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Calculation of the Debye-Wailer factor for atom-surface scattering: He on Ag(111)

J. Idiodi, V. Bortolani, A. Franchini, and G. Santoro
Dipartimento di Fisica, Universita di Modena, 41100Modena, Italy

V. Celli
Department of Physics, University of Virginia, Charlottesville, Virginia 22901

(Received 22 August 1986)

By a consistent application of the distorted-wave Born approximation, the Debye-Wailer exponent
for the scattering of He atoms from the Ag(111) surface is directly computed. When diffraction is

negligible, as in this case, the decrease in specular intensity is simply obtained by summing the
scattering due to all possible one-phonon processes. Using one-phonon computed intensities that
agree with experiment along high-symmetry directions of the surface Brillouin zone, we find that
the computed Debye-Wailer exponent agrees with experiment and corresponds to an effective Debye
temperature of 241 K. All corrections to the eikonal-type formula, 2 8' =4p, (tt, ), are automatical-

ly included. In particular, the contribution of phonons with high parallel momentum is sharply cut
off.

I. INTRODUCTION

Many papers have dealt with the theory of thermal at-
tenuation of the diffracted beams in atom-surface scatter-
ing and on comparisons with experiment. ' ' Empirical-
ly, it is found in many cases that the thermal attenuation
is well described by a Debye-Wailer factor, e, with

2W=((b, p.u) ),
where u is approximately the thermally induced displace-
ment of a bulk atotn (and not of a surface atom, as one
would naively expect). Here b,p is the momentum change
upon diffraction, with the z component modified by the
effect of the attractive well (Beeby correction)

p2 k 2+2m (1.2)

where D is the depth of the attractive potential well, m is
the mass of the atom, and k, is the normal component of
the wave vector at infinite distance from the surface. In
the temperature range where the classical harmonic ap-
proximation is valid, (u ) is proportional to the tempera-
ture T. Thus in practice, for specular reflection from a
monatomic cubic solid, one can use'

3T(R b,k, +gmD)28'=
Mkg TD

(1.3)

for TD/20& T(TD, where TD is roughly equal to the
bulk Debye temperature. There are quantum corrections
for T ~ TD/20 and corrections due to anharmonic effects
for T ) TD.

It is puzzling at first that the bulk Debye temperature
should appear in Eq. (1.3), or the bulk displacements in
Eq. (1.1). The following qualitative answer to this puzzle
has been generally agreed upon. Equation (1.1) is ob-
tained in the eikonal approximation to hard-wall scatter-
ing, where U is then the displacement of the hard wall

that represents the repulsive part of the atom-surface po-
tential. ' There are several corrections to this simple re-
sult. To begin with, the eikonal approximation loses va-
lidity at low perpendicular momentum, and in particular
the emission of energetic phonons cannot occur if the
atom has insufficient energy. ' ' Further, the true atom-
surface collision is not impulsive, as assumed in the hard-
wall model, and a soft potential gives less inelastic scatter-
ing than a hard wall. ' Finally, the phonon-induced dis-
placement of the effective hard wall is given by an ap-
propriate average of the displacements of the underlying
surface atoms, and thus its mean-square value is less than
that of an individual surface atom. '" ' Due to these
three corrections, the effective (u ) that appears in Eq.
(1.1) is smaller than the (u ) of a surface atom, typically
by a factor of ~2, and it is then (coincidentally) close to
the (u ) of a bulk atom.

The purpose of this paper is to quantitatively compute
2 W and to test whether these qualitative arguments are in
fact correct. We choose as a test case the scattering of He
from Ag(111), because for this system the needed infor-
mation is known: the dispersion relations and polariza-
tions of bulk and surface phonons are given by slab calcu-
lations, with force constants adjusted to reproduce neu-
tron and atom scattering data, while the atom-surface in-
teraction potential has a theoretically determined shape,
with parameters adjusted to give agreement with elastic
and inelastic atom scattering data. ' ' There are then no
adjustable parameters in the calculations reported here, al-
though we have varied the parameters to test that the
predetermined parameters are indeed needed to reproduce
the observed' value of 2 W (within the experimental and
theoretical uncertainties, of course).

We compute the thermal attenuation to second order in
the atom-phonon interaction, i.e., we include only one-
phonon processes; the specular intensity then is of the
form 1 —2AT. Obviously this formula is valid only for
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T «A '. We assume then that for all temperatures the
specular intensity is given approximately by e . This
expression has been found by Armand and Manson ' to
be a good approximation up to second order in T, by ex-
plicitly summing all the two-phonon interactions. If only
on-shell processes are kept in this model, one obtains
[(1—0.5AT) j(1+0.5AT)], which agrees with e to
second order in AT. The exponential form can also be
justified by using cumulants and assuming that only the
one-phonon cumulant average is important. It must be
recognized, however, that there is no rigorous justification
of the extension of the second order result, and that we
rely on the fact that the Debye-Wailer exponential form
gives a good fit of the experimental data for Ag(111).'

The results obtained here are valid even though they are
based on a theory of the He-surface interaction that may
need to be refined, as discussed after Eq. (2.12). Since the
parametrized interaction of Refs. 17 and 18 accurately
reproduces the experimental inelastic intensities for pho-
nons along the high-symmetry directions, it can be used:o
interpolate the experimental inelastic intensities for pho-
nons throughout the surface Brillouin zone, which are all
that is needed for the comparison of the present calcula-
tion with experiment. However, the possibility of chang-
ing the parameters in a physically motivated interaction
also enables us to make comparisons with several simple
models that are obtained as limiting cases, as discussed in
Sec. III.

m Rekf,2W=, g, n(~ (Q))
2A'NMk;, g, I kfz I

o~~(Q)

J dzX(kf„z)V. Uq(z)X(k;, ;z)
I

',
(2.3)

where m is the He mass, M the Ag mass, N is the number
of Ag atoms on the surface of area L, (K;,k;, ) and
(Kf, kf, ) are the initial and final momentum of the He
atom, Q and co (Q) are the parallel momentum and the
frequency of a phonon belonging to the branch v, n (co) is
the Bose function: n (co) = [exp(iricvlks T) —1] ', g(k;„z)
and X(kf„z) are the wave functions of the He atom in the
static potential of the surface, normalized to the asymp-
totic behavior X(k, ;z)~2sin(k, z+5), and the dynamic
interaction V.UO(z) is defined in Eq. (2.9) below. The fi-
nal momentum (Kf, kf, ) is determined by the conserva-
tion laws

Kf ——K;+Q,
$2(Kf+kf, ) =A (K,. +k;, )+2mfiiv (Q) .

(2.4)

(2.5)

It is understood that both positive and negative values of
cv (Q) must be included in Eq. (2.3), with positive ro,(Q)
corresponding to phonon annihilation. The dynamic in-
teraction V.U&(z) is derived from a He-Ag repulsive po-
tential v (r), taken to be proportional to the surface charge
density p(r) of Ag

v(r) =Ap(r) (2.6)
II. FORMALISM

The thermal attenuation of the specular intensity is
given by

I
Soo I, where Soo is the specular element of the

S matrix.
I Soo

I

can be found either by computing Soo
directly or by using the unitarity of the S matrix to write

Is I'=I —+ Is„I', (2. 1)

I
Soo I

=
I

I +2'™Too
I

+4ir
I
«Too

I

=1+4rrImToo+. 4~
I

Too
I

(2.2)

Using the optical theorem for the T matrix, it can be seen
that Eq. (2.2) is exactly equivalent to (2.1), with

Szo ———2~iT~O. The two equations also correspond order
by order, although one must go one order higher in the
calculation of Too. We compute Szo to first order and use
Eq. (2.1), which is equivalent to computing Im Too to
second order ( Too ——0 to first order) and neglecting

I
Too

I
(which is of the fourth order) in Eq. (2.2). The

starting formula, using the distorted-wave Born approxi-
mation to compute S~o, is then

where the sum is over all inelastic processes (in the ab-
sence of diffraction). Elaborate derivations of this result
and explicit formulas for the one-phonon processes have
been given by Armand and Manson ' and by Celli and
Maradudin '' we will use the final expression of Ref.
11, Eq. (5.31), for our numerical calculations. The con-
nection with the formalism of Manson et al. ' is estab-
lished by writing S =1—2~i T„so that

(2.7)

V Uo(z)=
—g' npie 0 .Q —e, 0 P e P'e

V V

where
(2.9)

e 0

is the polarization vector of the (Q, v) mode normalized to

e 1 =1
1

(2.10)

with A =375 eV. The same pairwise interactions, plus
the van der Waals attraction, give the static He-surface
potential. As in previous calculations, ' ' the static po-
tential is approximated by

C3
Vo(z) = Uoe ~' — f3(k, (z —zo))

(z —zo)
with Uo ——296 eV, C3 ——0.44 eV A, zo ——1.38 A and P
adjusted at each incident energy to give the correct loga-
rithmic derivative at the classical turning point z, of the
potential (2.7). The damping function f3 is given by

f3(x)= 1 —[2x (1+x)+1]e (2.8)
with x =K, (z —zo), where K, is a parameter of the order
of an inverse atomic radius. K, =1.1 A ' reproduces the
bound states of He/Ag(111) and the depth of the well. In
a consistent way, the dynamic interaction is well approxi-
mated by
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and evaluated for the surface atom (1=0). The lateral
cutoff factor exp( —Q /2Q, ), with Q, =P/z„naturally
arises from a pairwise sum of Born-Mayer potentials and
quantitatively describes the "Armand effect" for this
type of interaction. "' ' The effect of the attractive po-
tential has been simulated by the Beeby correction, i.e., k,
is replaced by p, given by Eq. (1.2), because the exact cal-
culation was reproduced to within 10% by the Beeby
correction. The relevant matrix elements are then

og
CV 8-
C3

2 .2+ pizpfz ~piz ~pfz

P
'

P

with

s(x,y) =
x —y

2

x —y . x+ysinh sinh
2 2

sinhx sinhy

xy

' 1/2

dzg kf„z Uoe ~'g k;„z

(2.11)

. (2.12)

0
0.0

"by+, 44.J--k+ + ~44e+ae ~ J ok J J
I I t I t 1

0.2 0.4 0$ 0.8
[Q/t:2~/a, )j'

1.0

FICx. 1. Effective mean-square surface displacement of a 12-
layer Ag(111) slab vs Q [Q summand in Eq. (2.3), normalized
to 4P;, when summed over the surface Brillouin zone] at
T =600 K, E; =63 meV, I9; =50', f3=2. 14 A ', D =6 meV.
ao is the lattice constant of Ag. o, Q, '=0, vibrating soft wall
{VSW). 6, Q, '=0.685 A, intermediate vibrating-soft-atom
(IVSA) model. +, Q, '=1.37 A, vibrating-soft-atom (VSA)
model (predetermined parameters).

Inserting these expressions in Eq. (2.3), we obtain a for-
mula equivalent to Eq. (5.31) of Ref. 11.

A word of caution about this formula is in order. A
completely consistent theory of the He-Ag interaction on
the basis of a pairwise sum of repulsions is not possible:
either the static corrugation comes out too large, or the at-
tractive well is too shallow. ' Here we have chosen a
dynamic interaction that is consistent with the well depth,
and have disregarded the (very small) static corrugation
altogether. One reason for doing so is that the theory of
the laterally averaged potential (2.8) is thought to be in
better shape than the theory of the static corrugation. A
more practical reason is that we need the wave functions
of the potential (2.8) to compute the matrix elements of
(2.9), but can neglect the corrugation.

Most of the calculations reported here were carried out
for a slab of 24 atom layers and the sum over the lateral
momentum Q in Eq. (2.4) was performed by using 18 spe-
cial (Baldereschi) points in the irreducible part of the sur-
face Brillouin zone. This procedure yields results that
are accurate to better than 5%,' convergence was tested by
performing some calculations with a variable number of
atom layers (6 to 42) and of Baldereschi points (up to 45)
as discussed in the next section. The phonon frequencies
and polarizations have been computed by the slab method
within a force constant parametrization scheme, by ad-
justing the force constants in the surface region' ' to ob-
tain agreement with the phonon frequencies measured by
inelastic He scattering.

III. NUMERICAL RESULTS

Figure 1 shows the effective surface-projected
momentum-selected phonon density of states, i.e., the con-
tribution for different Q vectors to the effective mean-
square surface displacement, 2 W/4p;„where 2 8' is given
by Eq. (2.3) and p;, contains the Beeby correction accord-
ing to Eq. (1.2). The vibrating-soft-atom (VSA) results
were obtained using the He-surface interaction parameters
determined by previous work' ' and thus represent our

24-
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FICx. 2. Same as Fig. 1, multiplied by Q, vs Q. To illustrate
convergence few points computed for a 24 layers slab in the
VSA model are shown as &.

best theoretical prediction; the results of the vibrating-
soft-wall (VSW) model and those of the intermediate VSA
(IVSA) model are also shown for comparison, as discussed
more fully below. The dotted curves have been interpolat-
ed through the values calculated for a slab of 12 atom
layers at the 18 Baldereschi points (7, 1), (8,2), (9,1), (6,2),
(6,4), (7,5), (8,4), (9,5), (7,7), (8,8), (9,7), (5,1), (4,2), (4,4),
(5,5), (3,1), (1,1), and (2,2) in units of
( v'3/54, 1/2/27)(2m/a 0 ). The small deviations of the
computed points from a smooth curve show that Q values
in different directions give contributions that depend ap-
proximately on Q only. All three curves in Fig 1.
diverge as Q

' for small Q in the limit of infinite slab
thickness. For a slab of N layers, however, the curves
diverge as Q for Q & 2'/Nao, because the frequencies
of the slab bending modes are proportional to NaoQ, and
not to Q. This divergence creates numerical integration
problems that are avoided in practice by using a number
of Baldereschi points Nz smaller than N/6+N /12, so
that the first Baldereschi point is not too close to the ori-
gin. In order to display the behavior near Q=O, the data
of Fig. 1 have been multiplied by Q and replotted in Fig.
2 with Q as abscissa; several points computed with
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N =24 have also been added. The behavior for N~m
and the error made using a finite Nz are easily inferred
from these plots. The small Q contribution to 2 W is ac-
curately given by the area under the curves in Fig. 2, be-
cause g& f(Q) is well approximated by 2~ J Qf(Q)dQ
when Qf (Q) is nearly constant and independent of the
direction of Q.

The results obtained with the help of Fig. 2 are shown
in Fig. 3 in comparison with the experimental specular re-
flectivity obtained by Horne, Yerkes, and Miller' for
He/Ag(111). As explained in the Introduction, we have
extended the validity of our calculation by replacing
1 —2 8' with e and we compare e to the experi-
mental specular intensity normalized to unity at T=0.
The predetermined values of the "softness parameter" P
and of the "cutoff parameter" Q, have been obtained as

FIG. 3. Comparison of computed thermal attenuation with

experimental data, ~, for Ag(111) (Ref. 19). The effect of the la-

teral cutoff is seen by comparing the curves labeled VSA

( Q, '=1.37 A), IVSA (Q, '=0.685 A), and VSW (Q, '=0).
The effect of the softness correction is seen by comparing VSW
with VHW (vibrating hard wall, p= oo and Q,

' =0).

explained in Sec. II and correspond to the full vibrating-
soft-atom model. We also use a depth D =6 meV as in
Ref. 15, rather than the value of D =8.2 meV chosen by
Horne et al. ' on the basis of a fit to other data at lower
incident energy and high incident angles (which we have
not tried to reproduce because they do not behave ex-
ponentially with T over a wide range). It can be seen that
the computed Debye-Wailer factor agrees with the data
for these values of the parameters.

The other lines drawn in Fig. 3 display the effect of the
lateral cutoff and of the wall softness. From the slopes of
the plots in Fig. 3 and other calculations, we obtain, ac-
cording to Eqs. (1.1) and (1.2), effective Debye tempera-
tures TD that are reported in Table I. From this table it is
seen that our computed "bulk" value of TD is in good
agreement with the experimental bulk value ( TD& ——225
K). The experimental value of TD for He scattering,
TDH„ is 247 K (this differs slightly from the value given
in Ref. 19 because we use a different D for the Beeby
correction) and is in good agreement with the VSA value.
As remarked by Horne et al. ,

'
TDH, is higher than the

bulk Debye temperature, TDz ——225 K, and much higher
than the surface Debye temperature as determined by
electron scattering, TDz ——155 K, which is about equal to
TDz/v 2, as expected for a (111) surface. The apparent
increase of the Debye temperature, or the apparent de-
crease of (u ), is due to the corrections discussed in the
Introduction, all of which are automatically included in
the VSA calculation through the "softness factor" S [Eq.

Q2/QQ2
(2.12)] and the lateral cutoff factor e ' (which gives
the "Armand effect" ). The separate effects of the vari-
ous corrections are shown in Table I; in particular, the
Debye-Wailer factor computed for a hard wall corre-
sponds to a Debye temperature of 151 K, in agreement
with the surface Debye temperature TD& ——155 K mea-
sured by electron scattering. TD is practically unchanged

TABLE I. Computed values of 2A =2W/T and of the effective Debye temperature TD for a 24
layer slab of Ag(111), using the model of Ref. 15 (modified surface force constants), or, for comparison,
a model with surface force constants equal to those in the bulk. He beam parameters and well depth D
as in Fig. 1. Bulk: computed from 2 W =4k;, (u, ) for the 12th layer. Eikonal: computed from
2 W =4p, (u, ) for the surface layer. VHW: From Eq. (2.4) with p= 100 A ', Q, '=0 (vibrating hard
wall). VSW: P=2. 14 A ' and Q, '=0 (vibrating soft wall). VHA: P=100 A ', Q, '=1.37 A (vi-

brating hard atoms). IVHA: p=100 A ', Q, =0.685 A (intermediate VHA). VSA: p=2. 14 A
Q, '=1.37 A (vibrating soft atoms). IVSA: p=2. 14 A ', Q, '=0. 685 A (intermediate VSA). (MA)
indicates that pr is computed for Q =0 (Manson-Armand simplification).

Models
Bulk force constants

2A (K ') T (K)
Modified surface force constants
2A (K ') TD (K)

Bulk
Bulk (MA)
Eikonal
VHW
VHW (MA)
VSW
VHA
IVHA
VSA
IVSA
VSA (MA)

0.007 08
0.007 10
0.01447
0.014 37
0.014 45
0.012 15
0.006 12
0.01079
0.005 47
0.009 29
0.005 79

216
216
151
152
151
165
232
175
246
189
239

0.007 09
0.007 11
0.014 64
0.014 55
0.014 62
0.012 86
0.006 23
0.01094
0.005 69
0.009 78
0.006 01

216
216
150
151
150
160
230
174
241
184
235
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by taking p;, =pIz in Eq. (2.4), showing that the "closed
channel effect" ' ' is not important in this energy range,
or in other words that the hard-wall potential could be
treated in the eikonal approximation. The main correc-
tion, as discussed already, is due to the lateral cutoff Q, .
If this cutoff is included, it is not a bad approximation to
make the "Manson"-Armand simplification, ' i.e., to ig-

nore the lateral momentum transfer in computing the rest
of the matrix element (which depends only on pI). A
simplification of this type can be very useful for a realistic
theory of many phonon effects, including higher-order
corrections to the elastic Debye-Wailer factor, thermal at-
tenuation of one-phonon processes, and possible multipho-
non structure in inelastic scattering.
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