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We present an analytical description of the interaction between moving discommensurations and
diffusing impurities for a realistic form of the impurity-discommensuration interaction energy. This
interaction energy is derived within the framework of the modified sine-Gordon model with either
misfit impurities (coupling to the gradient of the order parameter) or elastic-modulus impurities
(coupling directly to the order parameter). This interaction potential is then employed in calculating
the steady-state impurity concentration profile about the moving discommensuration for arbitrary
discommensuration velocity and impurity diffusivity. The impurities provide a drag force on the
moving discommensuration, which may lead to hysteresis in the relation between the applied force
and the discomrnensuration velocity. Analytic results for the onset of hysteresis, as well as for the
velocities and forces delimiting the hysteretic regime, are presented. Finally, we apply these results
to charge-density waves, ferroelectric domain walls, and grain boundaries.

I. INTRODUCTION

The interactions of impurities with discommensurations
or discommensuration-like defects often controls the mi-
crostructure and/or transport properties of a material.
The role of impurities in the dynamics of charge-density
waves, ' domain walls in ferroelectrics, and grain boun-
daries in polycrystalline materials has received consider-
able attention both experimentally' " and theoretical-
ly. The majority of these theoretical analyses have
concentrated on the interactions of discommensurations
with static impurities. Of particular note is a study by
Fogel et al. in which they considered the effect of static
impurities which couple to the gradient of the order pa-
rameter on the dynamics of solitons in the one-
dimensional sine-Gordon model. They found that, at low
velocities, the soliton was trapped by the impurities,
while, at high velocities, the soliton was essentially unaf-
fected (apart from a phase shift). Observations of grain
boundaries in metals show similar impurity pinning at
low velocities, and little or no effect at high velocities.

When the impurities are free to diffuse, the meaning of
pinning becomes ambiguous. At low discommensuration
velocity, the impurities are capable of diffusing along with
the moving discommensurations. This results in a non-
random spatial distribution of impurities, and a retarding,
"frictional" force on the discommensurations. On the
other hand, at large discommensuration velocity, the im-
purities cannot diffuse at a sufficient rate to keep up with
the discommensurations, and, hence, the impurity distri-
bution is only slightly perturbed, and the retarding force
is negligible. Clearly, the retarding force is a complicated
function of the discommensuration velocity, and, thus,

these systems may exhibit hysteresis as the applied field is
varied. These observations are consistent with the qualita-
tive description given by Cahn of the effect of impurities
on moving grain boundaries.

The purpose of the present paper is to provide an
analytical description of the interaction between moving
discommensurations and diffusing impurities for a realis-
tic form of the impurity-discommensuration interaction
energy. In Sec. II of this paper, we obtain a simple ex-
pression for the interaction potential between discommen-
surations and impurities in a modified sine-Gordon
model. Two types of impurities are considered: one cou-
pling directly to the order parameter, and the other cou-
pling to its gradient. These expressions for the interaction
potential are then employed in Sec. III to obtain the
steady-state impurity concentration about a moving
discommensuration. The drag force on the discommen-
suration caused by these impurities is then calculated in
Sec. IV, and employed in Sec. V to obtain an analytic rela-
tionship between the applied force and the discommen-
suration velocity. Finally, we calculate the magnitude of
the hysteresis in this force-velocity relationship, and we
find the conditions for its onset. Applications of these re-
sults to the dynamics of charge-density waves, ferroelec-
tric domain walls, and grain boundaries are also discussed.

II. IMPURITY-DISCOMMENSURATION
INTERACTION POTENTIALS

The physical nature of the interaction between impuri-
ties and discommensurations may be elucidated best in
terms of a simple model. Because of its widespread appli-
cation to a number of physical systems and its simple con-
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+2B;[1—cos(2mr; /a o)]}, (2.1)

where r; is the displacement field of the particles of mass
m, ao is the lattice spacing, E; is the spring constant, B;
is the amplitude of the substrate potential, and a; is a
phase-shift parameter. Three types of impurities are con-
sidered: (a) a spring whose equilibrium length is incom-
mensurate with the substrate potential (some a;&0), (b) a
local variation in spring constant (some K; &K), and (c) a
local variation in the amplitude of the substrate potential
(some B;&B). The natures of these types of impurities
are indicated in Fig. 1. Case (a) corresponds to a misfit
impurity. Cases (b) and (c) may be interpreted as impuri-
ties with elastic constants differing from those of the rest
of the medium. In the static limit, rescaling the Hamil-
tonian by K reduces the two cases (b) and (c) to just one
type of elastic-constant defect controlled by the parameter
(B/K);. In the static, continuum limit, Eq. (2.1) becomes

H= —, „u —6 u +2 u 1 —cos u du,

(2.2)

where u =x/ao is the dimensionless position, P(u)
is the continuum displacement (phase) variable,
p„(u)=BQ(u)/Bu, p=4vr B/Kao, and 6=27ra/ao. Note
that the Hamiltonian in Eq. (2.2) has been rescaled by
Lao/4n .

In order to simplify the following evaluations of the
impurity-discommensuration interaction potentials, we
linearize (2.2), resulting in

H= —, „u —6 u + u u mod2~ du,

(2.3)

where (mod2n) has been included to maintain the 2m

periodicity of H. This equation is the continuum analog
of the modified Frenkel-Kontorova model used by
Wiener. "

The equation of motion for P(u) is obtained from Eq.
(2.3) by using Hamilton's equations in the usual way, and
it is given by

tinuum limit, we begin with the Frenkel-Kontorova
model

H = —,
' 2; [m(Br; /dt) +K; (r;+ ~ r;——a; )

and this becomes

P„„(u)—[P(u) (mod 2n. )]=0, (2.5)

which has the solution P(u) (mod 27r)=A, e"+Aze ". To
find the soliton solution, we impose the boundary condi-
tions P( —oo ) =2vr and P( oo ) =0, which yields (for a soli-
ton at u =u, )

Q —Q2' —7M, u ( us
s u)=

Q —Q

ere ', u)u, .
(2.6)

This soliton has an energy

H[P, ] =m (2.7)

which is within 20% of the soliton energy for the full
sine-Gordon equation. This solution (2.6) is plotted in
Fig. 2 along with the soliton solution of the full sine-
Gordon equation, ' as well as the hyperbolic-tangent form
found in a Landau description of a discommensuration. '

These three solutions show a striking similarity, and they
demonstrate that the linearized sine-Gordon equation con-
tains the essential physics required to describe discom-
mensurations. As shown later, the expressions for the
impurity-discommensuration interaction potentials ob-
tained using the linearized sine-Gordon equation are rela-
tively simple. The simplicity of these expressions allows
us to proceed with the remainder of the analysis analyti-
cally, rather than numerically.

A. Misfit impurities

which, together with the boundary conditions P(+ oo ) =0,

1.0

We begin by finding the displacement field P;, for a
misfit impurity alone. The impurity profile is taken to be
steplike and of extent 2uo, with its center at u =0 [i.e.,
P—= 1, b(u)=0 for

~

u
~
) uo, and A(u)=6&0 for

~

u
~

(uo]. In this case, Eq. (2.4) becomes

P„„(u)—[P(u) (mod 2m )]=65(u+ uo) b5(u ——up),

(2.g)

P„„(u)—P(u)[P(u) (mod 2m. )]=b „(u) . (2.4)

In the absence of impurities, we have b, =0 and p:—1,'

(a) (b) (c)

) fan '(e ")

—(1]2)(1-tan 2)e "

Oo
-8 8

FIG. 1. Illustration of the various types of impurities con-
sidered in Sec. II. (a) Misfit impurity with atoms shifted from
the minima of the substrate potential. (b) Elastic-modulus im-

purity with a modified interatomic interaction. (c) Elastic-
modulus impurity with a modified substrate potential. Cases (b)

and (c) are mathematically equivalent.

FIG. 2. Comparison of various soliton profiles. The middle
curve is the soliton solution given by Eq. (2.6) with u, =0. The
outer curves are the soliton solution of the full sine-cordon
equation and the hyperbolic-tangent form found in a Landau
description of a discommensuration.
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yields
I I I I I I I I I I

—b(sinhup)e", u & —up

;,(u) = Ae 'sinhu, —up & u & up

b, (sinhup)e ", u & up .

In addition, the energy of this impurity is

H[P;,]=5 e (2upcoshup —2sinhup

(2.9)

3—
K0

0—
4
UJ -i
K
Q -2

uo = 0.01'

+e sinh up) . (2.10)

&;.=H [4.+0;.] H[4.] —H[4'—
=2rrh(sinhu p )e (2.11)

with u, being the (dimensionless) impurity-discom-
mensuration separation (since the impurity is at u =0).
The interaction energy scales linearly with the impurity
strength 5, and decays exponentially with the impurity-
discommensuration separation u, . In the small-uo limit,
this reduces to

Next, we find the displacement field tI);, with both the
soliton and the misfit impurity present. This is done by
solving Eq. (2.8) with the (different) boundary conditions
P( —oo ) = 2m and P( oo ) =0. In this particular case, we
find that P;,=P, +P;,. Thus, the interaction energy of
a discommensuration with a misfit impurity is given by
(for

i u, i & up)

separation. The dependence of the preexponential factor
of Eq. (2.13) on the defect strength (i.e., on /3) is shown in
Fig. 3. In the small-up limit, the interaction energy (2.13)
reduces to

2E,d
——rr (P—1)upe

which is simply linear in P—1.

(2.14)

FIG. 3. Dependence of the preexponential factor in Eq. (2.13)
on the defect strength for impurities of various sizes. The
curves intersect at /3=1, since this represents no defect, in which
case E ~ ——0.

—/u, IE =2VTAQ Oe (2.12) III. THE STEADY-STATE IMPURITY
CONCENTRATION PROFILE

The major difference between this expression and that
found by solving the full sine-cordon equation' is that—Iu, te ' is replaced by (2 coshu, )

B. Modulus impurities

2{uo —]u ) )Xe (2.13)

Unlike the interaction potential between the discom-
mensuration and the misfit impurity, the interaction po-
tential between the discommensuration and the modulus
impurity is not simply linear in the strength P—1 of the
defect (although it does contain an overall factor of /3 —1).
It does, however, show a similar exponential decay with

When b, —:0 and /3 is nonuniform, the system contains
elastic-modulus impurities [P(u) QP], and the equilibrium
displacement field satisfies P„„(u ) —P(u )[P(u )

X(mod2~)]=0. Again, we consider a steplike impurity
of length 2 up [i.e., /3(u ) = 1 for

~

u
~

& up, and /3(u ) =P& 1

for
~

u
~

&up]. The interaction energy of a discommen-
suration with a modulus impurity can now be found by
following the same procedure as for the misfit impurity.
The main difference is that, by itself, the modulus impuri-
ty has no displacement field [i.e., one finds P ~(u)=0
and H[g,d] =0]. However, the calculation still proceeds
as before to yield (for

~
u,

~

& up)

m. (P—1)sinh(2P' ~ u p )

(@+1)sinh(2P'~ up)+2@' cosh(2/3'~ up}

We begin by assuming that the interaction potential be-
tween an impurity and a discommensuration depends on
only their separation, and is independent of the velocity of
the discommensuration. The chemical potential of the
impurity is assumed to be given by '

p(x) =kT lnC(x)+E(x), (3.1)

where C is the impurity concentration, kT is the thermal
energy, and E is the impurity-discommensuration interac-
tion potential. Note that, in Eq. (3.1), we have assumed
that the impurity concentration is small (i.e., that it is
consistent with Henry's law' ). In the following discus-
sion, we also assume that the discommensuration velocity
is small compared with the smallest sound velocity (or
any other limiting velocity), so that "relativistic" correc-
tions can be ignored. The diffusion equation for the im-
purities may then be written as

C, =DC +DE C /kT+DCE /kT, (3.2)

where D is the constant impurity diffusivity. In steady
state, C(x, t) depends only on w =x vt (w =0 is the posi-—
tion of the discommensuration), so that C, = —vC~ and
C„=C,and Eq. (3.2} becomes

C +(viD)C +(CE Ikr) =0 . (3.3)

Integrating Eq. (3.3) once and applying the appropriate
boundary conditions far from the discommensuration
[E (+ oo ) =0, C (+ oo ) =0, and C(+ oo ) =Cp], we obtain
the first-order differential equation
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(3.6)E( uI) =+"(3.4)

6llO

/k»c=' '+ ( U/D+E~

(3.5)
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ing discommensuration velocity, decreasing diffusivity,
and/or decreasing interaction strength. Comparison of
Figs. 4(a) and 4(b) shows that, for the same value of

~

o ~,
the peak for o. &0 has greater amplitude than the dip for
a & 0 [see the discussion following Eq. (3.13)].

The concentration profile is not symmetric with respect
to the discommensuration position [i.e., C(u)&C( —u)].
This asymmetry becomes more pronounced with increas-
ing p (i.e., increasing discommensuration velocity or de-
creasing impurity diffusivity). At sufficiently high veloci-
ty (low diffusivity), the concentration profile begins to
resemble a shock, or concentration discontinuity, at the
discommensuration. Even so, C(u) always remains con-
tinuous at u =0, although its derivative does not. Howev-
er, this discontinuity in the derivative is traceable to the
same discontinuity in the derivative of the potential E(w)
of Eq. (3.6), and, thus, it need not be physical (such a
discontinuity does not occur in the solution when the full

B. Ll.miting cases

For the case p=O (zero discommensuration velocity or
infinite diffusivity), the concentration profile reduces to

C(u;p=O) =Cpexp( —oe "
) . (3.10)

This is the expected, equilibrium, impurity concentration
profile (for small impurity concentration) about a static
discommensuration. For p&0 and

~

u
~

&&1, Eq. (3.8)
reduces to

sine-Gordon equation is employed). Finally, note that, in
Eq. (3.8), although I ( —p+1) diverges at positive, integer
values of p, the full expression remains finite and continu-
ous everywhere.

Cp(1 — e '"'), u &0
p+1

C(u)= .
Cp[1+ e "+e ~"[I (p+1)y*(p, cr) ——I ( —p+1)y*( —p, cr)]]—, u &0 and p&1

p —1

Cp[1+e "[o(u —y)+y*(1,—a) —y~( —1, —o)]), u &0 and p=1,
(3.11)

+pouy*(p+1, —o)] . (3.12)

At the center of the discommensuration, the impurity
concentration is given by

C(u =0)=CpI (p+1)e y*(p, —o. ) .

Because of the factor e, the peaks in the impurity con-
centration for o. &0 are larger than are the dips for o. & 0.
The third term in Eq. (3.12) is the source of the asym-
metry about the moving discornmensuration at u =0.
Hence, it is this term which is responsible for the forma-
tion of the shocklike profile in Fig. 4. Examining this
term, we see that the asymmetry vanishes for p =0, and it
increases as p increases.

Finally, for p » 1 (i.e., D « Ua ), we have

(3.13)

C(u)= .
C, 1 ——e

—I"
P

0 &0

Co 1+—e "— e e )'e
P P

(3.14)

0)0,

where y is Euler's constant, and y~ (a,x) =By*(a,x)/Ba is
discussed in the Appendix. Also, note that, in the middle
expression, only the dominant exponential (e ", for p & 1,
or e r", for p&1) is significant. From these asymptotic
relations, we see that, behind the moving discommensura-
tion, the concentration profile decays exponentially as
e ~" ~, while, ahead of the discommensuration, it decays
as e ~", for p & 1, and as e ", for p & 1.

On the other hand, for
~

u
~

&& 1, the concentration pro-
file is given by (for all p)

C(u) =Cpl (p+1)e [y*(p, cr)+o.
~

u
~

—y*(p, —o)

where the final term in the second expression is unimpor-
tant, except very near the discommensuration (u =0).
From this expression, we see that, as p increases, the devi-
ation of the concentration C(u) from a uniform value Cp
vanishes as

~

C(u) —Cp
~

/Cp=(
~

o
~
/p)e

C. Excess concentration

We conclude this section with a discussion of the excess
concentration carried along with the moving discommen-
suration:

b, C= f [C(u) —Cp]du .

Using Eq. (3.8), this becomes

(3.15)

b, C=2Cp[I (p+1)]
l~l

X f zy*(p+ l,z )y'(p+ 1, —z)dz (3.16)

[in deriving Eq. (3.16) from Eq. (3.15), we have made re-
peated use of the recursion relations for y (a,x) which are
discussed in the Appendix]. From Eq. (3.16), we see that
the excess concentration AC depends only on the strength

~

o
~

of the impurity-discommensuration interaction, and
not on its sign. In particular, AC is always positive.

Near the discommensuration (on the order of a lattice
spacing) is a "core" excess concentration which is positive
(negative) for an attractive (repulsive) interaction. Howev-
er, in front of the discommensuration is a long "tail" of
the opposite sign (cf. Figs. 4 and 5). For an attractive in-
teraction, the discommensuration drags an excess impuri-
ty concentration along with it, leading to a large (positive)
core and a small (negative) tail. On the other hand, for a
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IV. IMPURITY DRAG FORCE
ON THE DISCOMMENSURATIONS

Because of the impurity-discom mensuration interac-
tion, a discommensuration feels a drag force arising from
the impurity concentration profile about it. The force
from a single impurity is —dE(w)/dw, so the total drag
force is given by

(4. 1)

which, for the potential (3.6), becomes (again using
u =w/a)

Fd„.s Eo f e "[C——(u) —C( —u)]du . (4.2)

Note that, in the remainder of this paper, we take the con-
centration to be the number of impurities per unit length
along the direction of motion of the discommensuration.
For the steady-state concentration profile (3.8), this drag
force is found to be

F„„=2CpkT[I (p+ 1)]
a

zy p+1,z y p+1, —z dz (4.3)

[in deriving Eq. (4.3) from Eq. (4.2), we have again made
repeated use of the recursion relations for y*(a,x) which
are discussed in the Appendix]. From this expression, we
see that the drag force depends only on the strength

~

o
~

of the impurity-discommensuration interaction, and not
on its sign.

Notice that the above expression (4.3) for the drag force
Fd„s is very similar to the expression (3.16) for the excess
concentration AC. This similarity is not accidental.
From Eq. (3.4), we have

C —Cp ———DC /U —DCE /UkT . (4.4)

repulsive interaction, the discommensuration piles up an
excess concentration in front of it, leading to a large (posi-
tive) tail and a small (negative) core. In either case, the
net excess concentration AC is positive. ' Consequently,
one cannot determine the sign of the impurity-
discommensuration interaction from the sign of the excess
impurity concentration about a moving discommensura-
tion. However, note that the tail is a dynamic effect and
vanishes for a static discommensuration [cf. Eq. (3.10)].
Thus, for a static, equilibrium discommensuration, such a
sign determination may be possible.

Finally, we note that the total excess concentration
must be zero (because of mass conservation). The quanti-
ty b,c in Eq. (3.15) is the excess concentration moving
with the discommensuration. In addition, there is a sta-
tionary deficit —AC left behind during the transient ac-
celeration of the discommensuration. When steady state
has been reached, this deficit has become localized at
u = —oo in the moving frame of reference. For a finite
system, the steady-state profile is never completely at-
tained, and this deficit is present at a finite distance
behind the discommensuration. In this case, whether or
not the two contributions AC and —AC can be isolated
depends on the probe size.

Equation (3.15) then yields [since u =w/a, p=ua/D, and
c(+ ) =c,]

b, c=—(1/pkT) f CE dw =Fd„s/pkT, (4.5)

where we have made use of Eq. (4.1). Thus, the excess
concentration and the drag force are related by the simple
expression (4.5).

A. Limiting cases

For p » 1 (D « Ua ), Eq. (4.3) reduces to

Fdl ~g Cp& k T /p (4.6)

=4CopkT(chi
~

o.
~

—ln
~

o
~

—y), (4.7)

where chi(z) is the hyperbolic-cosine-integral function, '

and y is Euler's constant. Both of these results are in
agreement with those of Cahn [see his Eqs. (12) and (15)].

For low discommensuration velocity or fast impurity
diffusion (i.e., for small p), the impurity concentration
profile is nearly symmetric about the discommensuration
[for p=O, it is perfectly symmetric, as shown by Eq.
(3.10)]. Since the drag force Fd„s scales with the asym-
metry C( u ) —C( —u ) of the impurity concentration pro-
file [cf. Eq. (4.2)], then it must vanish as p~O, as verified
by Eq. (4.7). As p increases from p=O, the asymmetry in
the concentration profile becomes more pronounced, lead-
ing to an increase in the drag force. For large p, the con-
centration profile continues to increase its asymmetry,
becoming shocklike; however, its peak amplitude is now
decreasing. As p~ao, this amplitude vanishes, and the
concentration becomes uniform (and, thus, symmetric),
since the impurities can no longer adjust to the moving
discommensuration (because D «Ua). Hence, as phoo,
Fd„s must again vanish, as verified by Eq. (4.6). Thus,
we see that Fd„g begins increasing linearly with p, after
which it peaks and then decreases as 1/p.

For small interaction strength
~

o
~

&& 1, Eq. (4.3)
reduces to

Fd„s Copo'kT/(p+ I )'——~p/(p+ 1)' . (4.8)

This should be compared with the expression p/(p + 1)
assumed by Cahn, for a triangular-well potential, to fit
the same asymptotic behaviors p and 1/p for p &&1 and

p )& 1, respectively. The limit of large interaction
strength

~

cr
~

&& 1 is much more complicated, and the re-
sulting expression for Fd„g simplifies only in the follow-
ing two cases (both for

~

o
~

&& 1):

2C pkTI (p+1)
~

o
~

~+"e ' ', p&&
~

cr
~

(4.9)
Coo kTlp, p» ~

cr
~

(for p:—
~

o. ~, neither expression is valid, and no simple
expression can be found). Examining Eqs. (4.8) and (4.9),
we find that the peak p* in Fd„g begins at p*=1, for

while, for p«1 (low velocity or high diffusivity), it be-
comes

sinh2z
Fdl'~g 8Cppk T dz
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~

o.
~

&&I, decreases as the interaction strength
~

o
~

in-
creases, and approaches zero as p* = 1/ln

j
~ ~, for

Fd„g —— f [J (x)/C(x)]dx, (4.10)

where J(x) is the concentration flux (in the stationary
reference frame):

(4.11)

From Eq. (3.2), we see that

J= —DC —DCE /kT . (4.12)

Furthermore, from Eq. (4.4), we see that this may be
rewritten as

J=v(C —Co) . (4.13)

In the high-velocity limit, we have C—=Co, and the first
term in Eq. (4.12) becomes negligible, yielding
J= DCE„/k T—. Inserting these expressions into Eq.
(4.10), we do indeed recover the high-velocity drag force
(4.6). On the other hand, in the low-velocity limit, it is
convenient to use the simpler expression (4.13). Inserting
this into Eq. (4.10) and using the low-velocity concentra-
tion profile (3.10), we also recover the low-velocity drag
force (4.7).

Finally, we wish to point out that the previous applica-
tions of this dissipation-theorem approach' have involved
very simple forms of the interaction potential E(x) (e.g.,
square wells). Here, however, we have verified this ap-
proach for a much more realistic potential, which has
provided a more stringent test of the concept.

V. DISCOMMENSURATION VELOCITY VERSUS
APPLIED FIELD

In the absence of impurities, applying an external field
to a system causes the discommensurations to feel an ap-
plied force F,pp and, thus, to move at some velocity
uo(F,»). The detailed form of the function uo(F) depends
on the physical nature of the discommensuration (e.g. ,
charge-density wave, ferroelectric domain wall, grain
boundary, etc.). However, certain qualitative features are
common to most types of discommensuration. At low
fields, vo(F) is generally linear, ' being given by vo MF, ——
where M is the mobility of the discommensurations
(which can vary widely among different systems). On the
other hand, at large fields, uo(F) generally saturates at
some limiting velocity v„, which is usually the smallest
sound velocity (or the velocity of some other excitation in
the system).

When impurities are present, the discommensurations
no longer feel just the applied force F,~~. Instead they

B. Dissipation theorem

We conclude this section with a self-consistency check.
For steady-state, viscous-drag problems of the type con-
sidered here, the drag force can be found from a dissipa-
tion theorem. ' In one dimension (as is the case here), the
dissipation theorem yields

feel the total force F«, ——F,» —Fd„g, where Fd„g is the
drag force due to the impurities (which was discussed in
Sec. IV). Thus, in the presence of impurities, the resulting
discommensuration velocity is u(F,») =vo(F, , )

=uo(F,» Fd—„g), with vo(F) being the force-velocity re-
lationship, discussed above, in the absence of the impuri-
ties. Since Fd„g depends on the resulting velocity u(F,»),
then this new (self-consistent) force-velocity relationship
u(F) may be much more complicated than that for the
impurity-free case. In particular, in the presence of im-
purities, u(F) may exhibit hysteresis.

For the form of Fd„g(p) given by Eq. (4.3), the force-
velocity relationship in the presence of impurities has one
of the two qualitative forms shown in Fig. 6. For a sys-
tem with the relationship shown in Fig. 6(b), hysteresis
can occur. As the applied force F pp is increased from
zero, the resulting (dimensionless) velocity p(F, &

) in-
creases linearly with F,» (but with a smaller slope than in
the impurity-free case). However, as F,» continues in-
creasing, p(F,») begins increasing faster than linearly.
Finally, at F pp F+ the velocity reaches p p+ and then
jumps discontinuously' to p=p+ &p+. If the force con-
tinues to increase, the velocity eventually saturates at

p =p . If the applied force is now decreased, the velocity
decreases continuously below p=p+, and, depending on
the particular system, this decrease will generally become
linear in F pp At F pp F &F+, the velocity reaches

p =p &p+ and then jumps discontinuously' to
p=p &p . Finally, as the force continues decreasing to
zero, so does the velocity.

Since the qualitative form of the impurity-free force-
velocity relationship is insensitive to the specific nature of
the discommensuration, we return to the case of a discom-
mensuration governed by the sine-Gordon equation. For
such a discommensuration, the impurity-free force-
velocity relationship is given by

vo(F) = u „[1+(Fo /F) ] (5.1)

F,pp =Fd„g(p)+Fo[(p„/p) 1]— (5.2)

where p =u a/D and Fd„s(p) is discussed in Sec. IV.
For all of our quantitative results, we assume that p && 1,
which amounts to assuming that the impurities diffuse
slowly compared to v . At this point, we reiterate that,
although the quantitative results in this section are valid
only for discom mens urations governed by the sine-
Gordon equation, the qualitative features of these results
are valid for most types of discommensurations [specifi-
cally, those whose impurity-free force-velocity relation-
ships uo(F) begin linearly and saturate at large F].

If hysteresis exists in a given system, then the force-
velocity relationship consists of two (overlapping) stable
branches [cf. Fig. 6(b)]. These two branches correspond
to the two terms in Eq. (5.2). For most physical systems
(including all of the systems considered in this paper),

where v is the saturation velocity, and Fo ——4a/m. , with
a the damping coefficient in the dimensionless sine-
Gordon equation. Using the relationship u(F,»)
=vo(F„, ) and switching to the dimensionless velocity
p=va/D yields the desired force-velocity relationship in
the presence of the impurities:
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these two branches (terms) have little effect on each other
(except, of course, near the transition region). Thus, the
lower branch (F,~~ & F+ ) is the impurity-dominated
motion given by F,z„-Fd—„s(p), and the upper branch
(F,~~ & F ) is the impurity-free motion
F,zt, =Fo[t(p /p) I]—' . As a result, the hysteresis
amounts to sudden changes between impurity-dominated
and impurity-free motion as the applied field is varied. In
particular, for fields above the hysteresis threshold (i.e.,
for F,~~ & F+ ), the motion of a discommensuration is the
same as for an impurity-free system (since it has broken
free of the impurities).

Whether or not a given system exhibits hysteresis de-
pends on the values of the physical parameters specifying

(a)

that system. For a system with the sine-cordon force-
velocity relationship (5.2), these parameters are Fo, p
Co, o, and kT Using the explicit expression (5.2), we can
find the conditions for the onset of hysteresis, as well as
explicit expressions for the quantities characterizing the
hysteresis (i.e., F+, F,p+, p+, p, and p ). In this sec-
tion, we summarize our analytic results. In Sec. VII, we
apply these results to three physical systems: charge-
density waves, ferroelectric domain walls, and grain boun-
daries.

A. ~eak-interaction limit

We begin with the limit of small impurity-
discommensuration interaction strength

~

o
~

&& 1, in
which case Fd„,s(p) is given by the simple expression (4.8).
An example of a system with

~

o.
~

&&1 is provided by
charge-density-wave materials. For such materials, the
impurity-discommensuration interaction strength

~

Eo
~

is
typically on the order of 1—10 meV, which yields

~

o.
~

=0 04 .0 4—(a. t room temperature) In . this weak-
interaction limit, whether or not hysteresis occurs depends
only on the combination of parameters

A. =CpP o. kT/Fp . ('5.3)

8PP

The critical value of this parameter (i.e., where F+ F)——
is A., =27, and hysteresis does (does not) exist for iE & X,
(A, & A, ).

This criterion may become more clear if the expression
(5.3) for A, is rewritten in terms of the mobility. For small
forces F (or, equivalently, for small velocities), Eq. (5.1)
becomes Uo(F)=(u /Fo)F=MF, which shows that the
mobility is given by

M = U /Fp =p D/Fpa

Thus, Eq. (5.3) can be rewritten as

A, =MCpao. kT/D .

(5.4)

(5.5)

Pp

Since Coo is the fractional concentration of impurities,
then one generally has Coa « 1 (in addition to the condi-
tion

~

o
~

&&1). Thus, in the weak-interaction limit, hys-
teresis can occur only in systems with high mobility or
low diffusivity. To examine the temperature dependence
of A, , we must realize that M and D generally have the
temperature dependences (with QM, QD & 0):

—QD/kr
7

(5.6)

(5.7)

F F~
Fapp

which yields (since o.=Eo/kT)
—1 ~~D ~M ~~A~T e

FICr. 6. Qualitative forms of the dependence of the discom-
mensuration velocity on the applied force. This force-velocity
relationship makes a transition fram an impurity-dominated re-
gime, at low forces, to an impurity-free regime, at high forces
(the latter behavior being the same as for an impurity-free ma-
terial). This transition can be either (a) gradual or (b) hysteretic.
In either case, the velocity must saturate at high fields {ta, for
example, the smallest sound velocity).

Thus, we see that A. is very sensitive to temperature. In
particular, hysteresis may appear or disappear as the tern-
perature is varied (whether A. increases or decreases as the
temperature increases depends on whether Q~ is larger or
smaller than QD, which depends on the system studied)

We now summarize our results for the quantities F+,F, p+, p+, p, and p (again, for
~

o
~

&&1 &&p ). In
general, we have
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p+ ———1+2( —,
'

A, )'~ cos[,' ~+ —,
' cos '[(A,, /k)'~ ]I, (5.9)

—1+2(—, A)' cos[ ,
'

vr——,—cos '[(A., /k)' ]I, A,
'~ &&p„

(p /kX, ) t
—1+2cos[ —,cos '(A, A,, /2p —1)]], A,

' »1 (5.10)

F+ (Fo——!p )(1+—,sec j —,m+ —,cos '[(A,, IA, )' ] I )( —1+2( —,
'

A. )'~ cosI —,sr+ —,cos '[(A,, IA, )' ] I ), (5.11)

(Folp )(1+—,sec I , n ——,co—s '[(A,, /A, )'~~]
I )( —1+2(—,

' k)'~ cos[ , n ——,' —cos '[(A,, /X)' ]]), X' «p
Fo[(A, k,' /p ) I

—1+2cos[ —,cos '(k 1,, /2p —1)]I

+((k k, /p„) t
—1+2cos[ —,cos '(X A,, /2p„—1)]I

—1) '~ ], A,
'~ &&1 .

2

((k &(p
g2/3 4/3 /3

(5.14)

Analytic results for p+ and p can also be found, but
these expressions are even more involved and less il-
luminating. In Eqs. (5.10) and (5.12), note that the re-
gions A, '~2&&p and X'~ &&1 overlap (since p &&1), so
that at least one of these two cases is always valid. Also,
for A,

'~
&& 1, the identity cos( —,cos 'x ) =cosh( —,cosh 'x )

is useful when the argument x exceeds 1 .
While the expressions (5.9)—(5.12) are general and ex-

act, they are not very illuminating. Consequently, we also
list the following special cases:

2

p+ (5.13)
) c

A =Cop k Te I I IFO
~

cr (5.19)

The critical value of this parameter is A, =e /2 (every-
where in this paper, e denotes the base of the natural loga-
rithm, not the electronic charge), and we have that hys-
teresis does (does not) exist for A & A, (A & A, ). As be-
fore, this expression can be rewritten in terms of the mo-
bility:

tremes given in Eq. (4.9). Furthermore, the first of these
two expressions is by no means simple. Nonetheless, we
can still extract a considerable amount of useful informa-
tion in this limit. In addition, this limit is physically in-
teresting: for both ferroelectric domain walls and grain
boundaries, the impurity-discommensuration interaction
strength

~
Eo

~

is typically on the order of 0.1—1 eV,
which yields

~

o
~

=4—40 (again at room temperature).
For p, ~

o.
~

&&1, whether or not hysteresis occurs
again depends on only a single parameter:

2 X=A'

p+ ——. k/4, A.
' » A, , and k &(4p

p, A. »4p
r

2

p = 2k X ((k ((p

(5.15)

(5.16)

A=MCoakTe ' ' /D
~

o
~

(5.20)

Thus, in the strong-interaction limit
~

cr
~

»1, hysteresis
should be quite common, occurring unless the system ex-
hibits low mobility or high diffusivity. From Eqs. (5.6)
and (5.7) and o =EolkT, we see that A has the tempera-
ture dependence

T2 ~D M+ I &o I
)/kT

A cr- T e (5.21)

8Fp /p
+ gF /4 g] /2 g] /2 (5.17)

8Fp /p

F = 2~' Fp/p, k' &&A, , and k &&4p

gFp /p', a » 4p (5.18)

B. Strong-interaction limit

Next, we consider the opposite limit: that of large
impurity-discommensuration interaction strength

~

cr
~

&& 1. As mentioned in Sec. IV, Fd„s(p) is much less
tractable in this limit, simplifying only in the two ex-

Thus, as before, A is very sensitive to temperature, and
hysteresis may appear or disappear as the temperature is
varied. Also, A may either increase or decrease as the
temperature increases, depending on the sign of
QD —QM+ I

EO
I
.

In the strong-interaction limit, the general expressions
for F+, F, p+, p+, p, and p are much more involved
than those in the weak-interaction limit. Consequently,
we give results only for some special cases. In order to
state these results more clearly, we list some of these cases
below.

Case I ~

ln
I

a
I
« lnA &p ln

~

o.
~

and ln
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Case IIa:

p„« ~

o
~

and A ))(I/4vr'~ )
p~

2/3

Case IIb:

p « j
cr

~

and A &&(1/2'' )

Case III:
p )) ~cr~, A )) ~cr~

and

3~3~cr~ )

Case IV.

p )) tcr
~

and A &&o

e/cr)

1/3

I

These four cases are given in order of increasing A. Case
I corresponds to the minimum p occurring well between

p = 1 and p=
~

o. ~, where Fd„s is decreasing rapidly, but
before saturation at p„(cf. Fig. 6). Cases II correspond to

p being near saturation at p„when saturation occurs be-
fore p=

~

o
~

(cases IIa and IIb are slightly different forms
of the same condition, these two forms being appropriate
for the evaluations of p and F, respectively). Case III
corresponds to p occurring well beyond

~

o. ~, but before
saturation. Finally„case IV corresponds to p occurring
well beyond

~

o
~

and near saturation.
Using the above case labels, we have the following re-

sults (again, for p, ~

o.
~

&&1):

2/ln
j

cr ~, A=A,
P+ 1/ln

)

cr (, A)&A, /e
(5.22)

2/ln
~

o ~, A=A,
lnA/ln

~

o ~, case I
p = p, case IIa

A' (cr( e ' ', case III
p, case IV

(5.23)

p„[l+(ep„ln
f

o.
/

/2A) ] '~, A&&A, /e

2/ln
/

cr /, A =A,

p F /2AFo, ln2A &) 1

(5.24)

(5.25)

4FO/(p ln
/

cr
/

), A=A

2AFO/(ep„ln t
o

i ), A »A, /e

4Fo/(p ln
~

o
~

), A=A,

[FolnA/(p ln
~

o.
~
)]{1—[lnA/(p ln

~

cr
~
)] I

', case I

2AFO(2rrp )' (p /e
~

cr
~

) ", case IIb

(2A' Fo
~

o
~

/p )e ' ' case III

(AFO )
)c'rp /)e ' ', case IV .

(5.26)

(5.27)

Note that, for all of the cases I—IV, we have ln2A »1.
Thus, in cases I, IIb, III, and IV, p is given by the
second expression in Eq. (5.25) with the appropriate ex-
pression for F from Eq. (5.27). In addition, we have one
additional special case. For ln2A « ln

~

o ~, letting q be
the larger root of

e"=2A(q —1)

(i.e., the root satisfying 7) )2) yields

p =g/ln
~

cr
~

F =Fog /[p (g —1)ln
i
o

i ] .

(5.28)

(5.29)

(5.30)
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VI. STATIC-IMPURITY LIMIT F*= lim F+,
D~O

(6.7)

In Fig. 6, we illustrated the dependence of the discom-
mensuration velocity U on the applied force F,~„, plotting
the normalized velocity p=va/D for convenience. For fi-
nite diffusivity D, the functions v(F,~~) and p(F,~~) are
equivalent, but, as D~O, this is no longer the case. In
this static-impurity limit, all finite velocities v correspond
to p= va/D = oo, while all finite values of p correspond to
v =Dp/a =0. Since Fd„s depends on v and D only
through the combination p=va/D, then the entire contri-
bution Fd„s(p) is collapsed to the single point v =0.
Thus, in the static-impurity limit (D~O), the general
force-velocity relationship consists of the following two
branches:

U=O, 0(F,pp
&F*,

v =v0(F,~~ ), 0 & F,~~ & oo,
(6.1)

where F* is the maximum of the function Fd„(p) [i.e.,
F*=Fd„s(p')], and v0(F) is the impurity-free force-
velocity relationship discussed in the first paragraph of
Sec. V.

Physically, Eqs. (6.1) mean that, as the applied force is
increased from F,„z——0, the discommensurations
remained pinned (v =0) to the static impurities. Howev-
er, when the applied force finally reaches the threshold
value F*, the discommensurations suddenly break free
and, after a transient acceleration, move with the velocity

v =v0(F*) . (6.2)

1, IoI «1
1/ln

I
cr I, I

cr
I
»1,

which yields [from Eqs. (4.8) and (4.9)]

F' =Fd„s(p*)

Cao kT/4,

2cok7e '/(e
I
~

I
»

I
~

I »

(6.3)

(6.4)

The above results (6.1)—(6.4) are valid in general. More
specifically, for the sine-Gordon force-velocity relation-
ship (5.1), Eqs. (6.1) and (6.2) become

Furthermore, after the discommensurations break free,
they are governed by the impurity-free force-velocity rela-
tionship va(F). Finally, we mention that this static im-
purity limit (D~O) is valid whenever D/a is small com-
pared to all physically observable velocities v.

An analytic expression for F* [which is the maximum
value of Eq. (4.3)] cannot be found in general. However,
such expressions can be found in the weak- and strong-
interaction limits. As mentioned in Sec. IV, we have

U= lim Dp+/a .
D~P

(6.8)

VII. APPLICATIONS

F*= 1 eV/cm, (7.1)

U/U = 10

Thus, we see that the charge-density wave depins at a
threshold electric field on the order of E'=1 V/cm, and,
after a transient acceleration, the unpinned charge-density
wave is moving at about 1% of the sound velocity. This
charge-density wave is still in the linear regime of Eq.
(6.5), the force-velocity relationship being v =MF, ~~ with
the mobility M =6&(10 cm /eV sec.

Next, we consider ferroelectric domain walls near room
temperature. For an ionic conductor such as
Ba2NaNb50», the relevant physical parameters have the
approximate values (note the rather large diffusivity):
T=300 K, v =10 cm/sec, a=0.5 nm, Ep ———0.5 eV,
Coa =10, D=3&10 cm /sec, and
M = 1 cm /eV sec. In turn, these values yield:
Cp ——2 &( 10 cm ', Fo ——10 eV/cm, P =20, and
o.= —20. Again, note that p„»1 (as required). Since

I
o

I
»1, then the relevant parameter for hysteresis is

now A=2)& 10, and, since A »A, =e /2, we again have
pronounced hysteresis. However, since D /a =6 & 10
cm/sec, we are definitely not in the static-impurity limit.

From Eqs. (5.22)—(5.27), we have (using the results for
case I):

F+ ——2 & 10 eV/cm,

F =2&& 10 eV/cm,

p+ ——0.3,

(7.3)

(7.4)

(7.5)

As our first example, we consider a charge-density-
wave material at room temperature. For a material such
as TaS3 doped with Nb, the relevant physical parameters
have the approximate values: T=300 K, u„=6)&10
cm/sec, a=0.5 nm, Eo ———3 meV, Coa =10, Fp ——10
eV/cm, D0=10 cm /sec, and Qo ——2.5 eV. In addition,
these values yield: Co ——2X10 cm ', D =10 cm /sec,
p =3 )& 10, and o.= —0.1. In particular, note that
p »1, as assumed in Secs. V and VI. Since

I
o

I
«1,

then the relevant parameter for hysteresis is X=2)&10
and, since k»A, , =27, this system exhibits pronounced
hysteresis. Furthermore, since D/a =2X 10 cm/sec is
extremely small compared to all physically observable ve-
locities, we are clearly in the static-impurity limit. From
Eqs. (6.4) and (6.6), we have

U =0, 0&F,~~
(F*,

v =v „[1+(F0/F,~~) ] ', 0&F,~„&co,

v =v [1+(F0/F*) ]

(6.5)

p =5,
p+ ——20,

p =10

(7.6)

(7.7)

(7.8)

with F still given by Eq. (6.4). To connect these results
with those of Sec. V, note that

where the forces are per atom of the domain wall. These
values correspond to the following electric fields and ve-
locities: E+ ——2 &( 10 V/cm, E =2 X 10 V/cm,
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v+ /u =2&(10, v /v =0.2, v+/u =1, and
u /u =6&10 . Thus, we see that, for all physically
observable domain-wall velocities, there are two coexisting
force-velocity relationships. Furthermore, these two
branches are separated by an unobtainable threshold field
E+. However, this does not mean that the upper
(higher-velocity) branch cannot be reached. The results
presented here are steady-state results. If the applied field
is increased slowly, then the system will remain in steady-
state on the lower branch of the force-velocity relation-
ship. On the other hand, if the field is applied suddenly
(or if an unequilibrated domain wall is injected into the
system), then the system will not immediately be in steady
state. In this case, the system will approach steady state,
but the final state may lie on any available branch of the
force-velocity relationship, depending on the transient
behavior of the system. For fields between E and E+,
both branches may be populated by domain walls, with
the fraction in the upper branch increasing from 0 to 1 as
the applied field is increased from E to E+. ' In this
sit»ation, the average domain-wall velocity will increase
faster than linearly with the applied field between E and

Finally, we consider grain boundaries at various tem-

peratures. For a material such as Al doped with Fe, the
relevant physical parameters have the approximate values:

u =6&(10 cm/sec, a=05 nm, Ep ———0 2 eV,
Coa = 10, Do ——10 cm /sec, QD =2.5 eV, Mo = 10
cm /eV sec, and QM ——0.5 eV. At room temperature,
T= 300 K, these values yield: Cp ——2 & 10 cm
D=10 cm /sec, M=4&10 cm /eVsec,
F0=2X10' eV/cm, p„=3X10, and o= —8 (again,

p »1, as required). Since
~

o.
~

&&1, then the relevant

parameter for hysteresis is A =4 & 10, and, since27

A »A, =e /2, we again have pronounced hysteresis.
Furthermore, since D/a =2& 10 cm/sec is extremely
small compared to all physically observable velocities, we

are clearly in the static-impurity limit, and, from Eqs.
(6.4) and (6.6), we have

F*=7&& 10 eV/cm,

u =2 & 10 cm/sec,

(7.9)

(7.10)

F+ =4~ 10 eV/crn,

F =5 eV/cm,

(7.1 1)

(7.12)

where F* is again the force per atom of the grain boun-
dary. Thus, we see that, at room temperature, the grain
boundaries depin at an applied force of F*=7&10
eV/cm, after which they are still in the linear force-
velocity regime with the mobility M =4 X 10
cm /eV sec.

As the temperature is increased, these results change
substantially. At T=700 K, for example, we have:
Cp =2& 10 cm ', D = 10—i2 cm2/sec, M=3~ 10
cm /eV sec, Fp ——2&&10 eV/cm, p =3)&10' »1, and
o.=3. This yields A=10 »A, =e /2, so that we still
have pronounced hysteresis. However, since we now have
D/a=2&10 cm/sec, we are no longer in the static-
impurity limit. From Eqs. (5.22)—(5.27), we have (using
the results for case III):

p+ ——0.9,
p =4X 10

p+ ——7 &( 10

p =4)& 10

(7.13)

(7.14)

(7.15)

(7.16)

with the latter four values corresponding to the following
velocities: v+ ——2X 10 cm/sec, v =8 X 10 cm/sec,
u+ ——. 10 cm/sec, and v =8&10 cm/sec.

From these results, we see that, as the temperature is in-
creased, allowing the impurities to diffuse, the hysteresis
becomes much more evident (as opposed to the simple
on/off switch at room temperature). At T=700 K, there
are two coexisting branches over much of the experimen-
tally accessible range, and, above the threshold force
F+ ——4& 10 eV/cm, the grain boundaries depin from the
impurities and move with the impurity-free mobility
M=3&10 cm /eV sec. Thus, of the examples con-
sidered here, grain boundaries at high temperatures ap-
pear to be the most promising system in which to observe
all of the aspects of hysteresis.

VIII. CONCLUSIONS

In this paper, we have provided an analytical descrip-
tion of the interaction of moving discommensurations and
diffusing impurities. For both misfit and elastic-modulus

impurities, we have shown that the impurity-
discommensuration interaction potential has the form
given in Eq. (3.6). Then, for this typical interaction po-
tential, we have evaluated the steady-state impurity con-
centration about a moving discommensuration. For an at-
tractive interaction, this concentration is peaked at the
discomrnensuration, with a small deficit leading it. For a
repulsive interaction, there is a dip at the discommensura-
tion, with a large excess piled up in front of it. In either
case, the net excess concentration is positive for a moving
discommensuration.

Next, we have found the drag force exerted by these im-
purities on the moving discomrnensuration. As the
discommensuration velocity increases, this drag force in-
creases linearly in the velocity, reaches a peak, and then
falls off inversely with the velocity. For a weak
impurity-discommensuration interaction, the drag force is
a fairly simple function of velocity. However, for a
strong interaction, the dependence on velocity becomes
quite complex, with a large, sharp peak and a long tail.

Taking into account this drag force, we have then
found the dependence of the discommensuration velocity
on the applied force. For certain ranges of parameters,
this force-velocity relationship exhibits hysteresis, which
results from the pinning and depinning of the discommen-
surations to the impurities. At low fields, the discommen-
surations are pinned and move with a low mobility, but, at
high fields, they are depinned and move with the much
higher mobility of an impurity-free material. At inter-
mediate fields, both of these behaviors coexist. Further-
more, the fields bounding this region of hysteresis depend
very sensitively on the temperature, as well as the
impurity-discommensuration interaction strength (when it
exceeds the temperature). Also, when the impurity dif-
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fusivity is very low, so that the impurities are static and
cannot keep up with the moving discommensurations, this
hysteresis represents a switch (at a single threshold field)
between stationary, pinned discommensurations and un-
pinned discommensurations moving with the impurity-
free mobility.

Finally, we have applied these results to three physical
systems with very different behaviors. Charge-density
waves with static impurities are easily depinned at room
temperature, having a threshold field of only about 1

V/cm. On the other hand, ferroelectric domain walls
with very mobile impurities have a fairly wide range of
hysteresis, which encompasses most of the fields of exper-
imental interest. As a result, these domain walls may
populate both branches of the force-velocity relationship,
allowing the average discommensuration velocity to in-
crease faster than linearly with the applied field. Finally,
grain boundaries show both of these behaviors. At room
temperature, the impurities are static, and the grain boun-
daries act much like charge-density waves (but with a
much larger threshold force for depinning). However, at
higher temperatures, the impurities become mobile, lead-
ing to a fairly wide range of hysteresis, as for ferroelectric
domain walls.
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quently, one defines the modified, incomplete y function
(for a )0 and x )0)

y*(a,x) =y(a, x)/x'I (a) . (A4)

The factor x' allows (A3) to be extended to x &0, since
z' ' becomes (z/x )' ', and z/x is always positive.
Furthermore, the factor I (a) cancels the divergence in

y(a, x) for nonpositive integers a, so that y*(a,x) is well
defined there. Thus, y*(a,x) can be defined for all real a
and x (actually, for all complex a and x as well).

We must now find expressions for y'(a, x) which are
valid for all a and x. Inserting Eq. (A3) into Eq. (A4) and
changing variables leads to

1

y (a x)= f z' 'e "'dz .
I (a)

This expression is valid for all x, but only for a &0. To
extend Eq. (A5) to a &0, we again integrate by parts,
yielding

y*(a,x ) =e "/I"(a + 1)+xy*(a + l,x ) . (A6)

This recursion relation can be used to find y" (a,x) for all
a (0.

Having defined y (a,x) and motivated its use, we now
catalog some of its useful properties. We begin with the
series expansion
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of this manuscript.

y*(a,x) = ( —x)"
~ n!(a+n)I (a)

(A7)

APPENDIX

In deriving many of the results in the main body of this
paper, we have made extensive use of the modified, in-
complete y function y*(a,x).' Unfortunately, very few
properties of this function can be found in standard
mathematical handbooks. Consequently, we summarize
here the pertinent properties of this function. We begin
by describing the function y*(a,x) and indicating why it
is preferable to the more common incomplete y function
y(a, x), whose properties are much more frequently tabu-
lated.

For a )0, the standard (complete) y function is defined
by

(which is valid for all complex a and x). Note that, if a is
a nonpositive integer, 1 (a) is infinite, but (a+n)I (a) is
finite for the term n = —a. Thus, in this case, only a sin-
gle term in the above sum is nonzero, and we have

y*( —N, x)=x (N=0, 1,2, . . . ) . (AS)

Next, we give two useful recursion relations (for N a posi-
tive integer):

N —1 n

y*(a,x)=e "g +x y*(a+N, x),
q I (a+n+1)

(A9)
X Xy*(a,x) = —e " g +x y" (a N, x ) . —

, I (a n+1)—
I (a)= f z' 'e 'dz .

Furthermore, integrating by parts yields

oo

I (a) = — z'e 'dz= —I (a+1),
a a

(Al)

(A2)

Finally, we state the useful result

8"y'(a, x) „I (a +n)
Bx" I (a)

(A10)

(A 1 1)

and this recursion relation can be used to define I (a) for
a &0 (but not for nonpositive integers).

Similarly, for a)0 and x)0, the incomplete y func-
tion is defined by'

y(a, x ) = z' 'e 'dz, (A3)
0

and it too can be extended to a (0 by integrating by parts
(but, again, not to nonpositive integers). However, for
x &0, Eq. (A3) is not well defined, because of the factor
z' ' with z &0 (unless a is a positive integer). Conse-

(v) p )0), (A12)

f Vz' 'e "'dz =v'I (a)y*(a,vx ) (v, a )()), (A13)

Our main use of y (a,x) is in the evaluation of the in-
tegrals encountered in the main body of this paper.
Through changes of variables, these integrals can be writ-
ten in terms of the following four results:

Vz' 'e dz= I (a)[v y (a, vx) —p, 'y*(a,px)]
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(p„x & 0), (A14)

1 OO

y*(a,x) =
I (1+a) 1+x g a "G„(x) (A17)

oo xy*(a,x) =e
o 1(a+n+1) (A16)

On the other hand, for
I
a

I
«1, it is convenient to use

the series

z' 'e 'dz =x 'I (a) (a,x )0) . (A15)
0

The expressions involving these modified, incomplete y
functions become more transparent in various limiting
cases. In examining these limits, we make use of several
asymptotic forms of y*(a,x), which we now discuss. A
series representation of y'(a, x) which is useful for
Ia

I
)&1 is

1
G„(x)=—f e "'(lnz)"dz .

n! (A18)

1
G) (x) =—[Ei(—x ) —ln

I

x
I

—y] . (A19)

Here, Ei(z) is the exponential-integral function, ' and y is
Euler's constant.

A series representation useful for
I
x

I
« 1 is given by

Eq. (A7). On the other hand, for Ix I
»1, there is no

useful series representation. However, we can use the
asymptotic series

For the asymptotic result, it is sufficient to stop at the
term

—a —Xx —e
1 x ~ 0 or x &0 and a an integer

, x "I (a n+1)—
y*(a,x)= '

M
1—e "g, x & 0 and a not an integer

, x "1 (a n+1)—
(A20)

(where the upper limit M is simply a reminder that the series is only asymptotic). Note that, for a an integer, the above
series terminates, and, thus, it is not just an asymptotic series. Furthermore, if x &0 (x &0), then x is the largest
(smallest) term as

I
x

I
~ oo. The expressions (A20) lead to the asymptotic forms (for

I
x

I
&&1)

1 „a—1x '— e " 1+ +xl (a) x

+. ~-1 a —1

Ix II (a)

/x fe —,x &0 and a=1

x ', x&Oanda=O, —1, —2, . . . .

x&Oanda&1, 0, —1, . . .

(A21)

Equation (All) shows that By*(a,x)/Px is simply related to y*(a,x) itself. However, this is not the case for
By (a,x)/Ba, which we will denote by y&(a, x). In this paper, y&(a, x) is encountered only for integer values of a, in
which case, we have

x —1
( +1)x —"Ei( —x) —lnIx I+e —"g ", x"

n!
N=1, 2, . . .

y*, (N, x)= '

/IN/ —1

x~ ~ Ei( —x)—lnIx I+—e
x „o (

n!
—x)" N=O, —1, . . . ,

(A22)

where g(z) is the digamma function. ' For nonnegative integers n, we have

n
1g(n+1)= g —y .

m=i m
(A23)

1S

Finally, we give the asymptotic forms for y& ( N, x) where N=1,2, . . . . A—series representation useful for
I

x
I
«1



35 MOVING DISCOMMENSURATIONS INTERACTING WITH. . . 6121

y)( —N, x)=(—1) N! ——+ gN „,n!(n N—)

n&N

—x g(N+I) . (A24)

For
I
x

~
&& 1, we must again settle for an asymptotic series, and we find

( —I) (N+ n )!—x Inx — e x)0
X , ( —x)"'

( I )tv M
(e"!y +", (0.

=o

(A25)
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