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We introduce a model to describe scattering from disordered metallic interfacial regions in layered
structures, or superlattices. This model is also applicable to interface roughness or boundary scatter-
ing in single junctions. It consists of an array of slabs of scattering centers embedded in a host met-
al. The slabs have thickness ¢ and are separated by a distance d. Each simulates an interfacial re-
gion in which the physical arrangement of scattering centers is disordered with positional correla-
tions within a slab being represented by a structure factor S, but atomic positions being uncorrelated
between slabs. For a description of the structure factor of a slab with assumed quenched disorder,
the pair correlation function for homogeneous liquids is used as an input after extension both to fi-
nite geometry and into regions of high density typical of solids. The Boltzmann equation, with the
anisotropic structural information incorporated in the collision term, is solved by a variational prin-
ciple, and yields the in-plane and out-of-plane resistivity and thermopower components as functions
of d, t, and the density of scattering centers in a slab. The results show that it is possible to charac-
terize the microscopic structural features of the interfacial region in terms of the transport proper-

ties of the system.

I. INTRODUCTION

Studies on surfaces and interfaces are growing in im-
portance primarily because of the corresponding develop-
ment of tools and techniques to fabricate and probe these
structures. It is now possible to obtain detailed informa-
tion on a wide range of interface properties including the
microscopic structure, chemical composition, atomic
bonding, presence of defects and misfit dislocations, inter-
face chemical reactions, and interdiffusion. The metal-
semiconductor interface' and its role in Schottky-barrier
formation, for example, has been actively studied because
of its importance in device applications. More recently,
with further advances in thin-film deposition techniques it
has become possible to synthesize modulated structures
with a high degree of structural and chemical order.?
Layered structures of total film thickness of ~1 um con-
taining individual layers of thickness in the range
5—5000 A have been prepared. These structures, which
include metallic®*~° and semiconductor superlattices,’ usu-
ally consist of alternating layers of two primary constitu-
ents. The modulation period of superlattices can even be
tailored to be smaller than the effective electron mean free
path. Under such conditions, the transport characteristics
are dominated by scattering at the array of interfaces
formed at the junctions of the two constituents. An im-
portant question therefore, for both single metal-
semiconductor junctions and modulated structures, is the
relationship of the microscopic interfacial structure to the
macroscopic transport properties.

A major source of interfacial disorder is interdiffusion
between the two constituents on either side of the junc-
tion; it is this issue that we address here rather than the
role of Schottky or other related barriers. For example, in
metal-semiconductor junctions, intermixed regions of or-
der 10* A, formed by diffusion along grain boundary
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paths, have been reported.® X-ray diffraction studies of
metallic superlattices, which show long-range structural
coherence perpendicular to  the layers® for layer
thicknesses greater than ~ 10 A, also establish that inter-
diffusion® can occur over a distance of the order of
~15 A. Transport measurements of the in-plane resis-
tivity versus modulation period in metallic superlattices
have also recently been reported.”!® These experiments
have largely been interpreted according to the finite-size-
effect theory of Fuchs!' and Sondheimer'? in which the
effect of diffuse scattering at a boundary is included via a
phenomenological specularity parameter p. The calcula-
tion we shall present below is a first step toward an under-
standing of the correlation between the microscopic
structural features of the interfacial region or of the boun-
dary with the transport properties of the system. We re-
peat that we shall be dealing exclusively with metallic en-
vironments.

Toward this end, we introduce a model to study scatter-
ing from disordered interfacial regions of finite thickness
in such a heterostructure and obtain the in-plane and out-
of-plane components of the resistivity and thermopower,
which are in principle a direct probe of the interfacial dis-
order, as we shall see. The model consists of periodically
repeated replicas of slabs embedded in a host metal. The
physical arrangement of atoms within a slab is disordered
but highly correlated at short range. The distance be-
tween slabs, d, is taken to be less than the mean free path
of electrons in the host metal; transport characteristics of
the system are therefore determined primarily by the
properties of the disorder of a given slab. In our analysis
we include positional correlations between the atoms
within a slab (intraslab) but neglect any correlation be-
tween atoms in different slabs (interslab), an approxima-
tion that is reasonable since, as noted, d is typically much
greater than the thickness of an individual slab. Upon
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averaging over the disorder, this ansatz leads to average
periodic order in one dimension along the superlattice
axis. Physical disorder within a slab is approximated by a
quenched distribution of scattering centers, described by
single-particle and two-particle densities, that are func-
tions of the position of ions in a slab. The justification
for this approximation is that the heterostructures men-
tioned above are often grown by molecular-beam epitaxy
or sputtering techniques which involve the emission of
atoms (constituents of the heterostructure) from a source
and their subsequent rapid condensation on a substrate.
The substrate acts as an effective heat bath dissipating the
excess energy in the atoms and in turn produces a struc-
ture in the interface region with various degrees of order.
For the disordered cases we describe the structure by the
equivalent of a frozen liquid.

In the literature,'>'* calculations of the resistivity of
metals in the presence of impurities have usually assumed
a uniform distribution of scatterers. While this is a good
approximation for low impurity density, it fails at higher
densities when the average spacing between the impurities
becomes of the order of the range of the interimpurity po-
tential. In interdiffused regions, the concentration of the
diffusing species spans the entire range from low to high
concentrations. In view of this, we retain information at
least up to the two-particle density, which is a measure of
pair correlations between the atoms. In the theory of
homogeneous liquids"® the analogous problem of determin-
ing the pair correlation function, given an interatomic po-
tential, has been studied in great detail, and in the approx-
imation used here, is extended into regions of higher den-
sity, characteristic of solids, to describe the structure of a
disordered interface. We use this liquid-state correlation
function as input to obtain approximate expressions for
the two-particle correlation function for scattering centers
in a finite slab geometry.

The structural information described above is used in
the collision term of the linearized Boltzmann equation in
a weak electric field. The spatial arrangement of atoms
within a slab and the periodic arrangement of slabs in one
dimension contribute to the total scattering potential in
this model. In spite of the fact that the potential of a sin-
gle ion is isotropic, the total scattering potential in which
the structural features of an interface are included, is an-
isotropic. Such an anisotropic collision kernel does not
lead to a solution of the Boltzmann equation based on the
usual relaxation-time-approximation approach. We show
in Sec. II, that in the presence of anisotropy, the modes of
the distribution function are coupled and a relaxation time
independent of the distribution function cannot therefore
be obtained. For this reason we resort to a variational
solution of the Boltzmann equation which provides a
well-known bound on the transport coefficients. In Sec.
IIT we formulate the replicated slab model in detail to
describe scattering from disordered interfaces and discuss
approximations to the pair correlation function in a finite
geometry. Our results for the resistivity and thermopower
components are presented in Sec. IV. The specific hetero-
structure studied here consists of aluminum which pro-
vides the host environment and tetravalent ions (e.g., Si)
embedded in a metallic Al matrix which form the disor-
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dered interface. As will be seen, the behavior of the in-
plane resistivity as a function of the modulation period of
the superlattice agrees with measurements on metallic su-
perlattices. In addition, we give predictions for the
behavior of both the in-plane and the out-of-plane com-
ponents of the resistivity and the thermopower tensor as
functions of the degree of disorder and thickness of the
interfacial region, measurements of which have so far not
been reported. The relevance of these results to experi-
ments along with other applications are discussed in Sec.
V.

II. TRANSPORT COEFFICIENTS VIA THE
BOLTZMANN EQUATION

A. Limitations of the relaxation-time approximation

The non-equilibrium electronic distribution function
g(r,k,?) satisfies the Boltzmann equation

og
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where F contains the applied external forces and the
right-hand side of (2.1) is the rate of change of the non-
equilibrium distribution function attributable to collisions.
For elastic scattering, this collision term is given by'®

dg(k)

Y (2.2)

=— > Wilgk)—g(k)],
<

coll

where Wy, is the transition rate from state k to k’. In
Sec. III, we evaluate the transition rate for a replicated
slab model that describes scattering from disordered inter-
faces. In this model, anisotropy arises from the physical
arrangement of scattering centers in the interface. With
this in mind, secondary sources of anisotropy, such as
band structure, are neglected in the following discussion.
Our conclusions regarding the limitations of the
relaxation-time approximation, however, remain un-
changed even with the inclusion of nonspherical Fermi
surfaces.

For the familiar case of isotropic scattering, Wy, de-
pends only on the angle between the vectors k and k’, and
we can expand both the transition rate and the distribu-
tion function in spherical harmonic basis functions with
expansion coefficients w; and f},,, respectively. Thus,

Wi =8lex— &) 3, (g )Py (k-k') (2.3)
1

and

g(k)——— Eflm(sk)Ylm(Q)’ (2.4)
Lm

where P;(cos) are the Legendre polynomials and Y, (),
the spherical harmonics. Using standard properties of
spherical harmonics, (2.2) reduces to'’

aflm fIm
[ ar == (2.5)

coll

where 7, is given by
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(2.6)
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In (26), Q is the volume of the system,
N(g)=N(ep)ep/ep)!’? and N(ep) is the free-electron
density of levels per spin at the Fermi energy. Note that
1/7y vanishes, which is equivalent to the statement that
the number of particles is conserved in collisions.

From (2.5) we immediately conclude that when the per-
turbing field is removed, each mode (labeled by {l,m}),
relaxes independently to equilibrium. Furthermore, the
characteristic relaxation time of a mode is independent of
the distribution function, as seen from (2.6). Accordingly,
from (2.1) we find that each mode satisfies a separate
Boltzmann equation with a collision term such that the
relaxation-time approximation is exact (for that mode).
In special cases when either (i) there is a single mode in
the system, or (ii) all the modes relax with the same time
constant,'® the collision term for the total distribution
function g(k) can be described exactly by the relaxation-
time approximation.

For an anisotropic collision kernel (as will be shown in
Sec. I1I to arise in the problem of scattering from a disor-
dered interface), the transition rate requires an expansion
in a double spherical harmonic series. From an analysis
similar to the one above, we find that the relaxation rate
of a given mode is coupled to all other modes in the sys-
tem [see (A4) and (A6)], and as a consequence, a solution
of the Boltzmann equation cannot be readily obtained
within the relaxation-time approximation. Alternatively,
if we insist that in an anisotropic system the total distri-
bution function relax exponentially to equilibrium with a
time constant 7(k) that has angular dependence, we find
that a solution of (2.2) leads to a constraint on the sum of
the expansion coefficients of 7. It is, however, not possi-
ble to determine the individual coefficients [see (A10)]. In
general, it is not possible to obtain a scattering time 7(k)
in terms of the transition probability Wi,  given by a mi-
croscopic theory, in such a way that the scattering time is
also independent of the distribution function g [see (A6)].

Anisotropic transition probabilities arising from band-
structure effects in metals (e.g., Al, Cu, and substitutional
alloys) have been studied by several authors.!” =22 In these
systems the electron-ion pseudopotential is spherically
symmetric and it is possible to describe the scattering in
terms of a finite number of phase shifts. The collision
kernel in the Boltzmann equation is then reducible to the
degenerate form for which an exact solution can be ob-
tained as shown by Sondheimer.>> However, in the model
that we discuss in Sec. III, the total scattering potential is
anisotropic and an expansion in terms of phase shifts is
not valid.

B. Variational principle

As shown above, the standard procedures to solve the
Boltzmann equation, in a system with an anisotropic total
scattering potential, are not immediately applicable and a
variational approach to the problem is therefore indicated.
It can be shown that there exists a variational function

ptﬁrﬁial for the linearized Boltzmann equation, which is a
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functional of an arbitrary trial function ®.(k), and is in
fact an upper bound on the true value of the electrical
resistivity,?*

E(Dﬁ(k)Wkk’q)ﬁ(kl)( — ago/aek)
trial __ kK’

AA PON— 5

mee S va(K)D-(k)(—3g°/dey) |
k

, (2.7

where 1 is a unit vector in the direction of a constant elec-
tric field E. To determine the least upper bound on p, ¢
is expanded in a set of N spherical harmonics, and the
variational function is minimized with respect to the ex-
pansion coefficients. The expression so obtained [see
(B2)], requires the inversion of an N X N matrix which in
turn contains the elements of the transition probability
W(lm;lI'm’) defined in (B5). Given the geometry of the
model, it is easy to show from (B2) that for an isotropic
dispersion relation obeyed by the electrons, the two in-
dependent components of the resistivity tensor are related
to only two basic matrix elements of W. The components
P2 and py, are found to be inversely proportional to W !
(1,0;1,0) and W ! (1,1;1,— 1), respectively, with the same
prefactor [see (4.5)]. In the isotropic limit, the two resis-
tivity components become equal and the resistivity
reduces to the expression familiar in the theory of liquid
metals.?> [Appendix B and (4.6).]

To obtain the thermopower, we consider a situation in
which a temperature gradient is applied in the presence of
an electric field. Within the assumption of linear
response, the current obtained is

J=Lpp E+4Lgp(—VT), (2.8)

where, in general, ffF and fET are tensors. The thermo-
power is defined as the electrostatic potential developed
across the system in a unit thermal gradient, when no
electric current is allowed to flow, and is given by

Q=(Lge) "Lyr . 2.9)

For a system with tetragonal symmetry, as considered in
this paper (see Fig. 1), the tensors in (2.8) are diagonal
with their xx and yy components equal but different from
the zz component and this symmetry is also reflected in
the thermopower tensor. A generalization of the varia-
tional approach used to evaluate the resistivity above, is
developed to obtain the thermopower. However, the ex-
pression for the thermopower is rather complicated, as
can be seen even in the simple case considered by Ziman?®
with only two terms retained in the expansion of the dis-
tribution function. However, in the event that the scatter-
ing by quenched scattering centers is elastic [see (2.2)], the
Wiedemann-Franz law holds?’ and the variational solu-
tion of the thermopower simplifies to

k3T

C 3e e

dlno,,(e)
de

Q= (2.10)

EZEF

It is important that the term in large parentheses, denoted
by &,,., be correctly interpreted. It is the variation of a
function o(e), evaluated on an arbitrary energy shell e,
with respect to € at a constant electron density. The func-
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tion o(e) is the physically measurable conductivity only at
er. When applied to the replicated slab model, the ther-
mopower is found to be related to the matrix elements of
the transition probability W and to their derivative with
respect to €. Again on symmetry grounds, &,, and &,, are
related to the (1,0;1,0) and (1,1;1,—1) elements of W,
respectively.  Finally, the isotropic limit is easily
recovered (Appendix C) and agrees with the standard ex-
pression for the thermopower in liquid metals.?8

III. FORMALISM

A. Replicated slab model

The replicated slab model introduced qualitatively in
Sec. 1, as a description of disordered interfacial regions in
a modulated structure, is now developed quantitatively.
The model consists of an array of M slabs each containing
N ions, embedded in a host metal, the host determining
the average electron density. These slabs are arranged
periodically with period d in one dimension as depicted in
Fig. 1.

The Hamiltonian for our system is given within the
independent-particle approximation by

H=H,, +V, (3.1

where Hy, describes the electrons in the host metal and
satisfies the eigenvalue equation

[ 2 P [
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FIG. 1. The replicated slab model consists of an array of M
slabs (shown hatched), each of thickness ¢ and area 4 embedded
in a host metal. The modulation period of this structure is d.
The slabs contain a distribution of N atoms and r,,; denotes the
position of the ith atom in the mth slab. The superlattice axis is
chosen along the z direction. The specific system considered is a
metallic heterostructure with Al as the host metal and tetra-
valent scattering centers, e.g., Si embedded in a metallic environ-
ment forming the disordered slabs.

I{host“(>‘:€k|k> . (3.2)

We have assumed for simplicity that the host metal can
be described as a free-electron single-band metal with a
spherical Fermi surface. The total electron-ion potential
V in (3.1) furnished by the ions in the array of slabs can
be explicitly written as
M N
V=3 3 Ulr—(md2+r,)], (3.3)

m=1i=1

where r,,; is the position of the ith ion in the mth slab
and U(r) is a spherically symmetric pseudopotential
describing the potential of a single ion with interactions
between electrons, included in it self-consistently.

We first show that the average over the disorder of the
total electron-ion potential is periodic along the superlat-
tice axis, chosen to be the z direction. The potential in
(3.3) is written in terms of its Fourier components and an
average over the positions of the ions in the slabs, denoted
by angular brackets, is performed. We obtain

M 3 . A
(vioy=3 [LE jxe-midymn(—k), (3.4
m=1 (27)

where the Fourier transform of the single particle density
operator is defined as

ink)= 3 T (3.5)

iEmthslab

In obtaining (3.4) we have also assumed that the slabs are
statistically identical, so that the average of (3.5), denoted
by n(k), is independent of the slab index m. From (3.4) it
is straightforward to obtain

M
(V)= 3, P(r,z—md), (3.6)

m=1

which is periodic in the z direction with period d. In
(3.6), P(r) is the Fourier transform of P(k)=U(k)n(—k)
and r, is a vector in the x-y plane. The Hamiltonian in
(3.1) can be rewritten as

H=H,+AV , 3.7

where Hy=H+ (V) is the sum of the Hamiltonian of
the host metal and the average of the superlattice poten-
tial and AV =V —( V), is the deviation of the superlattice
potential from its average value. Furthermore, we shall
assume that AV is a weak perturbation?® on Hy; this is the
essential approximation which allows the fundamental
transition rate to be evaluated within Born approximation.
For elastic scattering of an electron from level k to level
k’, this rate is given by

Wkk.z%” | AV | 28(ex—ex) - (3.8)

The eigenstates of H in (3.7) are comprised of plane
waves in the x-y plane (for a free-electron metal) and
Bloch waves in the z direction. This is a consequence of
the one-dimensional periodic potential provided by the su-
perlattice on average, However, for typical modulation
periods d ~20—100 A, any deviation in the dispersion of
the host metal arising from the periodic superlattice po-
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tential can be neglected.’® The matrix elements in (3.8)
are then functions only of k—k’=q and we have

1 1 ) ,
Vi = — _— 3., ilk—k')r 3.
Kk Q V(q) Q fd re Vir), (3.9)

where  is the volume of the system and V(q) is the
Fourier transform of the superlattice potential in (3.3)
given by

—ig,md

ViqQ)=U(q) Y fi,(—qle , (3.10)

where 7,,(q) is defined in (3.5) and U(q) is the Fourier
transform of the single-ion potential.

To obtain the disorder-averaged transition rate { Wy ),
we need to determine { | ¥(q)|?). From (3.10) we find

(V@ |?)=|U(q)|* |MNS(qQ)+M* (@) {A(—q)) 8 ¢ | »
G

where G is a reciprocal superlattice vector (and equals
27l /d, where I is an integer between 1 and M) in the z
direction, arising from the average periodicity of the posi-
tions of the slabs. In (3.12), S(q) is the static structure
factor of a single slab as defined by

S(q)=—[(Al(qhA(—q)) —{(Al(g){A(—q))], (3.13)

1
N
with the angular brackets now implying an average over
all positions of the N atoms within a single slab. The
second term in (3.12) can be identified as | (¥ (q)) | On
substituting (3.12) in (3.8) and using

1
(iAka'f2>=62‘[<lV(q)fz)—HV(q))lz], (3.14)
the average transition rate reduces to

2m MN
<Wkk,>=77;— Y | U(Q) |35 (q)8(ex—e) . (3.15)

Since we have neglected any correlation between atoms
in different slabs, the total scattering is M times the
scattering from a single slab. Such a decoupling suggests
that it is also possible to treat within this model the
scattering from a single interface or grain boundary. The
problem of a single junction simply consists of a host met-
al containing within it a slab of atoms whose positions are
disordered (the interface). To treat the scattering from the
slab atoms, we need to perturb around the eigenstates of
the electrons in the host metal which are best described by
box eigenfunctions. Such an ansatz for the eigenstates is,
however, not useful if the interest is in studying transport
properties. To avoid this problem we use a repeated array
of replicas of a single slab, for which we are now justified
in using plane waves as the unperturbed eigenstates. It is
clear that the problem of scattering from a single slab is
then replaced by the problem of scattering from an array

5 2 M M —ig,(m —m’')d
(V@ H=|U@|* 3 3 e =
m=1m'=1
XA (—q)im(q)) .
(3.11)

The average of the two-particle operator in (3.11) is
evaluated by making two plausible assumptions: (i) that
the slabs are statistically independent (i.e., there are no
correlations between the positions of scattering centers in
different slabs); the average in (3.11) then reduces to an
average of the two-particle operator within a single slab if
the slab indices m and m’ are identical; and if not, to the
product of the average of single-particle operators, and (ii)
that the slabs are statistically identical [which implies that
the average over the disorder performed in step (i) is in-
dependent of the slab index]. The average in (3.11) then
reduces to

(3.12)

[

of slabs which are identical only on average, with the
spacing between slabs so chosen, that the scattering from
different slabs is uncorrelated. Finally, in general, the
structure factor in a finite geometry is a function of two
arguments S(q,q’), as will be seen in Sec. III B; however,
since in the evaluation of the transition rate, matrix ele-
ments are computed between plane-wave states, we need
to retain only the diagonal term in S. In the following
section, we discuss in detail the structure factor in a finite
slab geometry.

B. Structure factor in a finite geometry

For any operator 19) [e.g., the two-particle operator in
(3.13)], the angular brackets are explicitly defined by an
average over all positions of the N atoms within a slab
weighted by a quenched probability density. Within Born
approximation, as seen from (3.13), only information up
to the two-particle density operator needs to be retained.
As discussed in the Introduction, a description of pair
correlations between scattering centers that are quenched
in a slab is developed by using the known pair distribution
function S(g,n) of atoms in a homogeneous liquid, in-
teracting via hard-sphere potentials.>! For a homogeneous
liquid, S depends only on the magnitude of q and the
packing fraction 7 is the fraction of the total volume oc-
cupied by the atoms and equals n:%ﬂ'(a/2)3n0, where
ng is the number density and o the diameter of the atoms.
In an effort to extend the structure factor of a liquid
(known in the thermodynamic limit) to a finite geometry,
we obtain approximations to the correlation function in
two limiting cases. For a thick slab in which the effective
mean free path is less than its thickness 7z, we calculate
corrections of order 1/¢% to the bulk value. In the oppo-
site limit we make use of an empirical observation, name-
ly, that the two-dimensional structure factor for hard-disk
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interatomic potentials can be obtained to a good approxi-
mation by appropriately scaling the hard-sphere structure
factor. This scaled structure factor is used to describe an
atomically abrupt interface. For interfaces a few atomic
layers thick, S is found by augmenting the two-
dimensional structure factor with Gaussian fluctuations
normal to the slab having their origin in physical position-
al disorder. Note that the correlation function in a homo-
geneous liquid can be analytically extended to densities
considerably higher than those of fluids and are thus appl-
icable to a description of the disorder present in an inter-
face at densities characteristic of solids.
terface at densities characteristic of solids.

To obtain the structure factor for a slab, we start with
the two-particle density operator defined by

Ayr, )= ¥ 8(r—r;)8(r' —1;) .

i ji

(3.16)

Note that self-correlations have been explicitly excluded
in (3.16). We now average (3.16) over the disorder, and
then Fourier transform with respect to the variables r and
r’. This leads to

fd3r fd3r’eiq"eiq"'n2(r,r’)

:(ﬁ(q)ﬁ(q’))—N8q1+q1,0f(q,+qz')/t ,  (3.17)

1 , fq.)f(q;)
N<n(qirqz)n( —9q) ,qz)> —N_—;zhza‘hvo:

flq,+q;
t

where h=g —1 is the total correlation function. The
left-hand side of (3.21) is taken as the definition of the
structure factor in a slab geometry of finite extent in the z
direction.

From (3.21) it is easy to see that in a system that is
homogeneous in all three dimensions, for which f(z)
equals unity and A(r,r')=h(|r—r'|), the structure factor
reduces to the usual definition,'” i.e., § =5°P(q), where

@) =1+nqy [ d*reh(r) . (3.22)

The quantity in (3.22) is known analytically from the
theory of liquids for hard-sphere pair potentials evaluated
within the Percus-Yevick approximation.’”3}  This
knowledge can be used to obtain an approximate structure
factor of a thick slab (where we may continue to assume
that the pair distribution function g is translationally in-
variant and homogeneous) but we incorporate the effects
of the slab boundaries in the one-particle density. The
density profile is assumed to be constant within a slab;
since any variation at the boundaries is negligible for a
thick slab, we take f to be

0, |z]|>¢t/2

(2)=60(z4+1t/2)—60(z —t/2)=
flz z+ z—1/2) 1, |z|<t/2.

(3.23)
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where n, is the average of the two-particle density opera-
tor in (3.16) and 7 (q) is defined in (3.5) (without the sub-
script m). The density in a finite slab of area A, thick-
ness t, and containing N ions, is a product of the average
density no[ =N /(At)] and a density profile function f(z),
which describes deviations in the average density at the
boundaries, i.e.,

n(r)=nyf(z),

and f(q,) in (3.17) is the Fourier transform of the density
profile function. We will consider specific forms of f
later in this section. From translational invariance and
homogeneity of the two-particle density in the x-y plane
(i.e., for a slab geometry) we have

(3.18)

ny(r,r')=n,(|r,—r1\ |,2,2") . (3.19)

This shows that only the Fourier modes that satisfy
q) = —q, in (3.17) are correlated. We next define the pair
distribution function g in terms of the two- and one-
particle densities, i.e.,
n,(R,z,z")=n(R,z)n(R,z')g(R,z,z') , (3.20)
where R= [, —r] |. Note that in an uncorrelated system

g equals unity. By substituting (3.19) and (3.20) in (3.17)
and carrying out a few simple manipulations, we obtain

) no , ig,z igz' , 2 —iq|-R ,
+ ; fdzfdze e f(z)f(z)fd Re h(R,z,Z’) ,

(3.21)

With these approximations we obtain the structure factor
of a thick slab S as

S.(q1,49:,9;)
2 o  sin[(g,—p)t/2] sin[(q,+p)t/2]
= — f dp B
wt —® q:—p q:+p

xS*P[(g? +p2)177] . (3.24)

As the thick-slab limit is approached, the terms of the
form (sinnx)/mx in (3.24) tend to & functions. These can
be approximated by a sequence of Gaussians and we ob-
tain

t —llg,+q1/2)2 ;oo _p22
S. =e é fo dpe " alp)+al—p)],
(3.25)

where a(p)=S°P{[q} +(p +B)*1'/?} with B=(q,—q;)/2.
The integral in (3.25) can be easily evaluated in terms of
gamma functions I'(z), by rescaling p by 1/¢ and then ex-
panding about 1/t =0, which gives
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S N— Le—[<qz+q,’)t/2]2/2 thin slab of thickness t ~o.

>141,9z-9z V2 In a thin slab it is reasonable to assume that the dom-
o o2miQ) 2m inant source of pair correlations is the in-plane contribu-
X > 5w am Lim+1/2) tion. This follows from the small extent of excursions in
m=o (2m} 1 the z direction, and it allows us to write h(R,z,z') ~h(R)
1 as a possible approximation. The effect of a finite boun-
=8q 4 S*P(g)+ —zam(o) + - dary is again included in the prescription of the one-body

o 2t density profile function which is taken as a Gaussian

(3.26) f(z):e—z?'/Zy2 ,

Equation (3.26) is taken as the structure factor in the
thick-slab limit. The dependence on the packing fraction
has been suppressed in this form. We next turn to the op-
posite thin-slab limit.

As mentioned previously, the structure factor of a
three-dimensional (3D) homogeneous liquid in the ther-
modynamic limit, interacting via hard-sphere pair poten-
tials is known analytically within the Percus-Yevick (PY)
approximation.’?* No such equivalent is known so far in
two dimensions. We have however observed, as a purely
empirical matter, that by “scaling” this three-dimensional
structure factor, we can obtain an accurate approximation
to the structure factor for hard disks in two dimensions
(2D). Scaling of the 3D function is performed according
to the prescription

Sop(x,y)=S3p[((x/p),(y /r))],

where x=q,0 and the areal packing fraction
y=(N/A)m(a/2)% in terms of the hard-core diameter o.
The quality of this mapping has been checked against nu-
merical solutions of the hard-disk structure factor within
the PY approximation® and agrees to within 10% for the
range of x shown in Fig. 2 for y=0.38 and 0.75. The pa-
rameters p, g, r, and s, are constants, independent of x
and y, and are obtained by a least-squares fit of the scaled
two-dimensional structure factor, the latter being deter-
mined numerically. Equation (3.27) is of sufficient accu-
racy for a description of the structure of an atomically

(3.27)

7.0 T T T

—— mapping 3D—= 2D
8

L . y=0.3 i
. y=0.75
S(a, 3.5
0.0
0.0 5.0 10.0 15.0 20.0

q,0

FIG. 2. Structure factor S for hard-disk pair potentials in
two dimensions as obtained by a semi-empirical scaling of the
corresponding three-dimensional hard-sphere structure factor
known analytically in the Percus-Yevick (PY) approximation. A
comparison of the scaled structure factor (solid lines) with the
numerical solution of the PY equation for hard disks is shown
for y =0.38 (triangles) and 0.75 (circles).

(3.28)

where y is the root mean-square deviation of the centers
of the particles from a plane. Using (3.28) in (3.21), we
obtain an approximation to the structure factor of a thin
slab (S _) given by

vV 2y o' +q,)y%/4
t

2
Nﬂ——z%[sm(qlﬂnﬁ)—l]
2D

S (q1,9;,9:m)=

»qzzyz/ze e

xe (3.29)

In (3.29) the thickness ¢, which is otherwise not well deter-
mined when the density profile is diffuse, is defined to be
V27y, and N/N,p=(t+0)/0. Note that S°P is the
two-dimensional analog of (3.22) and is obtained by using
(3.27). If the slab structure factor is required at a packing
fraction n=+70 (N/V), the effective corresponding
two-dimensional packing fraction 7,p= +70X(N/A) re-
quired to describe the correlations in a plane, or more ap-
propriately in a slab of thickness o, is given by 9,p= %77.

Equations (3.26) and (3.29) constitute the basic structur-
al approximations describing a disordered interfacial re-
gion in two opposite limits. In the evaluation of the tran-
sition matrix elements, only the diagonal part, i.e., g, =gq,
of both §_ and S, are required.

IV. RESULTS

We examine an interdiffusion model for a heterostruc-
ture with aluminum as the host metal containing an array
of slabs of disordered tetravalent scatterers e.g., Si and as-
sumed embedded in the metallic environment. As noted
earlier this model does not imply a physical dissolution of
the scatterers in the metallic host, which is known in the
case of, say Al-Si to be small (~2%) in the bulk phase.
However, on an atomic scale this model pertains to rough-
ness scattering in interfacial regions over 2—3 atomic
layers. It also describes scattering from grain boundaries
formed between regions of dissimilar structural configura-
tions. In our model aluminum is treated as a free-electron
metal with a Fermi wave vector kraq=0.93 and the tetra-
valent (Z =4) scattering centers are described in the me-
tallic host by an empty-core model for the electron-ion
pseudopotential defined by

Ur 0, r<R,
r)=
—Ze?/r, r>R. . .1)

The Fourier transform of the ionic potential when
screened by the Lindhard dielectric function €; (gq) is
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_ 4nZe?
g’eL(q)

where U(g) has been written in terms of a dimensionless
potential  v(q)=cos(gR,)/[mkpay(q/2kp)*+ f(q/2kg)]
with a core radius® for silicon R.=0.74a,. In Eq. (4.2)
ng is the electronic density. The dielectric function is
given by

€. (@) =1+ (mkrao) ' (2kp/q)*f(q /2kg) , 4.3)

where the Lindhard function f is defined as

U(g)= cos(gR. )= —2epv(gN(Z /ny),  (4.2)

1+x
1—x

1—x?
4x

f(x)=%+ 4.4)

The thermopower, as shown in (C10) and also in (4.7), re-
quires, in addition, the derivative of the pseudopotential
with respect to the energy of the electron. As is well
known, the ground-state Lindhard dielectric function €,
has a weak logarithmic singularity at g=2kg. This
singularity is known to give rise to Friedel oscillations in
the ion-ion potential at large distances and is also respon-
sible for Kohn anomalies seen in phonon spectra. (How-
ever, at finite temperatures, the singularity in €; is
smoothed out.) It has been shown by Pettifor and Ward?®
that the function f in (4.4) can be replaced by a rational
function with the correct high- and low-g behavior, which
thereby avoids the problem arising from the singularity.
We use this form for f in the evaluation of the thermo-
power.

The structural anisotropy present in the heterostructure
is introduced via positional correlations between silicon
scattering centers within a slab. For a slab of thickness ¢
and concentration n, of scattering centers the correlation
function is determined as described in Sec. III. The struc-
ture factor of a thin slab is contained in (3.27) and (3.29)
and that of a thick slab in (3.26). It is assumed that the
interimpurity potential can be described by a hard core of
diameter 0=5.0a, (Ref. 32) in terms of which a dimen-
sionless parameter = +mo’n, is then defined to charac-
terize the concentration of scatterers.

The matrix elements of the averaged transition proba-
bility {( W) in (3.15), essentially proportional to the square
of the electron-ion pseudopotential and the structure fac-
tor, are obtained by a three-dimensional numerical in-
tegration [see (B7) and (B11)]. From this the components
of the resistivity tensor can be directly obtained and are
given by

1

3rZ? t
d | 4717'(1,0;1,0)

Pa= |Pu )4(’10‘1(3))

krag

Similarly, p,, is found to be inversely proportional to
I7%1,1;1,—1) with the same prefactor as in (4.5). As
seen from (B6), I is proportional to the matrix elements of
transition probability W. In (4.5), p,, is the atomic unit of
resistivity (a¢#i/e?=21.7 uQcm) and d is the modulation
period of the superlattice structure. In the isotropic limit,
the transition rate depends only on the angle y between
the vectors k and k’ and (4.5) reduces to [see (B14)]

S—2 1
p= pat(noaé)ﬁ—z—); f_ldcos-yvz(q)S(q)

(krag

X (1—cosy), (4.6)

where v(q) is introduced in (4.2) and g =2kgsin(y/2) in
(4.6). The isotropic limit obtained in (4.6) agrees with the
expression for the Ziman resistivity in liquid metals.?’
The thermopower for the superlattice geometry is ob-
tained by a generalization of the isotropic case outlined in
Appendix C. Using the definition in (2.10), we obtain

1
@l Ny e, “n
i

gﬂl‘: 1—-2m EMij

E=¢p

where (i;j)=(1,0;1,0) for the thermopower component
&,, and (i;/)=(1,1;1,—1) for £,, and

—1£1~1

4.8
de (4.8)

M,“I I

ij
The thermopower &,,,, as seen in Eq. (2.10), is measured in
units of —?k3zT /(3 |e | e) which equals

(—2.44%1072) (uV/K)T(K)/ep(eV)] .

In Fig. 3 are shown the out-of-plane component p,, and
the in-plane component p,, for an atomically thin slab, as
a function of 7 up to a maximum of 0.6, which is close to
the dense random packing limit*” at 0.637. At low pack-
ing fractions, the resistivity increases linearly with 7.
This behavior is characteristic of scattering from a ran-
dom distribution of uncorrelated scattering centers. At

15.0 - 5.0
E Pzz (__L»'/ﬂ 4.0
© - PX.>_<~" ,/'/ Va b
?’; 10.0 | /,/ -/-‘
i Va 1302
— , 8
QU e /-' — o)
> 5/ Va g
E 7 e 120 <
@ 5.0r 7=
o / =
) s
2 A - 1.0
0.0 . L 0.0
0.0 0.2 0.4 0.6

Packing Fraction 7

FIG. 3. Resistivity components for metallic heterostructure
with slabs simulating disordered interfacial regions. Shown are
the in-plane p,, and out-of-plane resistivity p,, and the anisotro-
py parameter p,./pz Vs 7, the packing fraction of impurity
ions. The slab thickness is # =5a, and the modulation period is
d =100ay. For a uniform distribution of ions in the slab the
resistivity components are equal and their behavior is indicated
by the dotted line. Note the different scales for the resistivity
and the anisotropy.
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higher 7, the resistivity components increase more slowly;
Pz, in fact, reaches a maximum at 7 ~0.3. These trends
can be understood as follows: For a nearly uniform distri-
bution of scattering centers, the Fourier components in
the structure factor are of almost equal strength and
momentum transfer over a wide range from O to 2ky is
effective in the electron-impurity scattering process. The
initial rise in p with 7 is, therefore, mainly a consequence
of the increase in the density of scattering centers. How-
ever, further increase in ion density results in local
structural organization, which is reflected in a very strong
Fourier component in S(g). The scattering of electrons is
now dominated by a very narrow band width (in momen-
tum space) around g ~2m/a where a is the average dis-
tance between particles. This leads to a reduction in the
resistivity. The anisotropy in the transport coefficients
which is taken as the ratio between p,, and p,,, progres-
sively increases with 7. The resistivity components,
which are essentially equal at low 7, differ by a factor of
almost 5 for 7 ~0.6.

The components of the thermopower &, and &,, [in di-
mensionless units, see (4.7) and (2.10)] are shown in Fig. 4
for an atomically thin slab. The thermopower essentially
probes the change in the “resistivity” with the energy of
the electrons. Our results suggest that the thermopower
component along the superlattice axis is more sensitive to
the disorder than the in-plane component. In addition, an
application of the variational principle yields the expan-
sion coefficients of the distribution function in Eq. (B3),
from which a scattering time 7(k) can be extracted and is
defined by ®(k)=eE-v(k)r(k). Note that as discussed in
Sec. 11, the scattering time is clearly a functional of the
distribution function ®. This is shown on a polar plot in
Fig. 5 for an electric field applied along the superlattice
axis. Pronounced deviations from isotropic behavior in
the scattering time can be seen at high densities.

In the thick-slab limit, we find that the deviations of
O(1/¢t?) in the transport coefficient arising from finite-
size corrections in the structure factor (3.26) are negligi-

5.0
LV
5 40 .
ES Q
S g
a -—
o o
£ -2
230 <
£

2.0

Packing fraction 7

FIG. 4. Thermopower components (dimensionless), in-plane
&.x and out-of-plane &,, and the anisotropy parameter &,, /&,; vs
7, the packing fraction. The slab thickness is t=35a, and the
modulation period is d =100a,. In the absence of positional
correlations in a slab, the thermopower components are equal
and independent of 77, as shown by the dotted line.
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FIG.'5. Scattering time 7 on a polar plot for an electric field
applied along the superlattice axis. The scattering rate, in this
case, depends only on the polar angle —7/2 <6 < /2 measured
with respect to the superlattice axis and is symmetric for back-
scattering angles. The curves are parametrized by the packing
fraction within a slab. The slab thickness is t=35a, and the
modulation period is d =100a,. Marked deviations from isotro-
pic behavior become apparent at high 7 when correlations are
important.

ble, as expected. The isotropic limit is therefore a good
description of the thick slab and the resistivity and ther-
mopower in this limit are shown in Figs. 10 and 11 as a
function of 7.

The behavior of the transport coefficients as a function
of t is known from our calculation in two regimes: for
slabs a few atomic layers thick, and for thick slabs in
which ¢ is greater than the electron mean free path. It is
possible to interpolate between these limits; however, it
must be noted that in our model we have assumed that the
modulation period is much greater than the thickness of a
slab; therefore, such an interpolation is relevant only in so
far as it does not violate this assumption. In Fig. 6 the
resistivity components p,, and p,,, calculated in the thin-
slab limit by using the structure factor in (3.29), are plot-
ted as a function of ¢. Their behavior is almost linear
with a slope of 3.6 and 1.5 for the z and x components,
respectively. Using the resistivity, an effective mean free
path [ can be defined in the system which is itself a
function of ¢. With further increase in ¢, as /. becomes
less than the thickness of a slab, both the resistivity com-
ponents start approaching a slope of ~p;,,/d where p;g, is
the resistivity in a bulk three-dimensional system of
aluminum metal containing the same density of scattering
ions as in the slabs. Finally, as the thickness of a slab ap-
proaches the modulation period, the resistivity saturates at
the value of p;, and consequently, the anisotropy parame-
ter p.x /P approaches unity. The inset in Fig. 6 shows
the crossover from the thin-to the thick-slab regimes (ob-
tained by a cubic spline interpolation technique) as /¢ be-
comes of the order of ¢. The components of the thermo-
power as a function of ¢ are shown in Fig. 7.

For a fixed slab of thickness ¢ and density of atoms #ng,
both the in-plane and out-of-plane resistivity components
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FIG. 6. Resistivity components in the thin-slab regime.
Out-of-plane component p,, and the in-plane component p,, vs
t, the thickness of a slab. The packing fraction within a slab is
1=0.5 and the modulation period is d=100a,. The inset
shows a crossover from the thin-slab to the thick-slab limit as ¢
approaches the effective mean free path of the electrons. A cu-
bic spline interpolation of the resistivity components is per-
formed between these two limits.

vary inversely with the spacing between slabs d, as seen
from Eq. (4.5). This behavior is a signature of a mean
free path that is limited by boundary scattering. More in-
terestingly, as the distance between slabs approaches the
thickness of a slab, both the resistivity components be-
come equal and together saturate at the value p;, (see Fig.
8).

4.0

Thermopower £

2.8 1 L

5.0 10.0 15.0 20.0
Slab Thickness t (a.u)

FIG. 7. Out-of-plane thermopower component £,, and the
in-plane thermopower component &,, vs ¢, the thickness of a
slab in the thin-slab regime. The fixed parameters are the pack-
ing fraction within a slab 7=0.5 and the modulation period
d= 10000.
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FIG. 8. Resistivity components, in-plane p,,, and out-of-
plane p,, vs 1/d, the inverse of the modulation period. This is
shown for a fixed packing fraction 7=0.5 and a slab thickness
t=>5a,. As d approaches ~15a, a crossover behavior is seen
(more prominent in p,,) and the resistivity components approach
the isotropic limit.

V. DISCUSSION AND CONCLUSION

Our results illustrate the effect the structure of an inter-
face, incorporated via positional correlations between ions
at the interface, has on the transport properties of the su-
perlattice. Deviations from linear dependence of both the
in-plane and out-of-plane resistivity components p,, and
Pz, respectively, as a function of the degree of disorder nq
(or m in our calculation) are predicted, where z is taken to
be along the superlattice axis (Fig. 3). In fact, at packing
fractions typical of solids, the resistivity can even decrease
with increasing n,. Correlations also induce anisotropy
between the in-plane and out-of-plane transport coeffi-
cients; p,, can become almost five times higher than p,,.
The thermopower is a more sensitive probe of the disorder
compared to the resistivity (since it involves a derivative
of the “resistivity”). We find that the out-of-plane com-
ponent can become almost 25—30 % larger than the in-
plane component as ng is increased (Fig. 4).

The effect of the interfacial structure can also be seen
in the dependence of the transport coefficients on the
thickness of the disordered region r. For t ~3—4 atomic
layers, p,, is not very sensitive to the correlations along
the z direction. On the other hand, p,,, which is initially
lower than p,, for an atomically thin interface, rises much
more rapidly, with a slope almost twice as large as for p,,
(Fig. 6). Once again, the out-of-plane component of the
thermopower “sees” a more pronounced effect of the
correlations along the z direction compared to the in-
plane component; &,, decreases by as much as 25% as the
thickness of the interface is increased from 1 to 4 atomic
layers, whereas &,, shows only a 5% increase (Fig. 7).

Besides the structure of the interface, the choice of the
pseudopotential describing the ions at the interface also
has a marked effect on the resistivity and the thermo-
power. In our calculation, the pseudopotential of the
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scattering center has been characterized by the empty-core
radius R, [see (4.1)] and is shown in Fig. 9 for
R.=0.67,0.74, 0.8 in atomic units. In Figs. 10 and 11
the transport coefficients are shown for the isotropic sys-
tem consisting of bulk aluminum with scattering centers
described by the above three different values of R.. Simi-
lar calculations for the superlattice geometry also depict
this degree of sensitivity of the transport coefficients on
the choice of the pseudopotential.

The features just described have so far not been ex-
plored experimentally. However, it should be possible to
study the predictions indicated above, since ¢ and n, can
both be measured in x-ray diffraction experiments. The
thickness of the interface can also be monitored by depth
profiling techniques such as Rutherford backscattering.
In addition, the disorder at an interface can be increased
by ion bombardment or decreased by annealing. Another
interesting technique that can probe the thickness depen-
dence of the resistivity is the pulsed laser and electron
beam annealing of silicon.”® This experiment has so far
used conductance measurements to determine the thick-
ness ¢ of the molten silicon layer. The assumption made
is a linear dependence of the conductance on an apparent
melt depth and on the resistivity of molten silicon
(Pliquia~80 uQ cm). This implies that the resistivity of
the molten layer, as a function of the thickness ¢ is a con-
stant and finite-size effects are not considered. This
would appear to be a reasonable approximation for ¢ of
the order of a few hundred angstroms (as is the case in
these experiments), and is corroborated by our calculation
of the structure factor of a thick slab. (We find that the
1/t% corrections to the resistivity of a bulk metal are
indeed negligible for £~ 100 A.) However, for smaller
thickness, of order 10 A, finite-size effects calculated for
the replicated slab model show that the resistivity is no
longer independent of ¢ (see Fig. 6); the estimation of ¢
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a/2ke

FIG. 9. Scattering ion empty-core pseudopotential screened
by the Lindhard dielectric function shown in units of — %s,\. A
core radius R.=0.74a, is used in the calculations to describe
v(q) for silicon. Shown is the deviation in v(q) for a 10% vari-
ation in R..
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FIG. 10. Resistivity of an isotropic system in three-

dimensions (Al host metal containing silicon impurities) as a
function of the packing fraction 7 for different core radii R,. A
10% variation in R, can lead to almost 50% change in the resis-
tivity. This reveals the sensitivity of the transport coefficients
to the choice of the pseudopotential.

from conductance measurements alone is then not a
straightforward matter. Nevertheless, if the laser anneal-
ing experiment is combined with interferometric tech-
niques to obtain the thickness of the molten layer, then
conductance measurements can once again be used to
measure the finite-size corrections to the resistivity.
Although the transport properties of a superlattice as a
function of the interface parameters have not been ex-
plored so far, there are measurements of the in-plane
resistivity p,, as a function of the modulation period d
which show an inverse dependence on d. Qualitatively,

g
107"
I
«©
.
[
E
o
Q
o
£
t
[
< L -
———_ Re¢ =0.67a0 =
Re =0.74a, \.\.
— Re =0.80a, :
1072 . . A
0.0 0.2 0.4 0.6

Packing fraction 7

FIG. 11. Thermopower & for an isotropic system as a func-
tion of i for varying core radii R,. Shown is the deviation of &
from the pseudopotential-independent part on a logarithmic
scale. & is even more sensitive to the choice of the pseudopoten-
tial than the resistivity and can vary by a factor of 3 for a 10%
change in R..
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this behavior can be easily understood as arising from a
mean free path that is limited by boundary scattering at
the layers. To date, this behavior has been accounted for
by the finite-size-effect theory of Fuchs'! and Sondhei-
mer'? and of Mayadas and Shatzkes.® These theories
describe the scattering effects of an interface via a
phenomenological specularity parameter p. But, their ap-
plicability to superlattice geometries is questionable since
they have been originally derived for metallic films which
do not allow for transmission at the interfaces.

As can be seen in Fig. 8, our calculation also gives an
inverse dependence of the in-plane resistivity on d. How-
ever, before a meaningful comparison of the slope of the
pxx versus 1/d data with our theory can be made, one
other physically important feature must be taken into ac-
count. Various metallic_ superlattices, for modulation
period d less than ~10 A, show a tendency to saturate
close to the Toffe-Regel limit,*® which is attained when the
effective mean free path becomes of the order of the in-
verse Fermi wave vector. In Nb-Cu and Nb-Ti superlat-
tices,”!® the saturation resistivity is found to be 160 and
115 pQ cm, respectively. From our model calculation for
an array of disordered interfaces, it is seen in Fig. 8 that
as the layer periodicity approaches the thickness of the
disordered interface, the resistivity saturates around 220
uQcm. The difference in the value of the saturation
resistivity seen in experiments on metallic superlattices
and the model calculation is attributable to two factors.
In the limit of small modulation periods, the system of al-
ternating A and B layers can be regarded as a bulk A-B
alloy. As can be seen from (4.6) and (B14), the resistivity
of a three-dimensional isotropic system is essentially pro-
portional to an integral, over the momentum transferred,
of the square of the pseudopotential times a structure fac-
tor. For typical solid densities or packing fractions in the
interface, the integral is dominated by the region under
the first peak in the structure factor. Thus, the factors in-
fluencing the saturation resistivity are the density of
scattering centers (determining the height and peak posi-
tion of the structure factor) and the nature of elements
constituting the interface (determining the pseudopoten-
tial). To compare the slope of the p,, versus 1/d data
with our theory we first scale out the differences in the
pseudopotential by measuring p,, in units of the satura-
tion resistivity. We then find that the calculated slope of
the scaled p,, versus 1/d differs from the slope in Nb-Ti
and Nb-Cu by a factor of 1.8 and 2.5, respectively. Since
the pseudopotential is scaled out only on average, this
agreement is satisfactory.

As mentioned is Sec. III, the replicated slab model also
has bearing on the transport properties of a single junc-
tion. We define the specific contact resistance R, to be a
product of the out-of-plane resistivity p,, and the layer
periodicity d. Similarly, the specific boundary resistance
Rj is defined as a product of p,, and d. The calculation
depicted in Fig. 3 for a slab thickness of ~5a, and
d ~100a, shows that p,, peaks at a packing fraction
17 ~0.2. This corresponds to R, ~2.5 pQ cm?; the boun-
dary resistance at this packing fraction is higher by a fac-
tor of 2. If we consider a typical cross sectional area of 1
square micrometer, the contact resistance per atom denot-
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ed by r,=R./(NA) is ~40 pf). It is important to note
that the specific contact resistance calculated above for an
Al-Si junction with silicon embedded in a metallic host is
about six orders of magnitude lower than the tunneling
characteristics in an ohmic contact between aluminum
and heavily doped n * silicon. This is as expected because
the transport process in the latter case is dominated by a
barrier penetrating between Al and Si. Our results for the
contact resistance of a single junction do however corro-
borate very well with data on the resistance of single grain
boundaries in aluminum.*! Nakamichi and Kino measure
specific grain-boundary resistances of order a few pQ cm?
as a function of rotation angle (between regions on either
side of the grain boundary).

We have so far emphasized the effect of the structure
of an interface on the transport properties of the system.
Having understood this correlation, it then becomes possi-
ble in principle to invert the information in the transport
coefficients and extract the structural features from it,
provided the pseudopotential is known. Thus, by such
characterization, transport measurements can become a
viable tool for interpreting structure. For example, as in
Fig. 6, a family of curves parametrized by the density of
scattering centers n, and showing the resistivity as a
function of ¢ can be obtained. Similarly, a family of
curves for the thermopower components as in Fig. 7 can
also be determined. With these two sets of data, both the
thickness r and n can be read off directly for a measured
p and &. By measuring both the in-plane and out-of-plane
components of the resistivity and thermopower, the
structural parameters ¢ and n, can be checked indepen-
dently. The microscopic model of interdiffusion in a het-
erostructure studied in this paper can be further general-
ized to include scattering by two species within a slab. In
addition, by superimposing a density profile for the com-
ponents of the interface, the model can also give a micro-
scopic description of transport in a graded interface.
With reference to the experiments on grain-boundary
resistance pgp in metals, extension of our calculations on
the replicated slab model strongly suggests the possibility
of establishing a correlation between pgg and the struc-
ture. Furthermore, the intrinsic pgg are so small (of order
pQcm?) that the experiments are extremely sensitive to
factors such as the purity of metals, etc. Therefore,
theoretical estimates of this kind may play a useful role
not only to ascertain the quality of samples used in the ex-
periments but also in a more fundamental way to test and
predict the structures of grain boundaries.
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APPENDIX A

We show that for an anisotropic collision kernel W it is
not possible to obtain a straightforward solution of the
Boltzmann equation within a relaxation-time approxima-
tion. We begin by expanding W in a double harmonic
series given by

1 o Nk
7'[l,m;l’,m’]_Q 41

where Q is the volume of the system (not to be confused
with solid angles) and C,(l,m;l',m’) is the Clebsh-
Gordon coefficient given by

1/2
., 47
C,(,m;l'm")= 2 +1 <Y1m l Yn,m—m" YI’M’> >
(A3)

then (2.2) reduces to

9 -

Um | 5 Sm (A4)

ot coll I'm' T[l’m ;1 »m ]

Equation (A4) shows that the relaxation of a particular
mode, labeled by (/,m), is coupled to all other modes and
therefore the relaxation-time approximation is not justi-
fied. If we now define an effective rate by

—

fl'r_n’ Tim
(rmmimy Jim TLLmMSE,m’)

1
off = 14

Tim Tim

) (AS5)

where 7, =7[l,m;I,m], then (A4) can be written in a
form suggestive of the relaxation-time approximation as

aflm fIm
at coll Tim [flm ]

However, note that this has been possible only at the cost
of making the effective relaxation rate a functional of the
distribution function.

Another approach, which leads to the same conclusion,
is to start with the assumption that the nonequilibrium
function does indeed relax to equilibrium with a time con-
stant 7(k) which is a function of momentum k. The
right-hand side of (2.2) can then be written as

og (k)

at

g (k)—g%ey)
- t(k)

(A7)

coll

It is convenient to expand the distribution function and
relaxation rate in spherical harmonics with expansion
coefficients fj,, and 1/¢,,, respectively, as follows:

gK)=g%% )+ 3 fim(e) Yim () (A8)
ILm

> V2n +1lo[n,m —m';0,0]C,
n

Wkk’:&sk_Ek’)z 2 a)[l:m;l'am']Ylm('Q)YI'm'(Q,) ’
ILml',m’

(A1)

where Q0 and Q' are the angles of k and k', respectively,
with respect to some reference axis, and w are the expan-
sion coefficients of W. The distribution function is once
again expanded in spherical harmonics as in (2.4). After
some algebra it can be shown that if a scattering time 7 is
defined in terms of the expansion coefficients of the col-
lision kernel by

ml'm)— (=D o[l,m;l',—m'] |, (A2)

and

1 1

=3 —7,,(Q). A9)
tk) At m () (

If the expansion coefficients of the relaxation rate could
be obtained by solving (2.2) and were indeed found to be
independent of the distribution function, the relaxation-
time approximation would then be valid. However, by
substituting (A1), (A8), and (A9) in (A7) and in (2.2), we
obtain

2

n

2o (Lmsl,m’) 1

- TLm;l',m’]

2n +1
41

, (A10)

tn,m—m'

where 7 and C, are defined in (A2) and (A3), respectively.
Equation (A 10) shows that it is not possible to extract the
individual coefficients ¢,,,, if the relaxation time approxi-
mation is assumed; instead, only a constraint on the sum
of ¢, is obtained.

APPENDIX B

In this section some details on a variational solution of
the Boltzmann equation, to obtain the components of the
resistivity tensor, are provided. Expressions for the trans-
port coefficients pertaining to the replicated slab model
introduced earlier are also obtained. The trial function
&®(k) in (2.7) can be expanded in spherical harmonic func-
tions

(N)
Do(K)= 3 N |k[)Y;(Q), (B1)
ILm

where 7 denotes the direction of the externally applied
field. Equation (B1) is then substituted in the expression
for the variational function p'"® defined in (2.7). By vary-
ing the expansion coefficients 7,,, an approximate
minimum of p"# is obtained, given by

p<p™NI== |3 3 U)W UmI'm" )T,
Lml'm'

1
2

(B2)
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Since a finite expansion set with N basis functions is used
in (B1), only an approximate minimum of the variational
function is found; however, as N increases, a sequence of
decreasing upper bounds on p is found that eventually
converge to the true answer. The expansion coefficients
are given by

T];Tm: 2 Wﬁl(lm;l'm’)(.lﬁ)pm, , (B3)
I'm’
where
d3k —agﬁ
(Jﬁ),m~f4 T evs )Yy () = (B4)

and

3 37,0
Wiim;m')= [ <5 [ C Y Q)= Y (2] Wi

X[ Yy () —

The above formalism is applied to the replicated slab
model described in Sec. III. It consists of an array of M
slabs in a total volume ), each slab containing N scatter-
ing centers for which the transition probability Wy, is
defined in (3.15). At zero temperature and for elastic
scattering, the integrations over |k| and |k'| are
straightforward, and for a metal with an isotropic disper-
sion relation, which is the case being considered in this
paper, (B5) reduces to

Yy Q)] . (BS)

4rZe?

2
TF

N(0)
4

27 NM

2
IIm;I'm’),
i Q

W(m;lI'm’)=

rh=m=2mclc;

where d;” and ¢;" are defined by
Y} (0,6)=c["P["(cosO)e™?
P ™(cosB)=d["P["(cosO) .

By substituting (B9) and (B11) in (B7) and using standard
properties of spherical harmonics, we obtain

(—1)'"2\/2n 1T0C, (1,

(B12)

Im;l'—m)=2 —m;l',—m)

—2ri=m, (B13)

where C, is defined in (A3).

For an electric field applied along the z direction, sub-
stitution of (B4)—(B6) in (B2) yields p,, which is inversely
proportional to 77'(1,0;1,0). Similarly, for an electric
field along the x direction, p,, is found to be inversely
proportional to 7 ~!(1,1;1,—1). See (4.5) for the exact ex-
pression of the resistivity components. In our calculation
we retain terms up to / =3 in the expansion of the trial
function in (B1), I is then obtained by a three-dimensional
integration which is evaluated numerically and finally a

1 1 2 - —~
mdr fﬂldcose fﬁldcosG’P{”(cos@)Pﬁ"(cos@’)fo d¢ cos(ma)K(
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where N (0) is the density of states at the Fermi energy, Z
is the valence of the scattering center, and krp is the
Thomas-Fermi screening wave vector.

In (B6) I is given by

[dQ [dQ[Y,(Q)— Y, (Q)]K (Q,0)
XY Q)— Yy (2] (B7)

I(Im,l',m’")=

The dimensionless kernel K is a product of the square of
the ion potential v(g) defined in (4.2) and the structure
factor given by

K(ep, Q,Q)=[|v(q)|’S(Q)]c—, , (B8)

where q=k’—k and the right-hand side of (B8) is
evaluated on the Fermi energy shell. The four-
dimensional integration in (B7) is reduced to a three-
dimensional integration by exploiting the symmetry prop-
erties satisfied by the kernel. To elaborate on this point,
the kernel is expanded in a double harmonic series

QQ)-zzr Y ()Y () (B9)

Lmi'm’
with expansion coefficients
= [dQ [dQ Y, ()Y (Q)K(Q,Q) . (B10)

It can be easily verified that K(Q,Q')=K(Q',Q) and
K(¢,0')=K(¢d—d') where ¢ is an azimuthal angle.
These relations imply that

Do =T =T =T ™8 om0 -
Therefore the integral in (B7) simplifies to

0,6',4) , (B11)

15X 15 matrix is inverted to obtain the inverse of matrix
I. As shown above only two elements of 7 ~! are required
to obtain the transport coefficients.

The isotropic limit

In the isotropic limit, the scattering kernel K depends
only on the angle y between the vectors k and k’. Using
the addition theorem for spherical harmonics, it can then
be shown that the only nonzero terms in (B13) are those
for which [ =/ and m =0, i.e.,

I(h=I(m;l',—m)8; 180

1
=47 f'ldcosyK(y)[1~P1(cosy)]. (B14)

The resistivity components turn out to be equal, as would
indeed be expected in the isotropic limit and are propor-
tional to 7(1), which agrees with Ziman’s expression for
the resistivity of liquid metals.?®

APPENDIX C

We present here the thermopower in the isotropic case
to bring out the essential features. For the superlattice
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geometry, the anisotropic case can be obtained by a
straightforward generalization and the results are shown
in (4.7) and (4.8).

In the entire discussion that follows, the electrons are
assumed to satisfy an isotropic dispersion relation. The
conductivity function when evaluated on an arbitrary en-
ergy shell leads to

3
0(8):e2IZ—;(vrﬁ)zT(sk)S(sk—-e) , (C1)

where 1 is a unit vector in the direction of an externally
applied uniform field. The angular integrals in (C1) can
be easily carried out since the scattering time 7 is a func-
tion of energy only. We obtain

2 2
0(8):ﬁ [ dech(e)dle—e) , (C2)

where h(e)=eN(e)r(e). In taking the derivative of o(€)
with respect to €, only the delta function inside the in-
tegral is actually differentiated. After an integration by
parts we get

do(e) _ 2e? dh(e)
dc  3m OBe

Furthermore, in an isotropic scattering model, the
scattering rate is given by

(C3)

1 kz“’kz,
= SWy———, C4)
(&) kE Kk, (
where the transition probability is
2 ’ ’ ’
Wkk'ZTNimpP( [ k—k'[;er,6x")0(g—g ') . (C5)

The function P is basically proportional to the square of
the pseudopotential times a structure function. As seen

explicitly in (C5), the transition probability depends only
on the angle between k and k’. Once the angular integrals
are completed, the scattering rate simplifies to

1 27

1
Te ~ 2 N [ dew N(ew)dle,— e Flege,)

(C6)
where

1
F(gy,g/)= fﬂldx(l—-x)P(z;ek,ek’) , (C7)

and z=2m /#)[ex+ e’ —2(exex’)/>x]. The variation of
(C6) with respect to g can be obtained easily and equals

d 1 1 d

21
e — QN =
mp 4 aEk

aEk T(Ek) #i

[N(Ek)G(Sk)] 5 (C8)

where G(gy) is the equal energy component of (C7) de-
fined as

1
Ge)=F(e,e)=8 [ dyy’P(2ky;e,e) . (C9)

On substituting (C8) in (C3) to obtain the derivative of the
conductivity with respect to g, the dimensionless thermo-
power ¢ defined in (2.10) then becomes

EG’(s)
G(g)

E=1— (C10)

E=€F

Equation (C10) can be further simplified and reduces to

L3
4P(2k;e,e) 8¢ fodyy (0P /d¢)

:3— p—
3 G (g) G (g)

(C11)

If, as is the case in this paper, the pseudopotential is not
energy dependent, only the first two terms are present in
(C11).
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