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Generalized set of elastic moduli and stability of deformed cubic crystals
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A generalized set of strain variables, q, , has been used to develop the expressions for a general-
ized set of elastic moduli, C„„ for a cubic crystal deformed to the orthorhombic structure. The
coordinates q, and elastic moduli C„, are shown to be the generalization of the corresponding quan-
tities derived from the strain variables currently used for theoretical strength studies. Numerical re-
sults for the theoretical stability of nickel on the path of deformation connecting the unstressed fcc
and bcc phases of the crystal have been presented according to the generalized set of strain variables
using the Morse potential and the stability criterion of Born. Values of the lattice parameters at
which failure occurs (for N stability) are determined and cases under which the N strength (crystal
strength in terms of the generalized variables) becomes greater or smaller than the other convention-
al strengths are discussed.

I. INTRODUCTION

Elastic properties of solids have been extensively stud-
ied' because a large amount of information concerning
mechanical behavior and other elastic-constant-dependent
properties of deformed solids can be gathered from these
studies. In particular, the theory of elasticity forms the
basis for the estimation of the theoretical strength of any
loaded structure with the elastic moduli as the central
core in theories of mechanical stability of solids under
stress. In these theories, there are six fundamental defor-
mations and the specification of the state of homogeneous
strain in a crystal model involves any six variables that
define the geometry of the most fundamental cell. In
practice, different researchers have adopted different sets
of generalized coordinates q„(r = 1,2, . . . , 6) as the mea-
sure of homogeneous strain to develop various sets of elas-
tic moduli leading to the computation of the ideal
strength of crystals under stress.

In this paper, a generalized set of strain variables q„
that we have defined earlier is used to develop the expres-
sions for a generalized set of elastic moduli C„, for cubic
crystal deformed to orthorhombic structure. The set of
geometric variables q„are shown to be the generalization
of the other conventional sets of strain variables, namely,
the Green's variables adopted by Born and co-
workers' ' and the stretch variables adopted by Mac-
millan and Kelly. ' ' The elastic moduli corresponding
to the stretch variables and Green's variables are shown to
be particular members of the generalized set C„,. Finally,
the theoretical stability of nickel on the path of deforma-
tion connecting the stress-free fcc and stress-free bcc
phases of the crystal is estimated according to the general-
ized set of strain variables. Computations are made of the
lattice parameters, internal energies, stresses, and elastic
moduli using the two-body Morse gotential function. The
numerical values of N moduli C„ thus computed along
the prescribed path of deformation, are then used to deter-
mine the range of N stability (crystal strength in terms of
q„) according to the stability criterion of Born. ' In

specific cases the N strength so estimated is shown to be
greater (or smaller) than the crystal strengths generated by
the stretch variables and Green's variables.

These studies are very important in several phenomena
of solid-state physics and solid mechanics. The problem
of evaluating the stability limits of a crystal is of funda-
mental interest since it is thought that some fine filaments
and metallic whiskers can approach the theoretical limit.
The problem is also relevant in the prediction of the stress
distribution near the tip of a crack and hence, in deter-
mining whether a solid will exhibit brittle or ductile
behavior. ' Moreover, twinning, very rapid shock de-
formation, martensitic phase transition, and deformation
of whiskers are also problems which involve the ideal
strength of solid.

II. THEORETICAL APPROACH

A. Strain variables and associated moduli

In order to study the strength of deformed solids and
their elastic properties we need a set of geometric vari-
ables which define the strains of the deformed solid. For
this purpose, Born and co-workers have used the com-
ponents of Green's tensor, ' ' whereas the recent papers
of Macmillan and Kelly' ' incorporate the components
of the stretch tensor. However, we have recently defined
a generalized set of geometric variables, under the sum-
mation convention

where 6;~ is the Kronecker delta; n and m can assume any
suitable values, positive or negative, with the restriction
that m &0, and A,;J are the elements of the stretch tensor
defined by

x;= QA, ,JX, ,
J

(2)

(ij =1,2, 3) where X; and x; are, respectively, the refer-

q~ = [(m —n)Ak;kkj+2nk~ —(m +n)5~ ], .
2m
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ence and current rectangular coordinates of any lattice
vector.

The coordinates corresponding to the generalized set of
strain variables [Eq. (1)] may explicitly be expressed by

The internal energy E per unit reference cell may be ex-
pressed as a function of the geometric variables
q„(r =1,2, . . . , 6)

q t —— [(m —n)(kt+Xg+t(6)N 2 2 2

2m

+2nt(, , —(m +n)];. . . ;. . . ,

q4 ———
I (m n)—[(kq+k3)A4+X5A6]N 1

m

For computational purposes, the internal energy E can be
taken as a pairwise sum of interactions P(r) over a large
number of atoms in the lattice to obtain convergence up to
significant figures

2q I
——XI+A.g+k6 —1;. . . ;. . . ,

q4
——(A2+ A.3)kg+ k, A6. . . . , . . . ,

(4)

which represent the coordinates q, corresponding to the
Careen's strain tensor adopted by Born school. ' ' Also,
after taking n =m, Eq. (3) reduces to

S
q I III 1 y ~ ~ ~ y

~ ~ ~

4 4 ~ ~ ~ ) ~ ~ ~ )

representing the coordinates corresponding to the stretch
variables used by Macmillan and Kelly. ' ' Thus the
present form of the generalized set of strain variables q„
[Eq. (3)] is capable of reproducing Green's variables q„
and the stretch variables q„ in special cases. Moreover,
relation (3) can lead to any desired set of strain variables
depending upon the choices of the parameters m and n.

The generalized forces' corresponding to the set of
strain variables q,

' are the stress componentsN

F,) —— (6)
lJ

which are determined by the external loading conditions.

+2nk4];. . . ;. . . ,

where the tensor notation (ij ) is converted to the matrix
notation (r) according to the scheme (11)~1, (22)~2,
(33)~3, (23)~4, (31)~5, (12)~6. It is interesting to
note that for n =0, Eq. (3) reduces to

and

r = —,(l,a, +l2a2+13a3) .2 l 2 2 2 2 2 2

BE'-
aq, aq.

(9)

where q„(r = 1,2, . . . , 6) are generalized coordinates,
namely, geometric variables that define the homogeneous
strain of the crystal. In particular, when the generalized
coordinates q, are the components of the set of strain
variables q„, one may use relations (3) in conjunction with
the definition (9) to obtain expressions for the set of gen-
eralized moduli C„,. For cubic crystals, as the unstressed
reference state which under load deforms to the
orthorhombic structure we obtain, for the generalized set
of elastic moduli expressed in terms of the interatomic po-
tential function P(r),

a; (i=1,2,3) represents the vectors coincident with the
cell edges, whereas its magnitude

~
a; ~ represents the cell

length. The stretch k; =a;/ap, ap being the cell length of
the unstressed reference cell. N is the number of atoms
per unit cell (four for fcc lattice and two for bcc lattice).
Summations in above equations are to be accomplished
over integral values of l&, l2, l3 subject to the restrictions
that l&+I2+l3 is even for the reference cell to be fcc;
l&, 12, l3 are all odd or all even when the bcc cell is chosen
as the reference.

The elastic moduli C„, can be defined by

m X; Nap 82 2

[(m n)A+—n] g t, t, t, B(r ) [(m —n)t(+n]' 4

m ~i~j Nap p p 8 (b(r)
[(m —n)A, ;+n][(m )kn+tn—] 8 ~t t, ' t r)(r )

(10)

+ —g g glt, (i,j = 1,2, 3; i~j ) .q B&P(r)

~j+ 4 t t t Br

The derivation of Eqs. (10) is given in the Appendix.
It is wise to note here that for n =0 in Eq. (10), the set of generalized moduli C„, reduces to the set of Green's moduli

C„used by Born and co-workers
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=Cgkl =
g g g g l l& i'kl'l

iVQ p

1) l2 13

and after taking n =m in relations (10) we find that the C„, reduces to the stretch moduli C„„achoice of Macmillan and
Kelly:"-"

2 Tap 8 ( X

B2
(12)

82
C,J,J. ——4 (1,;+A.i) g g g I;lil;lj 2 +—g g g (I; +lz.), (i,j =1,2, 3; i&j) .

Thus we see that in special cases the C„can lead to the
Green's moduli C„, and the stretch moduli C„. More-
over, the set of generalized moduli C„, is capable of repro-
ducing any desired set of elastic moduli depending upon
the choices of m and n.

B. Stability of fcc nickel on the path
of fcc~bcc transformation

phases may be represented by

Q, =ap+W, Q,

where Ap and 3 I are constants given by

a& —a2
o=ao

a& —ao

As a specific example of the present approach, a
theoretical study is made of the lattice stability or theoret-
ical strength of fcc nickel subjected to the path of defor-
mation connecting the stress-free fcc and stress-free bcc
phases of the crystal. Computations of lattice parameters,
stresses, internal energies, and a few members of the gen-
eral family of elastic moduli C„are performed. Calcula-
tions are carried out using the two-body Morse potential
model:

P( r) =D [exp[ —2a(r —ro)] —2 exp[ a(r ——ro)] I,
(13)

where P(r) is the potential energy between two atoms
separated by a distance r, D is the dissociation energy,
and a, rp are the potential parameters.

With the selection of the unstressed fcc cell as the refer-
ence state which under load deforms to orthorhombic
structure, the three normal components of the generalized
forces, specifying the state of loading for the crystal, is
given by

Q2 —Qp

a~ —ap

C22 —C23 )0,
C22+C23 —2(C12) /Ct t & 0,
C~) 0,
C55) 0 .

(19)

C. Criteria of stability

The Born stability criterion' may be expressed as the
convexity of the internal energy function E in its argu-
ments or, synonymously, the positive definiteness of the
matrix of elastic moduli C„, [Eq. (9)], regardless of the
choice of generalized coordinates q„(r =1,2, . . . , 6) de-
fining the homogeneous strain of the crystal. For cubic
crystals under multidirectional stresses the Born stability
criterion leads to

mQp QEF;=
(m —n)A, ;+n Ba;

The stress o.; acting along a; direction is then '

F;

a&ak

We have for the fcc phase of the crystal

Q) =Q2=Q3

(14)

(16)

It is important to note that in a crystal under load, the
conditions (19) are thoroughly relative in the sense that
they are dependent upon the choice of the generalized
coordinates ' and generate different domains of lattice
stability for various choices of q, . However, the only one
generated by an appropriate set of coordinates can be
right.

III. RESULTS AND DISCUSSION

Whereas for the bcc phase '
v 2a, =a, =a, .

The line joining the stress-free bcc and stress-free fcc

The C„, calculated (with A, 2 ——A, 3, for the present case of
loading) from Eq. (10) using the Morse function (13) with
a=2.487655 A ', rp ——2.527516 A, D =0.35059&&10
erg and ap ——3.5238 A taken from the compilation of
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FIG. l. Internal energy E(10 ' erg) per unit cell of nickel
versus cell length a &.

our earlier paper, are used to determine the range of N
stability according to the criteria (19).

The values of cell lengths a„az (=a3) are calculated
on the line noted in Eqs. (16) and (17), for which the
stresses a.; =0 (i= 1,2,3) by calculating zeroes of func-
tions. The cell length bo ——2.81 A thus obtained corre-
sponds to the stress-free bcc phase of nickel. Computed
values of internal energy E are plotted against cell length
a& in Fig. 1. The plot exhibits two internal energy mini-
ma; the principal minimum corresponds to the equilibri-
um fcc state of the crystal whereas the secondary
minimum arises near the predicted bcc phase. The energy
barrier for the fcc~bcc transition in nickel is of the order
of 0.44~ 10 ' erg per unit fcc cell.

We have calculated only few members of the general
family of elastic moduli, C„, with a limited choice of m
and n (for m=2, and n = —2, —1,0, 1, . . . , 20). The

N N N N N Nquantities C, =Czar —C~3 and Cb —Cpp+CQ3—2(C,z) /C» appearing in the stability conditions (19)
are examined for their positive definiteness and the values
of lattice parameters at the onset of lattice instability (for
N stability) are calculated. For different choices of m and
n, instability occurs almost in the same region (a

&

——2.71
to 3.23 A with the corresponding values of az ——4.05 to
3.71 A), where the condition Cq &0 is violated. But the
condition C, ~0 is violated at different cell lengths for
different choice of m and n. Figure 2, showing the varia-
tion of cell length a&, at which the criterion C, &0 is
violated, as a function of n, keeping m =2, exhibits that
the cell length a& decreases with increasing n. This indi-
cates that the width of the stable region (for N stabilities)
decreases with increase in n, keeping m =2.

For m=2, n=0, the range of N stability becomes equal
to the range of G stability (3.23 A & a~ & 3.93 A) while at
m =n =2, it becomes equal to the range of S stability
(3.23 A &a& &3.84 A). At m=2, n= 1 (i.e., both m and
n positive with n & m) the N strength will evidently
comes in between the G and S strengths [Fig. (2)]. For
both m and n positive with n ~ m (i.e., for m =2,
n = 3,4, . . . , 20), Fig. 2 indicates that N stability breaks
at cell lengths smaller than the values of cell lengths cor-
responding to the G and S instability implying thereby
that the N strength is less than the S strength, which in

400 t e

3.92 "

3.84-

3.T6-

3.68-

2 0 2 6 10 14 18

0FIG. 2. Variation of cell length a~ (A) at which the criterion
C, =Cpp —CQ3) 0 is violated for nickel, as a function of the pa-
rameter n, keeping m=2. Failure points corresponding to the
6 stability and S stability are shown to occur, respectively, at
n=0 and at n =m=2.

turn is less than 6 strength. Under the same loading en-
vironment for m=2, n = —1, one can predict from Fig. 2
that the ¹table range is greater than the G-stable and
S-stable ranges (i.e., the N strength is greater than G
strength, which in turn is greater than the S strength).
Thus we see that, in specific cases (i.e., depending upon
the values of m and n) the generalized set of strain vari-
ables can generate crystal strength somewhat different
(smaller or greater) from the strength obtainable from the
Green's variables and the stretch variables.

IV. SUMMARY AND CONCLUSION

A generalized set of strain variables q, has been used to
frame expressions for a generalized set of elastic moduli
C„, for cubic crystals deformed under load to orthorhom-
bic structures. It is interesting to note that the generalized
coordinates q, and the set of generalized moduli C„
reduce, respectively, to Green's coordinate q, and Green's
moduli CG, after taking n=0 in Eqs. (3) and (10). Also,
after taking n =m in these equations, the q, and C„
reduce, respectively, to the stretch coordinates q, and the
stretch moduli C„. Thus the coordinates q, and elastic
moduli C„, are the generalization of the corresponding
terms derived from the Green's and stretch variables.
Also, the q„represents a family of the generalized coordi-
nates of which the Green's coordinates, q, (q„with n=0)
and the stretch coordinates q, (q„with n =m) are the
particular members. Similarly, the C„also re resent a
family of elastic moduli, the Green's moduli C„, and the
stretch moduli C„, are the members of this family of elas-
tic moduli.

Further, the paper presents the computational results
on the stability of nickel crystal on the line of deforma-
tion connecting the stress-free bcc and stress-free fcc
phases, in terms of the generalized variables. The results,
as summarized in Fig. 2, indicate that in special cases the
range of N stability becomes equal to the range of G sta-
bility and the range of S stability. The range of lattice de-
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formation (for N stability) varies with varying choices of
n and m. Moreover, from these studies one would expect
the presence of the stress-free bcc phase of nickel with a
cell length of 2.81 A and energy E = —9.023&10 ' erg
per unit cell corresponding to the stress-free bcc phase of
the crystal. The detailed nature of the fcc~bcc phase
transformation in a number of metals including fcc nickel
has been studied and reported separately.

In principle one can have many more choices of the
geometric variables to define the homogeneous strain of
crystals under stress. We have chosen the present general-
ized form since (i) it is the generalization of the two wide-
ly used geometric variables, viz. , the Green's variable and
stretch variable, (ii) it has the property to generate not
only the Green's moduli and stretch moduli but also vari-
ous other sets of elastic moduli of deformed solids, and
(iii) this variable can yield crystal strength, smaller or
greater than the 6 strength and 5 strength depending
upon the choices of m and n. In the stress-free state the
assessment of elastic stability of cubic crystals is coordi-
nate invariant. The Born criteria for stability apply to
any coordinates for the geometric variables, and hence
yield different stability ranges depending upon the choice
of geometric variables. However, only one can be right,
and only one set of coordinates appropriate. Uncertainties
in these studies also arise from the choice of the potential
model. Thus one has to evolve some specific criteria for
selecting a particular geometric variables in conjunction
with a realistic potential model on the basis of observed
properties of the loaded crystal (which are very much
lacking today) to have a better understanding of the
mechanical behavior of the deformed crystals.

APPENDIX

Expressions for C„, [Eq. (10)] can be derived using Eqs.
(3), (4), (8), and (9). For example, a detailed derivation of
the moduli C», C12, and C44 is given here. By the defini-
tion (9) we have

Bq1 Bq, Bq", Bq,

BE Br
BqN1 Br2 BqN1

From Eqs. (3) and (8) we have, respectively,

m

Pq~ (m —n)A, , +n '

and

Now

Br 2
=—a 1

Ba1
1 1

(Al)

(A2)

Br Br
N

= —,'aQl1 (A3)
gqP Bai Bki gq+,

' (m —n)A, +n

where A, 1
——a1/ao.

Substituting for Br /Bq, , Eq. (A 1) gives
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m~ BE
C11 —

N 2 aQl 1

Qq& (m n)A, &+n Br2—
= TaQl1m .2 2 BA 1 Bkl

[(m n)X, +n—] ~ —A, )(m n)—
Bq1 Bq1

BE BE B
[(m —n)X, +n]

Qr (m —n)A. &+n Q(r~)~ Qq i

which on using Eqs. (A2) and (A3) in conjunction with Eq. (7) gives for Cii the expression

[(m —n)X, +n] 8. . . B(r') [(m —n)A, , +n]' 4 i, , Br'
(A4)

For C~q we have from (9)

Bq Bq2 Bq1 Bq2

BE Br
BqN Br' BqN

2 2 m~2 BE
Pq,

' (m —n)A. 2+n Pr
(A5)

where

Br 2 2 m~2
N 2 aOI2

Bq2 (m n)A2+n—

and

a2
A2—

aQ

Carrying out the differentiation in (A5) we have

(A6)
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~2 BE Br
C~3 ——,

'
a—013m

N + [(m —n)R3+n] N
—A2(m —n)

m n—2+n B(r ) Bq~ BqN BqN
[(m —n)X2+ n]

BE
Bl'

Substituting for Br /Bq, from Eq. (A3) we have, since
BX2/Bq )

——0,

m A)A2
2 ao 22 BE4

[(m —n)A& +n][( m n—)A2+n] 4 B(y )

which on using Eq. (7), gives

m A(A2

[(m —n)A,
~ +n][(m —n)k~+n]

(A7)

Next, for C44 we have from (9)

BE
N N

Bq4 Bq4

B BE B BE B~4

q4N Bq4N Bq4N BX4 BqN4

From Eq. (3), we have

'Bk4

Bq4 (m —n)(iz+A3)+2n

Equations (A8) and (A9) together lead to

(A8)

(A9)

N m BE
Bq4N (m —n)(A3+A3)+2n BX4

m B E BA. BA,2 Bk

(m n)(kq+—k3)+2n BX4 Bq4 Bq4 Bq4
2 N N + N

Again from Eq. (3), we get

B~3 m

Bq
N Bq", (m n) 14—

Using Eqs. (A9) and (A10) we obtain for C44, the expression

[(m —n)(A2+A3)+2n]
BE

4

(A 10)

CN m BE 2 BE
[(m —n)(A3+A3)+2n] BA4 &4 B&4

m BE
[(m n)(A.2+—A, 3) +2n] BX4

BE Bq2 BE Bq3

B~4 Bq 3 B~4N + N

m 'BE m —n BE BE
[(m —n)(A2+A3)+2n] BX4 m Bq2 Bq3

(A 1 1)

BE BE Br 2 m~2 BE
Bq2 Br3 Bqz

' (m n)Az+n Br—
B "== —,a0I3
BqN (m —n)R3+n

and (A12) together lead to
m2

g2+ A, 3)+2n]

BE BE

Bq3 Bl

Equations (Al 1)

N

[(m n)(—

BE
B2

(A12)

B'E BEX 2
—[(m n) /2]— a0l2

BXg (m —n)Az+n.

making substitution from Eq. (A10). Now using relations
like (A3) and (A6), we have

From the relation
2

2

+1313q, +l, l,q, +l, l,q6 ),
for the triclinic deformation, we have

2 2 2a0 2 B7 a0
G l2~ G

Bq2 2 Bq3 2

and

2r2 a0
l213 .

Bq4

(A14)

(A1S)

X3 2 2 BE+ a0l3-
(m —n)A3+n

(A13)

Also the relations (4) give

Bq4 Bq2
~2+ ~»

Bg
~2

4 2
(A16)
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and BE
BA4

Bq

A4 B$4 BA4

B BE
(kq+X3)

4 Bq46

Now

BA4 BA4
Differentiating partially and then making substitutions
from Eqs. (A15) and (A16), the above equation reduces to

4BE 2tto pp BE tto 2BE tto 2BE
BA,

' 4 B(r' ' & ' 2 B '
Substituting for B E!BA,4 in Eq. (A13) and then using Eq. (7) we get for C&z the expression

(A17)

n N I2 Bp(r)+
( „)~+„4XXXI3 B„,

1 2 3

(A18)
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