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The irreducible-spherical-tensor method of Baldereschi and Lipari is extended to include the ef-
fect of uniaxial stress on the energy levels of effective-mass acceptors in cubic semiconductors. The
Hamiltonians with uniaxial stress along {001) and (111) are developed explicitly. The method is
then applied to acceptors in germanium. The binding energies of the ground state and the first 18
odd-parity excited states with uniaxial stress along each of both directions are computed for stress
intensities ranging from 10° to 10° Pa. This covers the low-, intermediate-, and high-stress regions.
The results are compared to the available experimental data from far-infrared piezospectroscopy,
and the calculation is found to be very accurate up to the high-stress limit.

INTRODUCTION

Accurate numerical solutions to the acceptor problem
in effective-mass theory (EMT)! have only been obtained
during the past 10 yr by Baldereschi and Lipari,>® who
have reformulated the EMT acceptor Hamiltonian in
irreducible-spherical-tensor form. In this paper we
present an extension of that method to the case where uni-
axial stress is present along a {001) or a {111) direction.
We will give a brief description of our method, which we
will then apply to acceptors in uniaxially stressed ger-
manium. A more thorough discussion of the method and
of the results for Ge and Si will be published elsewhere.

THEORY

When no external perturbations are present, the EMT
acceptor Hamiltonian is a 6 X 6 matrix, which can be writ-
ten as the sum of the Kohn-Luttinger acceptor Hamiltoni-
an without spin' and a spin-orbit interaction matrix,>?
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A point-charge potential with diagonal g-dependent
dielectric screening had been used; the zero for the energy
scale lies at the I’ band edge, and energy and length are
expressed in units of the effective Rydberg R§ and the ef-
fective Bohr radius a g, defined as
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with €_ the static dielectric constant, and Aj=Ay/Rj.

— 35 —I8)Ag+ u(PPoI?)— 58

matrices for spin 1 and for spin ¥, respectively. Total an-
gular momentum of a hole in the valence band is J=I+S8,
and A, is the spin-orbit splitting energy between the
I'§(J=2) and I'T(J =7) band edges. Baldereschi and
Lipari* have introduced the parameters
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where y,,7,,73 are the Kohn-Luttinger valence-band pa-
rameters.! Using the components of I and of p= —i#V,

they have defined also the second-rank Cartesian tensor
operators
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which are symmetric and have vanishing trace, and there-
fore decompose into the components of irreducible-
spherical-tensor operators’ P'?’ and I'* of rank 2 only.
The zero-stress EMT acceptor Hamiltonian according to
Baldereschi and Lipari is*3
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The x,y,z axes in (1) coincide with the cubic crystal axes.

When uniaxial stress is applied, the stress interaction
matrix has to be added to the EMT acceptor Hamiltonian.
In the same coordinate system, and to lowest order in the
strain tensor €;, it is®

1

Hstress:D;(exx +€ +EZZ)+2D:[(1§“712)€XJ¢ +C.p.]
+4D; [{I,1,}€,, +c.p.], 2)
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where c.p. denotes cyclic permutation of the indices x,y,z,
and {ab}=+(ab +ba). The scalars Dj,D),D;} are the
Kleiner-Roth deformation potentials’ expressed in units
of R§. The term in DJ, associated with the dilatation
component, simply shifts the entire valence-band multi-
plet without splitting it. It will be dropped from now on,
because it is of no relevance whatsoever for the acceptor
problem.

A uniform stress parallel to {001) is represented in the
coordinate system in use by the following strain tensor:

€x =6y =—5T; €g=—511T; €,=€x=6€,,=0.

The cubic compliance constants are denoted by sy, si2,
and s4. T is the stress intensity, defined to be positive
for compression. After substitution into (2) and reduction
to irreducible-spherical-tensor components, we obtain our
final expression
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The z axis of the coordinate system for this Hamiltonian
lies along one of the threefold symmetry axes of the lat-
tice; its symmetry group is D3d.

The EMT equation with HIC‘C‘(OOI) or H:!C’( " has been
solved variationally. The eigenfunctions for a given row p
of a given irreducible representation I'g of Dy, or D3, are
expanded into an orthogonal series of angular basis func-
tions belonging to I, multiplied by unknown radial
functions. The angular basis functions are constructed as
linear combinations with different F, of the angular
momentum eigenfunctions | L,(I,S)J,F,F,) in the
L-J—coupled scheme. L is the angular momentum asso-
ciated with the space coordinates (6,¢), and F=L+1J.
The series has been truncated by the criterion L <7,
which guaranteed good convergence of the energies. The
number of basis functions was then between 42 and 72.
The angular matrix elements were evaluated numerically
by the computer program using the reduced matrix ele-
ment technique,® and the resulting set of radial differen-
tial equations was solved variationally by the expansion of
each radial function into a number of exponentials with
fixed exponents, multiplied by a power of r.

RESULTS

Computed binding energies for the two ground state
components with uniaxial stress parallel to (001) and to
(111) are shown in Fig. 1. Throughout the low stress re-
gion, up to 2X 10® Pa, the splitting is linear, as expected
from deformation-potential theory, but the entire
ground-state multiplet experiences a quadratic upward
shift. We found, with E in meV and 7T in Pa,
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which is to be added to (1) to form our EMT acceptor
Hamiltonian H TIIC0O) with stress parallel to (001), hav-
ing Dy, symmetry.

A uniform stress parallel to (111) is represented in the
same coordinate system by the strain tensor

1
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Substitution into (2) and reduction to spherical com-
ponents gives a complicated expression containing dif-
ferent I/?. The expression simplifies if we rotate the
coordinate system over the Eulerian angles a= +w/4,
B=arccos(1/v'3), y=0, in order to make the quantiza-
tion axis coincide with the stress direction:

[P(Z)XI(Z)](04)_2[P(2)XI(2)](1)3 +(%)3/2D;"(%S44)I€)2)T . 4)

T|[{001): E=+0.1345x10"7T+1.98x 107172,
T||(111): E=+0.1121X107'T+0.90x 10~1"T? |

which gives for the ground-state deformation potentials,
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FIG. 1. Computed energies of the stress-split acceptor

ground state compared to the splitting of the ['f valence band
edge, for uniaxial stress parallel to (001) and to (111).
Valence band parameters, deformation potentials, and cubic
compliance constants used throughout our calculation are [J.C.
Hensel and K. Suzuki, Phys. Rev. B 9, 4219 (1974)], y,=13.38,
v2=4.24, ¥3=5.69, A;=0.290 eV, D,=3.32 eV, D, =3.81¢V;
5§11=9.55x10""1 Pa~!, Spp=—2.62x10"12 Pa—!,
544=14.58x10"'2 Pa—!. The dielectric function € /e(r) is de-
rived from the e(g) given by Richardson and Vinsome [D.
Richardson and P. K. W. Vinsome, Phys. Lett. 36A, 3 (1971)],
adjusted to €,=15.36 for Ge at low temperatures [R. A.
Faulkner, Phys. Rev. 184, 713 (1969)].
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Dgs/D, =0.499, D /D, =0.605 .

With increasing stress, the energies no longer follow a
simple power law in the stress intensity due to interactions
with even parity excited states of the same symmetry.
Kinks may even occur in the curves, which result from
“anticrossings.”

Figures 2 and 3 show the computed binding energies as
a function of the stress intensity for the odd-parity excited
states involved in the G, D, B, A4, A3, A,, and A, lines
observed by far-infrared spectroscopy.! At very low
stress, the splittings of the G*(1I'z), D*(2I'y), and
B*(4T3 ) levels are linear, but quadratic shifts are present
here too. Interactions between states of like symmetry
dominate the energy spectrum in the intermediate-stress
region, leading to a complicated pattern involving many
anticrossings, which cannot possibly be inferred from a
perturbation calculation starting with the zero-stress wave
functions. In the high-stress region (T > 5 10® Pa) the
energy spectrum simplifies again, because the valence
bands effectively decouple. As we discussed it in a previ-
ously written paper,” the EMT equation which applies in
the high-stress limit derives from an oblate ellipsoid band
edge, giving the level identifications shown at the right in
the figures.

In Figs. 4—6 a comparison is made between our com-
puted transition energies for electric-dipole transitions ori-
ginating in the ground-state multiplet, and the experimen-
tal line positions from far-infrared piezo spectros-

copy'®~12 corrected for the zero-stress chemical shift. We
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FIG. 2. Stress dependence of the computed binding energies
for the first 18 odd-parity excited states with uniaxial stress

along (001). The zero for the energy scale lies at the
¢ (M;=++) band edge. Labeling on the left-hand side corre-
sponds to the zero-stress spectrum, and that on the right-hand
side to the high-stress limit.
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FIG. 3. Same as Fig. 2 but with uniaxial stress along {111).
The zero for the energy scale lies at the I'7 (M. Jzi%) band

edge.

determined this chemical shift for a given acceptor impur-
ity as the difference between the experimental zero-stress
D-line position and the computed energy separation be-
tween 1T'§(0,) and 2T'5(0,). Assuming the chemical
shift to be stress independent, we added it to all the exper-
imental line positions with stress, in order to be able to
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FIG. 4. Comparison between the computed transition ener-
gies in the low-stress region for uniaxial stress along {001), and
the experimental data for the In acceptor from Ref. 10. Experi-
mental line positions have been corrected for the chemical shift
as explained in the text.
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FIG. 5. Comparison between the computed transition ener-
gies in the low- to intermediate-stress region for uniaxial stress
along (111), and the experimental data for the D, C, and B
lines of In from Ref. 10 and the G line of Ga from Ref. 11.
Corrections for the chemical shift have been applied as ex-
plained in the text.

compare them with the theoretical predictions. From
Figs. 4 and 5 it is clear that the comparison shows an al-
most perfect agreement in the low to intermediate stress
region. There are, however, several symmetry allowed
transitions which are not observed experimentally. We
have computed the oscillator strengths for all the
electric-dipole allowed transitions. Full details will be
published elsewhere, but we found that the unobserved
lines have very small oscillator strengths indeed. As an
example, in the D multiplet at 7'=10" Pa and parallel to
(001) the computed oscillator strengths in the perpendic-
ular polarization have the ratios D;:D,:D;:Dy
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FIG. 6. Predictions for the observable transitions in the
high-stress limit with uniaxial stress along {111), compared to
the experimental data for Al from Ref. 12, corrected for the
chemical shift.

=9:112:52:9, which explains the absence of D; and D, in
the spectra.

The most amazing result from our calculation, howev-
er, is shown in Fig. 6. It gives a comparison of our pre-
dictions for the line positions of the first five acceptor
transitions with non-negligible oscillator strengths in the
high-stress limit, to the experimental observations for the
Al acceptor.!? Again the zero-stress chemical shift has
been added to the data. The identification of the final
states follows the notation for the high-stress limit, but
the agreement with experiment is many times better than
what follows from our previous calculation based on the
EMT equation for that limit.” This means that the decou-
pling of the valence bands is still far from complete. It
demonstrates also the great accuracy which can be at-
tained with our new method, even in the high-stress limit.

We wish to acknowledge useful discussions with Dr. A.
Baldereschi concerning an early version of his acceptor
program for octahedral symmetry, and we would like to
thank Dr. P. Clauws for his constant support of our work.
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