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We study the on-site model of a one-dimensional Fibonacci lattice. It is found that, compared
with the transfer model, the electronic spectrum has different global structure, but the same branch-
ing rule in the following hierarchies. The relationship between the numbers of constructing elements
of the lattice and the numbers of eigenstates in subbands is established. The improved Dean method
for solving eigenenergies and eigenfunctions and the transfer-matrix method are used to examine the
localization in very large samples. Three kinds of wave-function behavior (extended, localized, and
intermediate states) are definitely found. The effect of fluctuation in the site energies, which simu-
lates the randomness of layer thickness in experimental samples grown by molecular-beam epitaxy,
is numerically examined. Following the increase of fluctuation up to +40%, the band structure
changes very little. But even very small fluctuations will dramatically change the extended states to
localized states, which agrees with the theory of one-dimensional disordered systems.

Following the important experimental discovery of the
icosahedral symmetry in the metallic alloy Al-Mn by
Shechtman et al. ,

' a new research field of condensed state
physics has been opened. Levine and Steinhardt pro-
posed a three-dimensional Penrose tiling as the basic
structure to explain how icosahedral symmetry can coex-
ist with long-range order. At the same time, Merlin
et al. have successively grown a quasiperiodic Fibonacci
superlattice and carried out x-ray and Raman scattering
measurements. These experiments have stimulated the in-
terest in the study of one-dimensional quasiperiodic sys-
tems.

The Fibonacci lattice is the one-dimensional analog of
the Penrose tiling and the icosahedral quasicrystal.
This analog can be determined by the projecting tech-
nique, which systematically constructs the quasicrystalline
structure in various spatial dimensions in a unified way.
In the Fibonacci lattice there are two kinds of models
based on the tight-binding Hamiltonian,

H= g E(n)
~
n)(n

~
+ g [tt„„,

~

n)(n+1
~

, ~n)(n —1~],
(l)

where E(n) is the single-site energy and t„„+~ is the
nearest-neighbor hopping integral. For the on-site model,
the site energies consist of Ez and Ez ———Ez, which are
given by the Fibonacci sequence. The other model is the
transfer model, the Hamiltonian of which has a constant-
site energy, but contains two kinds of hopping integrals tz
and tz, which are arranged according to the Fibonacci se-
quence.

'

Recently, the transfer model has been extensively stud-
ied. ' However, very little has been published for the
on-site model. Using renormalization-group methods,
Kohmoto et al. ' and Ostlund et al. ' treat the on-site
model and get some results on the properties of spectrum
and wave functions. In this paper, we concentrate on the
on-site model of the Fibonacci sequence. In Sec. I, we in-

vestigate the energy spectrum, which is found to be quite
different from the transfer model in the global structure
of the electron spectrum, but not in the phonon spectrum.
In Sec. II, the localization of the electronic wave function
is examined by different approaches. The three kinds of
wave-function behavior, extended state, localized state,
and intermediate state, are definitely found. Finally, in
Sec. III we numerically investigate the effect of fluctua-
tion in the site energy, which corresponds to the fluctua-
tion of the layer thickness in the experimental samples. '

lt has been found that the influence on the band structure
is very small for modest fluctuations, but that the break-
ing of the quasicrystalline order results in the localization
of all eigenstates.

I. ELECTRONIC AND VIBRATIONAL SPECTRUM
OF THE FIBONACCI CHAIN

For simplicity, we consider the studied one-dimensional
model of the lattice as a chain of atoms, which contains
two different kinds of atoms, A and B. The Fibonacci
chain is defined by the generating rule A ~AB and
B~A, starting with B. Let F„be the number of atoms
in the nth generation, then the set (F„)satisfies the recur-
sion relation

F; =F; &+Ft —z . (2)

The chain, such as ABAABABAABAAB for the seventh
generation, can also be considered to be built up of three
kinds of constructing elements, A, AA, and B. Let Nz,
Nz q, and X~ be the numbers of the constructing ele-
ments, respectively. For the ith generation sequence, by
the induction method we have found the following distri-
bution rule:

Ft' py Ng Ft 4 Ng g Ft' 3 odd i

Ng ——F; 2, Nq ——F; 4+2, Ngg ——F;'3—&, even i .
This distribution is very important for the electronic spec-
trum. From the distribution rule above, we can easily cal-
culate the ratio of the number of the two different kinds
of atoms,
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Ngr= lim = limi~~ F; p+F; 1+
1+

+

where ~ is the golden mean.
For the on-site model of the Fibonacci chain, the equa-

tion of motion for the amplitudes of the electronic eigen-
function 0'= g„a„~n ) is

[E—E(n)]a„—a„+,—a„ (3)

where we have taken the nearest-neighbor hopping in-
tegral I; = —1. Using a direct diagonalization method
with a rigid boundary condition, we obtain the electronic
spectrum for the 13th generation Fibonacci sequence. In
Fig. 1, where we choose the site energy E~ =

~

Ez
~

=1,
the 233 eigenenergies are shown as a function of the order
of their magnitude. A four-subband global structure can
be clearly seen, which is different from the three-subband
global structure in the transfer model. But in each of the
following hierarchies, these two models have the same
branching rule. Each subband, according to the
F;=F; 2+F; ~+F; ~ rule, is divided into three sub-
subbands until it is unresolvable. This four-subband glo-
bal structure is characteristic of the electronic spectrum of
the on-site model. In Fig. 2, where the physical parame-
ters are the same as in Fig. 1, we schematically show how
the four-subband structure is formed. First, all the levels
of the electrons derived from atoms B form the lowest
subband, which we call the B subband. This is because
atom B always has atom A and cluster AA as its neigh-
bors, so its energy eigenstate is pushed to a level which is
lower than its "bare" energy, i.e., the site energy Ez ———1.
This point is well known for disordered systems. In the
same way, all the isolated atoms A generate the A sub-
band, which is the second upper subband in Fig. 2. How-
ever, the two bare levels of the AA cluster split and form

two AA subbands. The width of splitting depends on the
difference between Ez and Ez, if we keep the hopping in-
tegral t unchanged (see Fig. 3).

Now we know the numbers of the eigenstates in each
subband. We rewrite F; as

+i =Fi —2+Fi g+ Fi —4+ Fi' —3 ~

If i is an odd number, the number of eigenstates is F; 2 in
the B subband, F; 4 in the A subband, and F; z in each
one of the two AA subbands, respectively. The above for-
mula gives the distribution of the numbers of eigenstates
in the four subbands. If i is an even number, then Nzz,
the number of clusters A A, is F; 9

—1 and Nz is
F; 4+2. But in this case, the first and last atoms of the
Fibonacci chain are A atoms. Correspondingly, there are
two surface states in the two ends of the A subband, as is
shown in Fig. 3. They can be considered to join two
neighbor AA subbands. In this way, the structure of the
case with i even is the same as the case with i odd. In
fact, this argument can be easily understood if we connect
two ends of the Fibonacci chain as a ring, then although i
is even, the distribution rule, Nz ——F; &, N&z ——F; 3,
Xz ——F; 4, holds exactly.

This four-subband structure no longer appears in the
following hierarchy, but is instead replaced by a one- split
to three-subband self-similar structure. The reason is that
the Fibonacci lattice is constructed from three kinds of
constructing elements A, B, and AA. They quasiperiodi-
cally alternate and in this way generate the one- split to
three-subband self-similar structure.

Figure 3, where i = 12 (generation) and t = —1, shows
the site energy versus eigenenergy phase diagram, where
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FIG. 1. Electronic spectrum for an on-site model of Fibonac-
ci lattice with two site energies E& ———E& ——1, for 13th genera-
tion. The X labels the eigenstate with energy E&. The four-
subband global structure, the one- split to three-subband
hierarchical structure, the number of constructing elements, and
the distribution rules are shown.

FIG. 2. Schematic picture illustrating the formation of the
four main subbands from the constructing elements 2, AA, and
B. N are the coordinates of atoms in the Fibonacci chain.
and B form their subbands and AA forms two subbands, respec-
tively. The "bare" site energies are E& ———E~ ——1, and the hop-
ping integral t = —1.
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FIG. 3. Phase diagram in the site energy amplitude vs

eigenenergy plane for the 12th generation Fibonacci chain with

E& ———E~ ——1, t = —1. Four-subband global structure,
hierarchical structure, and surface state are shown.

FIG. 4. Phase diagram in the generation versus eigenenergy
plane for 12th generation Fibonacci chain with E& ———Ez ——1,
t = —1. Arrows indicate the surface states appearing for even
generation. The gross band structures become the same for even
or odd number of generations above 12th generation (see text).

we can clearly see the four-main-subband global structure
and the one- split to three-subband hierarchical structure
in the following substructures. We also can see two sur-
face states, which compensate two neighbor AA subbands
to complete the self-similar hierarchical structure. It is
interesting to see that when the site energy is small, these
two surface states definitely locate in the AA subbands.
With the increase of site energy they leave the AA sub-
bands and come close to the 2 subband. In Fig. 4, we
show the distributions of the electronic eigenenergy for
different generation in the on-site model under the rigid
boundary condition. We can see that above a certain gen-
eration the gross band structure does not change, irrespec-
tive of the system size. The position of the main bands
and gaps remains unchanged with the increase of the Fi-
bonacci generation. The eigenstates generated by increas-
ing the number of generation only fill the band regions of
the previous generation. This result is the same as in the
transfer model' and is different from the random binary
system. In Fig. 4, if the generation i is even, we can also
see the two interesting surface states compensating two
AA subbands. We notice that when compared with one of
the odd-i generations, the AA subband of the even-i gen-
eration is a little bit shorter in the end closest to the 3
subband. This suggests that these two states belong to the
AA subbands. We also should notice that above a certain
generation, for the odd- i generations or for the even- i gen-
erations the gross band structure does not change. But
both of them are different from each other, because these
two cases have different surface states which would
slightly change the positions and the widths of the sub-
bands.

The four-main-subband global structure is a quantum-
mechanical effect for electrons. We thus expect the global
structure of the phonon spectrum to be different. For the
on-site model of the harmonic Fibonacci chain, if we set
the strength of the harmonic coupling equal to unity, then
the equation of motion for the displacement u; from its
equilibrium position is

2—m;cu u; =u;+~+u; &

—2u; .

II. LOCALIZATION

As an analog, it is worthwhile to recall some results for
the Aubry model of one-dimensional incommensurate sys-
tems. ' Avron and Simon have suggested that at the
V=2t critical point, where V is the strength of the in-
commensurate potential and t is the nearest-neighbor hop-
ping integral, the spectrum is singular continuous and the
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FIG. 5. Phonon spectrum for an on-site model of a Fibonacci
lattice with masses of atoms m& ——2 and m& ——1 for 15th gen-
eration. The N is the mode number. The three-subband global
structure and the self-similar structure are shown.

Here m; is the mass of the ith atom, which is given by a
Fibonacci sequence. Figure 5, where we set mz ——2 and
m~ ——1, shows the phonon spectrum for the 15th genera-
tion Fibonacci chain. This spectrum, as we expect, has a
three-subband global structure and each subband, accord-
ing to the F; =F; q+F; 3+F; z rule, is divided into
three sub-subbands and so on. This result is the same as
for the transfer model. ' This structure with three
branches, in principle, contains one acoustical branch and
two optical branches which correspond to two kinds of
relative vibrations between 3 and 3, or 3 and B. The
self-similar structure again comes from the quasiperiodi-
city of the Fibonacci sequence.
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have unusual behavior, decaying practically to zero and
then recovering to large values, for wave vector Q equal to
an ordinary irrational number. In the works of Kohmoto
et al. ' and Ostlund et al. ,

' by choosing a specific
discontinuous periodic potential whose period is incom-
mensurate with the lattice period, they reduce the
Schrodinger equation to a recursion relation for the
transfer matrices which follow the Fibonacci sequence.
Because the diagonal matrix elements of the transfer ma-
trices are quasiperiodic, this corresponds to the on-site
model of the Fibonacci sequence. They conclude that the
spectral measure is singular continuous and the wave
function is critical. Recently, Kohmoto directly treated
the Fibonacci sequence; the result is confirmed and there
are two types of wave functions: self-similar and chaotic.
Thouless and Niu, ' using the scaling theory of wave
function, under some approximation conclude that at crit-
ical point V=2t, the wave function has a power-law de-
cay, which is energy dependent. On the other hand, using
the successive average resistivity as the criterion of locali-
zation, one of the present authors has numerically
shown that at the critical point the localization of the
wave function depends on the wave vector and eigenener-
gy, and that the extended states, localized states, and in-
termediate states coexist. Therefore, the wave-function
behavior of a Fibonacci sequence is an interesting and
open problem.

For examining the localization of the on-site model of
the Fibonacci sequence, we firstly use the eigenvalue-Dy-
Wu-Wongtawotnugool (EDWW) method ' to calculate
the eigenenergies, eigenvectors, first moment, second mo-
ment, and inverse participation ratio (IPR) under a rigid
boundary condition.

The ith normalized eigenfunction can be expressed as
N

~e, )= ga, , ~j) .
j=l

Then the corresponding IPR is defined as
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FIG. 6. The first moments, second moments, and the IPR
versus eigenenergy for the 18th generation ( A =2584) are
shown by Figs. 6(a), 6(b), and 6(c), respectively. The site ener-
gies F& ———E& ——1. Figure 6(a) shows that the center of gravity
of the wave functions spreads over the whole chain, but that the
middle part of it has bigger probability. Figures 6(b) and 6(c),
which display the second moment and IPR respectively, show
that the localizations of eigenstates are quite different from each
other. The IPR spectrum also clearly exhibits the self-
similarity.

If we take the atom spacing as the unit of length, then
the first moment is defined as

N

M~ ———g jBJ
j= 1

and the second moment is defined as

N N

j=1 j=l

2 1/2

The first moment gives the center of gravity of the wave
function, the IPR and second moment, from a different
aspect, measure the localization of the wave function.
The IPR is a measure of the inverse of the number of sites
occupied by the wave function and the second moment is
a measure of the extension of the wave function.

Figure 6 shows the numerical results of the EDWW
method for an 18th generation Fibonacci sequence
(N =2584). In Fig. 6(a), we plot the first moment versus
eigenenergy, where we can see the four-main-subband glo-

bal structure and the one- split to three-subband hierarchi-
cal structure. At the same time, we can also see that the
center of gravity of the eigenfunctions spread over the
whole system, but the majority has the center of gravity in
the middle region. In Fig. 6(b), we can see a large varia-
tion in the second moments, which suggests the coex-
istence of three kinds of wave functions: extended, local-
ized, and intermediate (unusual wave-function behavior).
The same conclusion can be drawn from Fig. 6(c), which
shows the IPR versus eigenenergy and where also the
self-similarity of the structure can be seen.

More solid evidence of the coexistence of the different
localization is the behavior of the wave functions them-
selves. We use the EDWW method again for a 21st gen-
eration Fibonacci sequence, which contains N = 10946
atoms. In Fig. 7 we show the extended, intermediate, lo-
calized, and surface states, respectively, which also
displays some kind of quasiperiodicity. But, it is evident
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where t is the hopping integral and E (n) are the site ener-
gies. In the perfect ordered chain we take E(n) to be
zero, and in the Fibonacci segment, Ez ———Ez ——1.

The equation of motion for the amplitudes of eigen-
function is

o 4-S-
(b)

IIIe.j I . J.. M lh(' j$ . (Il La.

1 I
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We define the promotion matrix as follows:
T

e —E(n) —1 an an+

(3)
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In the left and right perfect conductors of the Fibonacci
segment the normalized eigenfunction can be written as
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We define the transfer matrix TN by

(6)

QP

0

1' = -2.055 741 914 7

ROO 400 600 00 SOOO i200 S400
Coordinate of atoms

B D
TN (7)

Now we assume a situation, where a particle is incident to
the Fibonacci segment from the left perfect-ordered chain.
We take the incident amplitude to be unity. If the total
reflection amplitude from the segment is rN and the total
transmission amplitude is tN, then

FIG. 7. Wave functions with different localizations for 21st
generation Fibonacci chain ( N = 10946). Site energies

E& ———E~ ——1, hopping integral t =1. (a) case is a wavelike ex-

tended state, (b) case is an intermediate state, and (c) case is a lo-

calized state with slow power-law decay. Fig. 7(d) shows a sur-

face state. Note that in panel (d) only a fraction of the whole

chain is plotted.
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From the definition of TN, we have

(9)

that different localizations of the eigenstates coexist for
the Fibonacci quasicrystal.

To confirm the above conclusion, we have calculated
the resistivity, which is a plausible physical quantity for
estimating the localization and can be examined, in princi-
ple, by experiment. For calculating the resistivity, the
Landauer formula combined with the transfer matrix
method is very powerful and has been used by many au-
thors in the disordered and one-dimensional incommensu-
rate systems. ' '

We embed a segment of the Fibonacci lattice, which
contains N+1 atoms and is of length N (here the lattice
spacing is taken as unity) in an infinite, perfectly conduct-
ing, ordered chain. For this system the tight-binding
Hamiltonian is

H= g E(n)
I
n)(n

I

+ 2 '(I "&&n+II+ l~+»&n I)

r~:—T~&2/T~&] &~= 1/T~]&

The reflection coefficient is

2RN
I

rN
I

T~)2T~,2/T~„T~, (

and the transmission coefficient is

T~= l4 I
=1/(T~„Tg„), (12)

where TN &
is the element of transfer matrix TN.

TN ——OS 'PNS,

ik(N+1) 0
e

—ik(N+1) (13)
1 10

The Landauer formula for the energy-dependent dimen-
sionless resistance R (E) of a finite one-dimensional sys-
tem embedded in a perfect-ordered chain is

R(E,N)=R~/Tiv=
I T~ (14)

For finding an effective criterion of localization suitable
for the transfer matrix method, we examine the average
resistivity p which is defined as
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stantial amounts of disorder and the diffraction pattern
still appears as a dense set of peaks. We are interested in
studying, for our simple one-dimensional on-site model of
a Fibonacci lattice, that which happens to the electronic
spectrum and the localization of eigenstates, when the
model is extended to include fluctuations in the site ener-

gy.
Two different ways of including random fluctuations in

the site energies are considered. In the first case, the ran-
dom fluctuations are allowed with equal probability for
increasing and decreasing the site energy, so the allowed
site energies are uniformly distributed over the intervals
( —1 —p, —1+@)and (1 —p, 1+@),respectively, where we
have chosen the original site energies Ez ———Ez ——1 and p
is the percentage of fluctuation. p =0 corresponds to the
perfect quasicrystalline order. In the second case, the ran-
dom fluctuations are restricted to diminishing the differ-
ence between Ez and Ez. It means that the fluctuations
are only allowed in the intervals ( —1, —1+2p) and
(1 —2p, 1), where the range of fluctuations is the same as
in the first case, but chosen in a more restricted way.
Here p =0 also corresponds to the perfect quasiperiodici-
ty, but p = 1 corresponds to complete disorder in the An-
derson sense with uniform distribution of the site energies
in the interval ( —1, 1). The interesting feature with this
second approach is that it allows a study of a continuous
crossover from perfect quasiperiodicity to complete uni-
forrn disorder. The electronic spectra of the second case
as a function of p are shown in Fig. 11. As is easily
recognized by comparing with Figs. 10 and 11 there is a
remarkable difference between the results from the two
ways of introducing the random fluctuation. In Fig. 10
there is very little change in the gross features of the spec-
trum when p increases from 0 to about 0.4 and many of
the characteristics of the Fibonacci chain survive even for
p up to 1. In the second case the Fibonacci characteristics
disappear much faster when p increases and p =1 corre-
sponds to a complete structureless spectrum. The reason
for this large difference is that in the first case the center
of gravity for the site energies stays constant and equal to

O

0

0-
I

-2

FIG. 11. Same physical situation as in Fig. 10, but the fluc-
tuations of site energy are restricted to diminish the difference
between E& and Ez. Tke spectra are very sensitive to the in-
crease of the fluctuation. When the fluctuation equals 0.5, the
subband structure almost disappears.

the value in the original perfect quasicrystal, while in the
second case the centers of gravity at —1+p and 1 —p,
respectively, both move to zero as p increases to 1. So in
the first case the underlying Fibonacci structure still plays
a dominant role, awhile in the second case its influence di-
minishes as p increases. It is interesting at this point to
compare the disappearance of the characteristic Fibonacci
energy gaps in Fig. 11 with the decrease of the energy
gaps as the site energy amplitude diminishes in Fig. 3. If
we were to recall the experiments done by Todd et a/. ,

' it
would be very interesting to see whether an asymmetric
fluctuation in the experimental layer thickness also should
result in large changes in the diffraction peak pattern.

To examine the influence of the fluctuation to the local-
ization of the eigenstate, in Fig. 12 we plot the logarith-
mic average resistivity as a function of the size of Fi-
bonacci chain. The chosen eigenenergy E =0.201 00 cor-
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FICr. 10. Phase diagram in the fluctuation versus eigenenergy
plane for the 12th generation Fibonacci chain with
E~ ———E~ ——I, t = —1. The fluctuations of site energy have
equal probability for increasing and decreasing. The gross band
structure changes very little if the fluctuations are smaller than
+0.4.

FIG. 12. Logarithmic average resistivity versus system length
for different fluctuations. Chosen extended state E=0.020100
with site energies E& ———E~ ——0.5, t = —1. When fluctuation
equals zero, the graph is a monotonously decreasing curve,
which is characteristic of an extended state. With the increase
of the fluctuation, the state develops to be more and more local-
ized, which is characterized by the monotonous increase.
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responds to an extended state, which is characteristic of
the monotonous decrease of the average resistivity. Fol-
lowing the increase of the fluctuation, the average resis-
tivity changes from monotonous decreasing to increasing.
It means that the state develops into a localized state.
This transition does occur even when the fluctuation is as
small as +1%. We can expect that this transition of lo-
calization is a general property of a Fibonacci chain, ir-
respective of the eigenenergy. It is well known that in
one-dimensional binary random systems, all the states are
localized no matter how weak the disorder is. Therefore
this transition induced by the fluctuation, which causes
the system to be a disordered one, is not unexpected. On
the other hand, De1yon et al. have proved that arbitrari-
ly small local perturbations of the potential at two sites
make the singular continuous spectrum, which is obtained
in some classes of one-dimensional incommensurate sys-
tems such as the Aubry model, disappear and instead all
eigenstates become exponentially localized. The Fibonacci
quasilattices, as an analog of incommensurate systems,
also should have the same kind of electronic properties,
which is confirmed by our computations.

IV. SUMMARY

We have performed a complete study of the on-site
model for a one-dimensional Fibonacci quasicrystal in-
cluding both the regular and nonperfect cases. The ana-
lytic and numerical results show that the on-site model is
different from the much more studied transfer model in
the global structure of the electronic spectrum, but not in
the phonon spectrum. We have estabIished the general re-
lations between the numbers of different constructing ele-
ments in the lattice and the numbers of eigenstates in sub-
bands, in which the surface states interestingly play a
compensative role for the even generation cases. These re-
lations are confirmed by the spectra obtained and can be
easily extended to other one-dimensional quasicrystals. "

The question of localization has been addressed with
several approaches; the first and second moment, the in-
verse participation ratio, the spatial distribution of the
wave function, the resistivity, and the criterion of succes-
sive average resistivity. All these approaches conclude the
coexistence of the eigenstates with different localizations,
i.e., extended, localized, and intermediate states. At the
same time, these states may have some common features
which do not appear in the periodic and the disordered

systems, such as the self-similarity, quasiperiodicity, and
the unusual behavior (decaying and recovering a1ternate-
ly). Therefore, if the term "critical state" is only under-
stood to have the above common features as some authors
did then, it does not completely cover the complexity of
one-dimensional quasilattices. Therefore, we prefer not to
use a single term to describe the electronic properties of
quasiperiodic lattices, because in these lattices the locali-
zations are dependent of the parameters and there is not a
unique state.

The experiments by Todd et al. ' show the interesting
results about the effects of fluctuations in the layer thick-
ness on the x-ray diffraction peak patterns. In Sec. III we
show that, to the best of the present authors' knowledge,
this is the first time that the influences of the deviations
from quasiperiodicity are present on the electronic spec-
trum. The numerical results show that a symmetric fluc-
tuation of the site energy results in very small changes in
the electronic spectra, but that if the fluctuations were
nonsymmetric the spectrum would be very sensitively
changed. Therefore, the calculations suggest that the x-
ray diffraction-peak patterns would be changed if the
fluctuations of the layer thickness of the samples were
nonsymmetric, because the averaged fluctuations are more
important than the amplitude of the fluctuations in ques-
tion.

It is well known ' that in the one-dimensional disor-
dered systems all states are localized no matter how weak
the disorder is. We can imagine that the quasiperiodic
systems also would have the same properties. In Sec. III,
using the criterion of successive average resistivity we nu-
merically proved that a very small fluctuation would
change the extended state to be localized. This result also
agrees with the results for the one-dimensional incom-
mensurate systems.
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