~ ———0.02 eV,
thus the magnitude of the effect is the same in both cases.

The treatment of the pure shear component of the
strain is more complicated, especially if the strained com-
ponent is silicon. In this case, the I 8 valence band splits
into two and the strain couples it to its spin-orbit-split
component I 7.

' Since the coupling energy is larger than
the spin-orbit splitting of Si (0.04 eV), the resulting shifts
are strongly nonlinear in strain. These complications can
be eliminated by treating the band offset for the average
of the six I » valence bands, the four I 8's and two I 7 s as
discussed in Refs. 46 and 52: the effect of the pure shear
component of the strain 5s on the valence bands then
disappears. The offset for the average valence bands of
Ge and Si thus becomes AEz', „——0. 12 eV, much smaller
than the values calculated by Van de Walle and Martin
(0.54 eV) (Refs. 46 and 52) with an "ab initio" pseudopo-
tential method which is expected to give a better represen-
tation of the interface than the calculations performed
here.

The experimental situation is, as for most heterojunc-
tions, somewhat confused. Maybe the most reliable
relevant data are those recently obtained for Si-Si& Ge
multiple quantum wells, for x up to =0.5. ' An
analysis of transport and other data enables the authors to
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deduce the relative positions of the lowest conduction
bands in the two components, now split by the uniaxial
stress. It is concluded in Refs. 46 and 52 that these data
require band offsets which extrapolate for x~ 1 to
AEv'„~0. 5 eV. Most other experimental data, however,
yield somewhat smaller values of this offset, although nei-
ther the nature of the interface nor the strain is usually
specified. The photoemission work of Margaritondo
et al. yields hE~~ =0.2 eV which, assuming that no
uniaxial strain is present, would correspond to
AEV'„——0. 1 eV, a result which would agree with ours.
However, AEz' ——0.4+0. 1 eV was obtained in Ref. 57,
using the same technique.

We note that Tersoff's calculations' yield a value of
AEz' ——0.25 eV for Si-Ge. Since these calculations do
not include any uniaxial stress, they correspond to
AE&'„——0. 15 eV, a number which agrees with our esti-
mates. In view of the reliability of the calculations of Van
de Walle and Martin, we should examine the possibility
that the difference between data based on midgap points
(Tersoff's, ours) and theirs may be due to the uniaxial
component of the stress.

For a (001) interface between materials with different
lattice constants, the first Baldereschi points [Eq. (I)] are
not all equivalent after the strain of Eq. (6) appears: they
split into three groups of eight each. The question then
arises of which of the split points must be matched with
that of the unstrained material. We have not calculated
the splitting of these points because of the complications
which arise in the LMTO method when shear strain is
present. We give, however, a simple model which enables
us to make a crude estimate of the splitting and its effects
on the matching across the interface.

Let us consider the Penn model of the electronic polari-
zability and the changes induced by strain, of both types
described in Eq. (6), on the Penn gap and on ED. The
changes induced by 6~ and 6& are, in principle, indepen-
dent of each other. If we assume, however, that the
change along a direction k of k space is given solely by
the compression along this direction, the hydrostatic and
the shear change become related through the expression
(for ED):

b, ED(k) = (haD )(k e k)

where e represents the strain tensor. Thus, for a shear
strain ED will depend on the direction of k and we must
consider how to average the various ED(k) so as to obtain
the one to be matched across a (001) interface. We note
that a similar model was successfully used in Ref. 14 to
explain the sign and magnitude of the long-wavelength
stress-induced birefringence.

We call 8 the angle between k and the (001) direction.
AED(k) can thus be written, for the pure shear component
of the strain of Eq. (6):

b, ED(k)=(haD)5, (2cos 8—sin 8) .

In order to decide which value of AED(k) to use for the
matching across the interface, we consider the fact that in
the Penn model, the states along k only contribute to the
polarizability along k. Hence, if we want to consider the
effect of the dielectric response on the b,ED(k) of Eq. (9),

= —,(AaD)5, . (10)

The average of cos 8 in the denominator of Eq. (10) has
been introduced to take into account that such average ap-
pears for a pure hydrostatic strain. For a Si-Ge interface
with Si under strain and Ge unstrained, we find with Eq.
(6) that 5s ———0.024. With haD ——6.3 eV (Table III), we
finally obtain ( AED )oo, = —0. 12 eV. The sign of
( AED )00( just found is such that it increases the band
offset between Si and Ge and thus brings our calculated
value closer to those of Van de Walle and Martin.
Nevertheless, our calculated value will now be 0.22, still
too small when compared with that of those authors (0.54
eV). Van de Walle and Martin also calculated a Si-Ge
heterojunction between cubic Si and Ge with the same lat-
tice constant. They found a band offset of 0.40 eV. The
difference to the case in which Si was allowed to expand
along the z axis, 0.14 eV, does agree with the estimate of
the effect of the uniaxial stress performed above. Hence
the discrepancy between our result of 0.27 eV and that of
Ref. 52 (0.54 eV) is still unanswered.

A reason for this discrepancy may be found in the fact
that the spectrum of e2(co) of Si differs considerably from
that of Ge. This is the spectrum of virtual transitions
which contribute to the polarizability for co=0. Both Ge
and Si have a peak in e~(co) at -4.3 eV (listed as E2 in
Table II). They also have a peak, usually labeled E&, at
2. 1 in the case of Ge and at 3.4 for Si. Hence the shape of
e(co) is considerably changed in Ge with respect to that of
Si. The increase in E& in the latter is responsible for the
fact that the dielectric gap Eg of Si is =4.8 eV, as com-
pared to 4.3 for Ge. The E& peak, due to transitions
along (111),is not well sampled by the first Baldereschi
point (see Table II; actually ED ——4.73 eV for Si, smaller
than the value of 4.85 eV calculated for Ge!). Inclusion
of two Baldereschi points, (2~/ao)( ~, —,, ~ ) and
(2~/ ao)( —,, —,', —, ), would remedy this problem as they in-
clude the transitions along the ( 111) directions respon-
sible for E&. Since the va1ence bands of both materials
are very similar, the discrepancy just discussed must re-
flect itself in a higher ED for Si than for Ge, in excess of
the difference between the ED calculated at the kz (Table
II). We estimate this additional increase in the ED of Si
to be =0.3 eV, which would bring our estimate of the
offset to 0.52 eV, now in agreement with the data of Ref.
52.

2. GaAs-Si

We now discuss the GaAs-Si heterojunction (5=0.04).
Using the method described above, we find for a lattice-
mismatched cubic heterojunction an average band offset
(b,E„' ) of 0.48 eV. For lattice-matched heterojunctions,

rf, B

the hydrostatic strain lowers this value to 0.35 eV if only
the GaAs is strained and to 0.34 eV if only Si is strained.
The shear correction of Eq. (10) brings this value down to
0.21 eV in the former case and to 0.22 eV in the latter.
This is in reasonable agreement with Van de Walle's cal-

we must multiply this equation by cos 8 and average it for
all directions of k. We find

(bED )(Oo()
——(baD )5, (2(cos 8—sin 8cos 8) )/(cos 8)
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culations, which yield 0.12 eV for strained GaAs and 0.14
eV for strained Si.

We note that an offset of 0.05 eV has been measured
for this system by Margaritondo for layers of GaAs
deposited on Si. The state of the strain in this layer, how-
ever, was not known.

3. GaAs-InAs

We discuss next the GaAs-InAs heteroj unction for
which 6=0.07. Our calculation without taking into ac-
count the strain yields actually an average I » valence
band for InAs lower than that for GaAs (b,E,",' = —0. 15
eV). The hydrostatic correction brings this value up to
—0. 12 eV. The uniaxial correction of Eq. (10) raises this
value by 0.30 eV, up to AE„' =+0.18 eV, with the
GaAs side now deeper than InAs. This is in rather good
agreement with the value of 0.11 eV calculated by Martin
and Van de Walle. ' The same value (+0.18 eV) is
found with our method for a strained GaAs layer. It
agrees even better with the results of Refs. 46 and 58
(+0.21 eV).

We note that for this system, an offset AEz ——0. 17
+0.07 eV was measured by Kowalczyk et al. The
heterojunction was formed by a thin layer of InAs depo-
sited on a GaAs substrate. Because of the large spin-orbit
splittings of the I » valence states (b,o

——0.34 for GaAs,
0.38 for InAs), the nonlinear contributions to the strain
splittings of the top of the valence band are negligible. So
is the difference in the spin-orbit splittings. The linear
splitting of the I 8 valence band of InAs by the uniaxia1
strain, however, should lift the top of the valence band of
InAs by about 0.34 eV with respect to that of unstrained
GaAs (we have used for this estimate the strain deforma-
tion potential b = —1.8 eV given in Ref. 61), thus increas-
ing the band offset estimated here to AE"' =0.52 eV,
now much higher than the experimental one [0.17+0.07
eV (Ref. 60)]. A plausible explanation for the discrepancy
is partial relaxation of the large shear component of the
strain in the deposited InAs layer.

VII. CONCLUSIONS

We have shown that the valence- and conduction-band
edges calculated at the first Baldereschi special points
(kz) for group-IV eletnental and III-V and II-VI com-
pound semiconductors can be successfully used to esti-
mate the effect of screening on the hydrostatic deforma-
tion potentials used to calculate the electron-phonon in-
teraction. This procedure introduces the concept of a
dielectric midgap point, somewhat similar to Tersoff's
charge-neutrality point, but arrived at in a rather dif-
ferent, simpler manner. The results so obtained for the
electron-phonon coupling constant yield reasonable agree-
ment with available experimental data when the most reli-
able ones of the many available and conflicting data are
chosen. They probably can be used as a guide to choose
among such conflicting data. The screened deformation
potentials so obtained also improve agreement of experi-
mental and calculated values of the change in lattice con-
stant with doping in heavily doped semiconductors.

The ideas used for the evaluation of screening effects on
electron-phonon interaction constants can also be used to
calculate the effect of screening on the band offset at
heterojunctions obtained from the absolute energies calcu-
lated with the LMTO method. This procedure is straight-
forward in the case of nearly lattice-constant-matched
pairs of materials (less than 1% mismatch). For strongly
mismatched pairs, the effects of the hydrostatic and the
uniaxial components of the resulting strain must be in-
cluded. The former is straightforward to evaluate. The
latter is estimated on the basis of a generalized Penn
model which considers the inequivalence of the various
points of the star of kz after a shear strain is applied.
Reasonable agreement with ab initio pseudopotential cal-
culations for the same interfaces is obtained. The screen-
ing of the shear strain should also contribute small addi-
tional terms to the electron-phonon interaction constants
which are similar to the octopole terms discussed by
Lawaetz. They have not been considered here any fur-
ther.

In a recent paper, Priester et al. have performed a self-
consistent tight binding calculation of the Ge-GaAs inter-
face. They use as reference sp hybrids instead of the
DME utilized here. They find for that system a band
offset of 0.65 eV, only slightly higher than ours (0.51 eV).
It has also come to our attention that Claessen et al.
have measured the dependence of the valence-band offsets
on pressure for InAs-GaSb superlattices. They find this
offset to increase at the rate 4.2 meV/kbar. Using the
method discussed here, we also find an increase of this
offset with pressure, but at a smaller rate, namely, 1.5
me V/kbar.

Note added in proof W. A. Ha.rrison and also J. C.
Duran, F. Flores, C. Tejedor, and A. Munoz (unpublished)
have recently calculated that the effective dielectric con-
stant e of Eq. (5) should be rather close to that for q =0.
If we accept this conclusion, the LMTO' data of Table V
should be preferred to the corresponding LMTO data. A
value of a, =11+1 eV has been recently obtained by K.
Hirakawa and H. Sakaki [Appl. Phys. Lett. 49, 14 (1986)]
by investigating electron relaxation processes in AlGaAs-
GaAs heterojunctions.
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APPENDIX

The dielectric response of a semiconductor to a low-
frequency potential V(r) = V~e't" (time dependence omit-
ted), such as that created by longitudinal acoustic pho-
nons, can be approximately obtained with the Penn
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model. This model replaces the Jones zone by a sphere of
radius k~ and introduces an isotropic gap, the Penn gap
E~, between the occupied and unoccupied states at the
boundary of the spherical Jones zone. The model is basi-
cally equivalent to that of a one-dimensional semiconduc-
tor with a gap at the edge of the Brillouin (Jones) zone. In
order to obtain the dielectric response, we must evaluate
the matrix element of V(r) for virtual transitions between
the valence and the conduction band in the neighborhood
of Ez (we implicitly neglect umklapp processes in the
dielectric response). For q~0, this matrix element tends
to zero, hence we evaluate it for q small but finite. The

I
c,k~+q/2) =(

I
c,k )+(Pq/2E )

I
v, k ) )e'&"

f»k, q/2—)=(
I

u, k )+(Pq/2E ) fc, k ))e
(A l)

where c and U denote the conduction and valence bands,
respectively, and I' is the interband matrix element of p.
The interband matrix element of V(r) is readily obtained
from Eqs. (Al):

gap then takes place between valence states at kz —q/2
and conduction states at kz +q /2. Using k.p-
perturbation theory, the corresponding eigenstates can be
written as

(c,k +q/21 V(r)
I

u, kp —q/2) =
~ Pq/Ez[(c, kz I Vz I

c,kt, )+ (u, kt, I Vq I kt ) ~ (A2)

Vq must be understood as the self-consistent sum of the
applied unscreened potential and the dielectric response.
If the former is an external electrostatic potential, both
matrix elements in the rhs of Eq. (Al) become equal and
the dielectric response reduces the external potential V,„q
to a total potential Vz ——V,„z/e(q), where e(q) is the stat-
ic, q-dependent dielectric function. For q smaller than
about 0.2 times 2'/au (ao ——crystallographic lattice con-
stant), E(q) is nearly equal to the value at q =0. At
q =2~/ao, it reduces to a smaller value, close to that ob-
tained by Tejedor and Flores for the screening of band
offsets in heterojunctions.

In the case of the unscreened potential induced by the
hydrostatic component of the strain of a longitudinal
acoustic phonon, (c,kz I Vz I

c, kz ) and (v, kz I Vz I
v, kz )

are not equal since the corresponding deformation poten-

tials usually differ (the Penn gap depends on hydrostatic
strain). Nevertheless, Eq. (A2) indicates that the calcula-
tion of the screened response is basically the same as that
for an electrostatic potential provided one replaces this
potential by the average of the potentials seen by the
valence and the conduction bands. This average must be
screened by dividing by e(q). Hence the deformation po-
tentials obtained in Ref. 2 must be corrected for the effect
of screening on the deformation potential of the dielectric
midpoint energy (average of the conduction and valence
bands which form the Penn gap) before using them to
evaluate the electron-phonon interaction. A similar
correction should be applied to the difference in absolute
band energies in order to obtain band offsets in hetero-
junctions.
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