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Interpretation of acceptor excitation spectra in uniaxially stressed germanium
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The irreducible-spherical-tensor method of Baldereschi and Lipari is extended to include the ef-
fect of uniaxial stress on the energy levels of effective-mass acceptors in cubic semiconductors. The
Hamiltonians with uniaxial stress along (001) and (111) are developed explicitly. The method is
then applied to acceptors in germanium. The binding energies of the ground state and the first 18
odd-parity excited states with uniaxial stress along each of both directions are computed for stress
intensities ranging from 10 to 10 Pa. This covers the low-, intermediate-, and high-stress regions.
The results are compared to the available experimental data from far-infrared piezospectroscopy,
and the calculation is found to be very accurate up to the high-stress limit.

INTRODUCTION

Accurate numerical solutions to the acceptor problem
in effective-mass theory (EMT)' have only been obtained
during the past 10 yr by Baldereschi and Lipari, ' who
have reformulated the EMT acceptor Hamiltonian in
irreducible-spherical-tensor form. In this paper we
present an extension of that method to the case where uni-
axial stress is present along a (001) or a ( 111) direction.
We will give a brief description of our method, which we
will then apply to acceptors in uniaxially stressed ger-
manium. A more thorough discussion of the method and
of the results for Ge and Si will be published elsewhere.

THEORY

When no external perturbations are present, the EMT
acceptor Hamiltonian is a 6& 6 matrix, which can be writ-
ten as the sum of the Kohn-Luttinger acceptor Hamiltoni-
an without spin' and a spin-orbit interaction matrix, '

——,(-, —I S)bo.

The components of I and S are the angular momentum

matrices for spin 1 and for spin —,, respectively. Total an-

gular momentum of a hole in the valence band is J=I+S,
and Ap is the spin-orbit splitting energy between the
I s (J = —,

'
) and I 7 (J = —, ) band edges. Baldereschi and

Lipari have introduced the parameters

6y 3+4r2 y3 —y2p= 6=
5y1 y1

where y],yz, y3 are the Kohn-Luttinger valence-band pa-
rameters. ' Using the components of I and of p= —ih'V,

they have defined also the second-rank Cartesian tensor
operators

1Pv= 2(» &J ov&»—
I;, = , (I;I,+I,I, ) —6v—I',

which are symmetric and have vanishing trace, and there-
fore decompose into the components of irreducible-
spherical-tensor operators P' ' and I' ' of rank 2 only.
The zero-stress EMT acceptor Hamiltonian according to
Baldereschi and Lipari is '

H ='= — + ———'( ——I S)b,,+ p(P'" I'") —5 [P—'"&(I'"]",+— [P"')&I "],'"+[P"'XI"']",'2 &70
er r

A point-charge potential with diagonal q-dependent
dielectric screening had been used; the zero for the energy
scale lies at the I 8 band edge, and energy and length are
expressed in units of the effective Rydberg R p and the ef-
fective Bohr radius a p, defined as

The x,y, z axes in (1) coincide with the cubic crystal axes.
When uniaxial stress is applied, the stress interaction

matrix has to be added to the EMT acceptor Hamiltonian.
In the same coordinate system, and to lowest order in the
strain tensor e,z, it is

Rp ——
m e

(4vrep) 2' y)e

A y)e
a p ——4vrep

mpe H,«,» Dd (e~+es~+e~)+2——D„"[(I„—, I )e~+c.p.]—
with e the static dielectric constant, and Ap ——Ap/Rp. +4D„*[[I~I,I e~, +c.p. ], (2)
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where c.p. denotes cyclic permutation of the indices x,y, z,
and Iab) = , —(ab+ha). The scalars Dd, D„*,D„* are the
Kleiner-Roth deformation potentials expressed in units
of Ro. The term in Dd, associated with the dilatation
component, simply shifts the entire valence-band multi-
plet without splitting it. It will be dropped from now on,
because it is of no relevance whatsoever for the acceptor
problem.

A uniform stress parallel to (001) is represented in the
coordinate system in use by the following strain tensor:

xx = 6yy = —S ~2 T~ 6zz = —S ~ ~ T~ Cyz 6zx =
waxy

=0 .

The cubic compliance constants are denoted by s», s &2,

and s44. T is the stress intensity, defined to be positive
for compression. After substitution into (2) and reduction
to irreducible-spherical-tensor components, we obtain our
final expression

T~ ] (OO& ) 2 3/2 + (2)
ress ——( T ) Du ( ll —

12 )Ip T (3)

which is to be added to (1) to form our EMT acceptor
Hamiltonian H„, ' with stress parallel to (001), hav-
ing D4I, symmetry.

A uniform stress parallel to (111) is represented in the
same coordinate system by the strain tensor

1

ez& =
Eyy =Ezz =

3 (s i t +2s
& z ) T

]
~yz ~zx ~xy 6 44

Substitution into (2) and reduction to spherical com-
ponents gives a complicated expression containing dif-
ferent Iq(z). The expression simplifies if we rotate the
coordinate system over the Eulerian angles a=+sr/4,
P=arccos(1/v'3), y=0, in order to make the quantiza-
tion axis coincide with the stress direction:

2
HT~~»i p + 2 2

(
i J S)~* i (p(2) I(2))

2[P( )XI2]( + [P(2)XI(2))(4) 2[P(2) ~I(2)]( ) +( )3/2D+'( ~ )I(2)Tv70
(4)

The z axis of the coordinate system for this Hamiltonian
lies along one of the threefold symmetry axes of the lat-
tice; its symmetry group is D3d.

The EMT equation with H ~ or H ' has been
solved variationally. The eigenfunctions for a given row p
of a given irreducible representation I z of D4~ or D3d are
expanded into an orthogonal series of angular basis func-
tions belonging to I ~z, multiplied by unknown radial
functions. The angular basis functions are constructed as
linear combinations with different F, of the angular
momentum eigenfunctions

I

I., (I,S)J,F F, ) in the
L-J—coupled scheme. L is the angular momentum asso-
ciated with the space coordinates (8,$), and F=L+J.
The series has been truncated by the criterion L (7,
which guaranteed good convergence of the energies. The
number of basis functions was then between 42 and 72.
The angular matrix elements were evaluated numerically
by the computer program using the reduced matrix ele-
ment technique, and the resulting set of radial differen-
tial equations was solved variationally by the expansion of
each radial function into a number of exponentials with
fixed exponents, multiplied by a power of r.

RESULTS

Computed binding energies for the two ground state
components with uniaxial stress parallel to (001) and to
(111)are shown in Fig. 1. Throughout the low stress re-
gion, up to 2X10 Pa, the splitting is linear, as expected
from deformation-potential theory, but the entire
ground-state multiplet experiences a quadratic upward
shift. We found, with E in meV and T in Pa,

TII(001): E =+0.1345~10 'T+1.98X10 "T',
TII(111): E =+0.1121)&10 'T+0.90X10 "T',

which gives for the ground-state deformation potentials,
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FIG. 1. Computed energies of the stress-split acceptor

ground state compared to the splitting of the I +8 valence band
edge, for uniaxial stress parallel to (001 ) and to ( 111) .
Valence band parameters, deformation potentials, and cubic
compliance constants used throughout our calculation are [J.C.
Hensel and K. Suzuki, Phys. Rev. B 9, 4219 (1974)], y, =13.38,
y2 ——4.24, y3 ——5.69, Ao ——0.290 eV, D„=3.32 eV, D„'=3.81 eV;
s]]——9 55)& 10 ' Pa ', s]2 ———2 62&& 10 ' Pa
s44 ——14.58&10 ' Pa '. The dielectric function e„/e(r) is de-
rived from the e'(q) given by Richardson and Vinsome [D.
Richardson and P. K. W. Vinsome, Phys. Lett. 36A, 3 (1971)],
adjusted to e„=15.36 for Cre at low temperatures [R. A.
Faulkner, Phys. Rev. 184, 713 (1969)].
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