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Calculation of the Debye-Waller factor for atom-surface scattering: He on Ag(111)
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By a consistent application of the distorted-wave Born approximation, the Debye-Waller exponent
for the scattering of He atoms from the Ag(111) surface is directly computed. When diffraction is
negligible, as in this case, the decrease in specular intensity is simply obtained by summing the
scattering due to all possible one-phonon processes. Using one-phonon computed intensities that
agree with experiment along high-symmetry directions of the surface Brillouin zone, we find that
the computed Debye-Waller exponent agrees with experiment and corresponds to an effective Debye
temperature of 241 K. All corrections to the eikonal-type formula, 2 W =4p2{u?), are automatical-
ly included. In particular, the contribution of phonons with high parallel momentum is sharply cut

off.

I. INTRODUCTION

Many papers have dealt with the theory of thermal at-
tenuation of the diffracted beams in atom-surface scatter-
ing and on comparisons with experiment.!~!3 Empirical-
ly, it is found in many cases that the thermal attenuation
is well described by a Debye-Waller factor, e ~2%, with

2W ={(Ap-u)?) , (1.1)

where u is approximately the thermally induced displace-
ment of a bulk atom (and not of a surface atom, as one
would naively expect). Here Ap is the momentum change
upon diffraction, with the z component modified by the
effect of the attractive well (Beeby correction):!

pl=k2+42mD/#*, (1.2)

where D is the depth of the attractive potential well, m is
the mass of the atom, and k, is the normal component of
the wave vector at infinite distance from the surface. In
the temperature range where the classical harmonic ap-
proximation is valid, {(u?) is proportional to the tempera-
ture 7. Thus in practice, for specular reflection from a
monatomic cubic solid, one can use'*

3T (#Ak2 +8mD)
B MkpT}

(1.3)

for Tp/20<T <Tp, where Tp is roughly equal to the
bulk Debye temperature. There are quantum corrections
for T < Tp /20 and corrections due to anharmonic effects
for T >Tp.

It is puzzling at first that the bulk Debye temperature
should appear in Eq. (1.3), or the bulk displacements in
Eq. (1.1). The following qualitative answer to this puzzle
has been generally agreed upon. Equation (1.1) is ob-
tained in the eikonal approximation to hard-wall scatter-
ing, where U is then the displacement of the hard wall
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that represents the repulsive part of the atom-surface po-
tential.>3 There are several corrections to this simple re-
sult. To begin with, the eikonal approximation loses va-
lidity at low perpendicular momentum, and in particular
the emission of energetic phonons cannot occur if the
atom has insufficient energy.>>® Further, the true atom-
surface collision is not impulsive, as assumed in the hard-
wall model, and a soft potential gives less inelastic scatter-
ing than a hard wall.>'> Finally, the phonon-induced dis-
placement of the effective hard wall is given by an ap-
propriate average of the displacements of the underlying
surface atoms, and thus its mean-square value is less than
that of an individual surface atom.*''=!® Due to these
three corrections, the effective (u?) that appears in Eq.
(1.1) is smaller than the (u2) of a surface atom, typically
by a factor of V2, and it is then (coincidentally) close to
the (u?) of a bulk atom.

The purpose of this paper is to quantitatively compute
2 W and to test whether these qualitative arguments are in
fact correct. We choose as a test case the scattering of He
from Ag(111), because for this system the needed infor-
mation is known: the dispersion relations and polariza-
tions of bulk and surface phonons are given by slab calcu-
lations, with force constants adjusted to reproduce neu-
tron and atom scattering data, while the atom-surface in-
teraction potential has a theoretically determined shape,
with parameters adjusted to give agreement with elastic
and inelastic atom scattering data.!®~!® There are then no
adjustable parameters in the calculations reported here, al-
though we have varied the parameters to test that the
predetermined parameters are indeed needed to reproduce
the observed'® value of 2 W (within the experimental and
theoretical uncertainties, of course).

We compute the thermal attenuation to second order in
the atom-phonon interaction, i.e., we include only one-
phonon processes; the specular intensity then is of the
form 1—2AT. Obviously this formula is valid only for
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T << A~'. We assume then that for all temperatures the
specular intensity is given approximately by e ~247. This
expression has been found by Armand and Manson®'° to
be a good approximation up to second order in 7, by ex-
plicitly summing all the two-phonon interactions. If only
on-shell processes are kept in this model, one obtains
[(1—0.54T)/(140.54T)]?, which agrees with e ~247 to
second order in AT.° The exponential form can also be
justified by using cumulants and assuming that only the
one-phonon cumulant average is important. It must be
recognized, however, that there is no rigorous justification
of the extension of the second order result, and that we
rely on the fact that the Debye-Waller exponential form
gives a good fit of the experimental data for Ag(111)."

The results obtained here are valid even though they are
based on a theory of the He-surface interaction that may
need to be refined, as discussed after Eq. (2.12). Since the
parametrized interaction of Refs. 17 and 18 accurately
reproduces the experimental inelastic intensities for pho-
nons along the high-symmetry directions, it can be used to
interpolate the experimental inelastic intensities for pho-
nons throughout the surface Brillouin zone, which are all
that is needed for the comparison of the present calcula-
tion with experiment. However, the possibility of chang-
ing the parameters in a physically motivated interaction
also enables us to make comparisons with several simple
models that are obtained as limiting cases, as discussed in
Sec. III.

II. FORMALISM

The thermal attenuation of the specular intensity is
given by | Sy | 2, where Sy is the specular element of the
S matrix. | Sgo |2 can be found either by computing Sy,
directly or by using the unitarity of the S matrix to write

|So0 |?=1—3 [ Sp0l?, 2.1)
P

where the sum is over all inelastic processes (in the ab-
sence of diffraction). Elaborate derivations of this result
and explicit formulas for the one-phonon processes have
been given by Armand and Manson®!? and by Celli and
Maradudin;'"'? we will use the final expression of Ref.
11, Eq. (5.31), for our numerical calculations. The con-
nection with the formalism of Manson et al.!” is estab-
lished by writing S =1—2iT, so that

ISOO ‘ 2-: I 1+27TImT00 | 2'-f-4'7T2 [ ReTOO ‘ 2
=14+47ImT o +47% | Too | % . (2.2)

Using the optical theorem for the T matrix, it can be seen
that Eq. (2.2) is exactly equivalent to (2.1), with
Spo= —2miT,o. The two equations also correspond order
by order, although one must go one order higher in the
calculation of T. We compute S, to first order and use
Eq. (2.1), which is equivalent to computing Im7, to
second order (To=0 to first order) and neglecting
| Too |2 (which is of the fourth order) in Eq. (2.2). The
starting formula, using the distorted-wave Born approxi-
mation?’ to compute Sp0, 1s then
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m 2 E Rek fz

T 2PNMk,, & |k | 20,Q)

n(w,(Q))

X | [ dzX(kp;2V-Ug(2)X (kyp52) |2

(2.3)

where m is the He mass, M the Ag mass, NN is the number
of Ag atoms on the surface of area L? (K, k;) and
(Ky,ky;) are the initial and final momentum of the He
atom, Q and w,(Q) are the parallel momentum and the
frequency of a phonon belonging to the branch v, n(w) is
the Bose function: n(w)=[exp(#iw/kgT)—1]"1, X(k;,;z)
and X(ky,;z) are the wave functions of the He atom in the
static potential of the surface, normalized to the asymp-
totic behavior X(k,;z)—2sin(k,z +8), and the dynamic
interaction V-Ugq(z) is defined in Eq. (2.9) below. The fi-
nal momentum (Ky,kp,) is determined by the conserva-
tion laws

K,=K;+Q, (2.4)
(KF+kj) =K k) +2m#o,(Q) . (2.5)

It is understood that both positive and negative values of
®,(Q) must be included in Eq. (2.3), with positive w,(Q)
corresponding to phonon annihilation. The dynamic in-
teraction V-Ug(z) is derived from a He-Ag repulsive po-
tential v (r), taken to be proportional to the surface charge
density p(r) of Ag

v(r)=Ap(r) (2.6

with 4 =375 eV. The same pairwise interactions, plus
the van der Waals attraction, give the static He-surface
potential. As in previous calculations,!”!® the static po-
tential is approximated by

—Bz Cs
Vo(Z):er —‘——*—B—f3(kc(z —‘ZO)) (2.7)
(z —zq)

with Uy=296 eV, C;=0.44 eV A3, 2,=1.38 A and f3
adjusted at each incident energy to give the correct loga-
rithmic derivative at the classical turning point z, of the

potential (2.7). The damping function f7; is given by

[ix)=1—[2x(1+x)+1]e % (2.8)
with x =K (z —z¢), where K, is a parameter of the order
of an inverse atomic radius. K,=1.1 A ~! reproduces the
bound states of He/Ag(111) and the depth of the well. In
a consistent way, the dynamic interaction is well approxi-
mated by

NU, |. Q Q 2
V-Uqlz)= 2 |'€ 0, | Q—e |0], |Ble P Q%= /26
(2.9)
where
Q
e |0
Y

is the polarization vector of the (Q,v) mode normalized to

2
Q
vl =1 (2.10)
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and evaluated for the surface atom (/=0). The lateral
cutoff factor exp(—Q?/2Q2), with Q2=p/z,, naturally
arises from a pairwise sum of Born-Mayer potentials and
quantitatively describes the “Armand effect”* for this
type of interaction.!""!>17 The effect of the attractive po-
tential has been simulated by the Beeby correction, i.e., k,
is replaced by p, given by Eq. (1.2), because the exact cal-
culation was reproduced to within 10% by the Beeby
correction. The relevant matrix elements are then

[ dzX(kp;2)Uge =P (kiz32)

_ 2pups | TP i/ A
m B B
with
Xy Xty 172
S(x,p)= 2 2 sinhx sinhy
sinh = -2—y sinhx—2+—y * . (2.12)

Inserting these expressions in Eq. (2.3), we obtain a for-
mula equivalent to Eq. (5.31) of Ref. 11.

A word of caution about this formula is in order. A
completely consistent theory of the He-Ag interaction on
the basis of a pairwise sum of repulsions is not possible:
either the static corrugation comes out too large, or the at-
tractive well is too shallow.?!"?> Here we have chosen a
dynamic interaction that is consistent with the well depth,
and have disregarded the (very small) static corrugation
altogether. One reason for doing so is that the theory of
the laterally averaged potential (2.8) is thought to be in
better shape than the theory of the static corrugation.”®> A
more practical reason is that we need the wave functions
of the potential (2.8) to compute the matrix elements of
(2.9), but can neglect the corrugation.

Most of the calculations reported here were carried out
for a slab of 24 atom layers and the sum over the lateral
momentum Q in Eq. (2.4) was performed by using 18 spe-
cial (Baldereschi) points in the irreducible part of the sur-
face Brillouin zone.?* This procedure yields results that
are accurate to better than 5%; convergence was tested by
performing some calculations with a variable number of
atom layers (6 to 42) and of Baldereschi points (up to 45)
as discussed in the next section. The phonon frequencies
and polarizations have been computed by the slab method
within a force constant parametrization scheme, by ad-
justing the force constants in the surface region!®!7 to ob-
tain agreement with the phonon frequencies measured by
inelastic He scattering.?’

III. NUMERICAL RESULTS

Figure 1 shows the effective surface-projected
momentume-selected phonon density of states, i.e., the con-
tribution for different Q vectors to the effective mean-
square surface displacement, 2 W /4p2, where 2 W is given
by Eq. (2.3) and p;, contains the Beeby correction accord-
ing to Eq. (1.2). The vibrating-soft-atom (VSA) results
were obtained using the He-surface interaction parameters
determined by previous work'”!® and thus represent our

'S
sy AAa
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FIG. 1. Effective mean-square surface displacement of a 12-
layer Ag(111) slab vs Q? [ Q summand in Eq. (2.3), normalized
to 4P2 when summed over the surface Brillouin zone] at
T =600 K, E;=63 meV, 6,=50°, B=2.14 ;\*1, D =6 meV.
ay is the lattice constant of Ag. O, Qf'zO, vibrating soft wall
(VSW). A, Q[':O. 685 1°\, intermediate vibrating-soft-atom
(IVSA) model. +, Q.7 '=1.37 A, vibrating-soft-atom (VSA)
model (predetermined parameters).

best theoretical prediction; the results of the vibrating-
soft-wall (VSW) model and those of the intermediate VSA
(IVSA) model are also shown for comparison, as discussed
more fully below. The dotted curves have been interpolat-
ed through the values calculated for a slab of 12 atom
layers at the 18 Baldereschi points (7,1), (8,2), (9,1), (6,2),
(6,4), (7,5), (8,4), (9,5), (7,7), (8,8), (9,7), (5,1), (4,2), (4,4),
(5,5), (3,1), (1,1), and 2,2) in units of
(V3/54,V2/27) (2w /ay). The small deviations of the
computed points from a smooth curve show that Q values
in different directions give contributions that depend ap-
proximately on Q? only. All three curves in Fig. 1
diverge as Q™! for small Q in the limit of infinite slab
thickness. For a slab of N layers, however, the curves
diverge as Q7 for Q <27 /Na,, because the frequencies
of the slab bending modes are proportional to NayQ?, and
not to Q. This divergence creates numerical integration
problems that are avoided in practice by using a number
of Baldereschi points Ny smaller than N/6+N2/12, so
that the first Baldereschi point is not too close to the ori-
gin. In order to display the behavior near Q=0, the data
of Fig. 1 have been multiplied by Q and replotted in Fig.
2 with Q as abscissa; several points computed with

0 T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Q/(2n/a,)
FIG. 2. Same as Fig. 1, multiplied by Q, vs Q. To illustrate
convergence few points computed for a 24 layers slab in the

VSA model are shown as X.

T T 1



6032
o-
374 VSA
S
£ 5] IVSA
7 VSw
124 VHW
0 | 200 400 600 ' 800 = 1000

T(K)

FIG. 3. Comparison of computed thermal attenuation with
experimental data, @, for Ag(111) (Ref. 19). The effect of the la-
teral cutoff is seen by comparing the curves labeled VSA
(07 '=1.37 A), IVSA (Q;'=0.685 A), and VSW (Q, '=0).
The effect of the softness correction is seen by comparing VSW
with VHW (vibrating hard wall, 8= o and Q. '=0).

N =24 have also been added. The behavior for N —
and the error made using a finite Ny are easily inferred
from these plots. The small Q contribution to 2 W is ac-
curately given by the area under the curves in Fig. 2, be-
cause ZQf(Q) is well approximated by 2 f Qf(Q)dQ
when Qf(Q) is nearly constant and independent of the
direction of Q.

The results obtained with the help of Fig. 2 are shown
in Fig. 3 in comparison with the experimental specular re-
flectivity obtained by Horne, Yerkes, and Miller'® for
He/Ag(111). As explained in the Introduction, we have
extended the validity of our calculation by replacing
1—2W with e =" and we compare e ~2" to the experi-
mental specular intensity normalized to unity at T =0.
The predetermined values of the “softness parameter” f3
and of the “cutoff parameter” Q. have been obtained as
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explained in Sec. II and correspond to the full vibrating-
soft-atom model. We also use a depth D =6 meV as in
Ref. 15, rather than the value of D =8.2 meV chosen by
Horne et al.'” on the basis of a fit to other data at lower
incident energy and high incident angles (which we have
not tried to reproduce because they do not behave ex-
ponentially with T over a wide range). It can be seen that
the computed Debye-Waller factor agrees with the data
for these values of the parameters.

The other lines drawn in Fig. 3 display the effect of the
lateral cutoff and of the wall softness. From the slopes of
the plots in Fig. 3 and other calculations, we obtain, ac-
cording to Eqgs. (1.1) and (1.2), effective Debye tempera-
tures Tp that are reported in Table I. From this table it is
seen that our computed “bulk” value of Tp is in good
agreement with the experimental bulk value (Tpp =225
K). The experimental value of T, for He scattering,
Tphe> is 247 K (this differs slightly from the value given
in Ref. 19 because we use a different D for the Beeby
correction) and is in good agreement with the VSA value.
As remarked by Horne et al.,'® Tpy. is higher than the
bulk Debye temperature, Tpp =225 K, and much higher
than the surface Debye temperature as determined by
electron scattering, Tps =155 K, which is about equal to
Tpp/V'2, as expected for a (111) surface. The apparent
increase of the Debye temperature, or the apparent de-
crease of {u?), is due to the corrections discussed in the
Introduction, all of which are automatically included in
the VSA calculation through the “softness factor” S? [Eq.

(2.12)] and the lateral cutoff factor e -0t (which gives
the “Armand effect”). The separate effects of the vari-
ous corrections are shown in Table I; in particular, the
Debye-Waller factor computed for a hard wall corre-
sponds to a Debye temperature of 151 K, in agreement
with the surface Debye temperature Tpg=155 K mea-

sured by electron scattering. T, is practically unchanged

TABLE I. Computed values of 24 =2W /T and of the effective Debye temperature Tp for a 24
layer slab of Ag(111), using the model of Ref. 15 (modified surface force constants), or, for comparison,
a model with surface force constants equal to those in the bulk. He beam parameters and well depth D
as in Fig. 1. Bulk: computed from 2W =4k2(u?) for the 12th layer. Eikonal: computed from
2W :4p.§< u?) for the surface layer. VHW: From Eq. (2.4) with =100 A - Q[’:O (vibrating hard
wall). VSW: B=2.14 A ~! and Q. '=0 (vibrating soft wall). VHA: =100 A ~!, 0. '=1.37 A (vi-

brating hard atoms). IVHA: B=100 A ~!,

~'=0.685 A (intermediate VHA). VSA: f=2.14 A !,

Q. '=1.37 A (vibrating soft atoms). IVSA: B=2.14 A~!, 0, '=0.685 A (intermediate VSA). (MA)
indicates that p, is computed for Q =0 (Manson-Armand simplification).

Bulk force constants

Modified surface force constants

Models 24 (K™Y Tp (K) 24 (K™Y Tp (K)
Bulk 0.00708 216 0.00709 216
Bulk (MA) 0.007 10 216 0.007 11 216
Eikonal 0.014 47 151 0.014 64 150
VHW 0.014 37 152 0.014 55 151
VHW (MA) 0.014 45 151 0.014 62 150
VSw 0.01215 165 0.012 86 160
VHA 0.006 12 232 0.00623 230
IVHA 0.01079 175 0.01094 174
VSA 0.005 47 246 0.005 69 241
IVSA 0.009 29 189 0.00978 184
VSA (MA) 0.00579 239 0.00601 235
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by taking p;,=ps in Eq. (2.4), showing that the “closed
channel effect”®>¢ is not important in this energy range,
or in other words that the hard-wall potential could be
treated in the eikonal approximation. The main correc-
tion, as discussed already, is due to the lateral cutoff Q..
If this cutoff is included, it is not a bad approximation to
make the “Manson”-Armand simplification,'” i.e., to ig-

nore the lateral momentum transfer in computing the rest
of the matrix element (which depends only on ps). A
simplification of this type can be very useful for a realistic
theory of many phonon effects, including higher-order
corrections to the elastic Debye-Waller factor, thermal at-
tenuation of one-phonon processes, and possible multipho-
non structure in inelastic scattering.
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