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Quantized Hall effect and geometric localization of electrons on lattices
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The electronic properties of the tight-binding model on a two-dimensional regular lattice and of
the Weaire-Thorpe network model in a uniform magnetic field are studied. The quantization of the
Hall conductance is shown. The effects of the geometrically localized states of the Weaire-Thorpe
model are examined.

I. INTRODUCTION

The quantized Hall effect has been one of the most ac-
tive fields in condensed-matter physics since its discovery
by von Klitzing, Dorda, and Pepper' in 1980. Recent
research activities are mainly focused on the fractional
quantized Hall effect of Tsui, Stormer, and Gossard.
However, the normal quantized Hall effect has not been
completely understood yet in spite of some heuristic argu-
ments.

The case of a weak periodic potential in two dimensions
was studied by Thouless, Kohmoto, Nightingale, and den
Nijs (TKNN) and by Streda. In this case, the Landau
level is split into many subbands which have amazingly
rich structures including scaling. However, it was
shown that the Hall conductance is still quantized as long
as the Fermi energy lies in a gap of the subband structure.

Later the topological aspects of the problem were dis-
cussed by Avron, Seiler, and Simon' and by Kohmoto. "
In particular, the contribution of the Hall conductance
from a magnetic subband is identified as a Chem class as-
sociated with a fiber bundle defined on a magnetic Bril-
louin zone. " Thus the quantization of the Hall conduc-
tance is well established for the periodic systems. Appli-
cations of this type of geometrical idea to more general
situations are attempted by several authors. '

In this paper, we study discrete systems where electrons
subject to a magnetic field hop from a site to a neighbor-
ing site on a regular lattice. The following two models are
studied: (i) Each site has a single electronic state whose
energy is constant through the lattice. This is the simplest
version of the tight-binding model (one-orbital model). (ii)
Each site has y electronic states, where y is the coordina-
tion number of the lattice. (For a two-dimensional regular
lattice studied here, y is constant and equals 4.) These
states are directed towards y bonds, respectively. An elec-
tron transfers among y states within a site. It also can
hop from a state of a site to that of the neighboring site
which shares the same bond with the original state. This
model is originally studied by Weaire and Thorpe' to ac-
count for band gaps in topologically disordered solids
such as amorphous Si and Ge. In both models, the
electron-electron interactions are not taken into account.

Also the electron spin is neglected for the sake of simpli-
city.

In Sec. II the two-dimensional one-orbital model in a
uniform magnetic field is studied and the Hall conduc-
tance is shown to be topologically invariant and quan-
tized. In Sec. III we study the Weaire-Thorpe model in
arbitrary dimension. We show that the localized ringlike
states do not contribute to the current and that the current
can be calculated in terms of that of an equivalent one-
orbital problem. As an intermediate step we prove a
Streda-like formula for the current.

II. TIGHT-BINDING MODEL ON A
TWO-DIMENSIONAL REGULAR LATTICE

WITH A UNIFORM MAGNETIC FIELD

Let us consider an electron which hops among sites in
the two-dimensional regular lattice with a uniform mag-
netic field applied in the perpendicular direction to the
plane. The Hamiltonian may be written as

g (am + lnamn +,amnam + \, n )

m, n

+i 2ngm —i 2m.F5 m+B~ (am, n+&e amn+amne am, n+]]) i
m, n

where a site on the lattice is labeled by two integers m and
n (see Fig. 1), and a „and a „are the usual fermionic
annihilation and creation operators at a site (m, n). The
hopping matrix elements along bonds in the x and y
directions are chosen to be real and are denoted by 3 and
8, respectively. The magnetic field forces the coupling
constants to be complex. Specifically, we have chosen a
gauge in which the coupling constants along the bonds in
the x direction are real, the coupling constants along the y
direction are imaginary, and P represents a magnetic flux
within a plaquette in units of hc/e; it is called the Landau
gauge or the axial gauge.

Define a Fourier transform of a „by
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(m, n+ I) [m+ I, n+I)

where the lattice spacing is taken to be unity and the first
Brillouin zone for the regular lattice is given by—m & k (m and —n & k (~. The operators
a (k) =a (k„,k» ) satisfy the anticommutation relation

[a(k),a (k')] =5(k —k'),
(ln, n) (m+ l, n) [a(k),a(k')] =0,

[a (k),at(k')] =0,
(2.3)

where [, ] is an anticommutator, and a (k) and a (k) are
required to be periodic, i.e.,

a (k„+2',k»+2vrl) =a(k„,k»),

FIG. 1. Square lattice for the one-orbital model.
and

a (k„+2~j,k»+2m. l)=a (k„,k ),
(2.4)

a„„= f dk„f dk» exp[i(k m +k»n)]a(k„, k»),
(2~)2 —m —m

(2.2)
I

for arbitrary integers j and l.
In terms of a(k) and a (k) the Hamiltonian (2. 1) is

written as

f dk„ f dk„[ 3 2(cosk„)a (k„,k»)a(k„, k»)
(2~)'

+B[e»a (k„+2m/, k» )a (k„,k»)+e»a (k„2vrg, k»—)a (k„,k» )]], (2.5)

and the Schrodinger equation is given by

(2.6)

(2.7)

where p and q are integers which are relatively prime. In
this case one can rewrite the Hamiltonian (2.5) asHere notice that the Hamiltonian mixes a state having

wave number ( k, k» ) only with states having
(k„+2~/, k»). Let us consider a magnetic field whose
flux P within a unit cell is a rational number, then one
may write where

f dk f dk»H(k k ) (2.8)

1 ~
H(k„,k»)= —g [ 2A cos(k„+2mpn)a (k„+2mpn, k )a (k +2mpn, k )

q n=o

+B[e»a (k„+27rp(n +1),k )a(k„+2ngn, k )

+e»a (k„+2ng(n —1),k»)a(k +2~gn, k )]j . (2.9)

The integral variable k in (2.5) has been replaced by
k„=k„+2vrgn and we have an integral over the first
magnetic Brillouin zone,

—~/q &k„&~/q, —w&k0 (2.10)

In direct space, we need q plaquettes to have an integer
magnetic flux unit with p. Therefore, the magnetic unit
cell is formed by q plaquettes. In fact, the reciprocal
space for the lattice in which q plaquettes form a unit cell
is the magnetic Brillouin zone given by (2.10). The
Schrodinger equation (2.6) is decoupled to sectors, each of
which is a point in the magnetic Brillouin zone; hence
states with different wave numbers (k„,k») do not mix.
The reduced Schrodinger equation is

H(k, k )
I P) =E(k, , k )

I P) . (2.1 1)

q —1

I P) = g c„a (k +2ngn, k»)
I
0)

n=0
(2.12)

where
I
0) is the vacuum state. The coefficients c„satis-

fy

The Hamiltonian H(k„, k») for fixed values of k and k»
represents a tight-binding model on a one-dimensional lat-
tice chain k +2rrgn (n =0, 1,2, . . . , q —1). The eigen-
state

I
P) is expanded with respect to the states on these

lattice points as
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0 —ik —ik
2A cos( k„+2npn )c„+B(e yc„&+e yc„+ ~ )

=E (k„,ky )c„(2.13)

and

(2~)2 —nlq

( Uy )~p( U» )p~ ( U» )~p( Vy )p~

(E Ep)a, P
(E (EF (Ep)

(2.14)

where E is the energy level of state o; which is below the
Fermi energy EF, and Ep is the energy level of state 13

which is above the Fermi energy. The velocity operators
in the x and y directions are U and Uy, respectively, and
in the present case they are explicitly written as

1
U» A . g( m+1 n mn mn m[+n )

iA

1 i 2~/m ~ —i 2~rtym
Uy B . ~ (am, n+Ie amn +mne +m, n+I)

m, n

(2.15)

(n =0, 1,2, . . . , q —1; cq=co). This equation can be re-
garded as a (discrete) Schrodinger equation or a tight-
binding equation in one dimension. Especially when P is
an irrational number, this equation is quasiperiodic and
has attracted a lot of attention with its unusual properties
of an energy spectrum and wave functions. ' '7

Here we consider only the case with a rational P =p/q.
For fixed values of k„and ky, there are q eigenvalues (ex-
cept for degeneracies which could occur in special cases).
The eigenvalues change continuously as k and ky are
varied, and form the magnetic subbands. Thus a single
band for the two-dimensional tight-binding model is split
into q magnetic subbands upon an application of a uni-
form magnetic field whose flux unit within a unit cell of
the lattice is P =p /q.

In the case of two-dimensional electrons in a strong
magnetic field with a weak sinusoidal potential, one also
gets magnetic subbands. The strong magnetic field first
gives equally spaced Landau levels which are infinitely de-
generate. A perturbation potential of the form
A c so(2m )x+B cos(2vry) removes the degeneracy, and the
secular equation of the perturbation theory has a form
similar to (2.13) with an important difference: The mag-
netic flux unit per unit area enters in the argument of
cosine in (2.8) as 2m.nlrb, in this case, instead of 2~ng
Therefore, each Landau level splits into p subbands in-
stead of q subbands, which are for the tight-binding case.
The tight-binding model (strong-potential case) and the
weak-potential case both have the magnetic subband
structure given by the same equation, but the magnetic
flux P must be replaced by I/P to have analogous sub-
band structures in the two cases.

The Hall conductance of the system is given by the
Kubo formula as

2

Oxy =

In order to obtain the matrix elements of v and Uy, the
following identity is useful:

(2.17)

which is obtained by taking derivative with respect to k;
of the equation

H(k, ky)
~
a) =E

~

a) .

After some manipulation, (2.14) with (2.17) gives

eo.„= (a/
x

(2.18)

where the summation is over the all occupied states. If we
consider a contribution from a filled magnetic subband,
the summation is replaced by an integral over the magnet-
ic Brillouin zone. As explained in Ref. 11, the integral is
the Chem number of a fiber bundle whose base space is
the magnetic Brillouin zone and the fiber is the wave
function. Since the Chem number is always an integer,
the contribution of the Hall conductance from a filled
subband is always an integer times e /A.

III. HALL CURRENTS IN THE WEAIRE-
THORPE MODEL

Weaire and Thorpe' (WT) introduced a simplified
model describing the physics of systems such as silicon
and germanium. The main idea is to consider a lattice,
which is regular or is topologically disordered with coor-
dination number y, and a set of y electronic states at each
site in the form of orbitals oriented along lattice links.
They considered a nearest-neighbor model in which the
single-particle Hamiltonian has the form, in Straley's'
version,

H =y V) U+ V2T, (3.1)

where U is a projection operator that describes the mixing
of orbitals at a site and T is an exchange-type operator
describing the mixing of orbitals at nearest-neighboring
sites pointing towards each other. The parameters V& and
V2 are the site and bond energies. From their definition
U and T satisfy'

In terms of H(k, k„), the velocity operators are written
as

U =U,
T =I,

(3.2a)

(3.2b)

q n«o n BH(k„,ky )
Ux =—

2 dk„dky
& (2~)' —« — ' Bko

where I is the unit operator. Let 3 and 8 be a pair of
nearest-neighboring sites of the Bravais lattice with coor-



6020 EDUARDO FRADKIN AND MAHITO KOHMOTO 35

d; +d; =0.
With this notation we can write

(3.3)

U= —g g( ~rg, d; )(rg, dj ~
)

r,

+g(
~
rB d' )(rB dj j ) (3.4a)

and

(
~
rq, d,")(rB,d;

~
+

~
rB, d; ) (rz, d

~
),

(3.4b)

dinates r„and rB, respectively. Let I d';I be a set of y
unit vectors at site A and I d; ] a set of y' unit vectors at
site 8. There, rz and rz must be such that rz +d; be-
long to sublattice 8 and r&+-d; belong to sublattice A.
Let us label the states at site A by

~
r„,d,"), indicating an

orbital at site 3 pointing towards rz+d;. Similarly, at
site B we have

~
rB,d; ). We choose the index i so that

d;, and d; are on the same link, i.e.,

where the lattice constant is taken to be unity, the time-
independent piece A (r„,rB) represents the magnetic part
of the vector potential, and the time-dependent piece
represents the projection of the local electric field onto the
bond (r„,rB). The WT model in the presence of an elec-
tromagnetic field has the property that the operators
U[A] and T[A] still satisfy the conditions (3.2a) and
(3.2b). Thus, as was shown by Straley' for the standard
WT model, the spectrum and wave functions of the sys-
tem can be calculated in terms of the spectrum and wave
functions of a one-orbital model on the same Bravais lat-
tice and a set of nonpropagating states. In particular, we
show below that the currents on the WT model are the
same as the currents of the one-orbital model and that,
within the WT model, the nonpropagating states do not
contribute to the electromagnetic currents. ' This is not
to say that the wave functions are the same. As a matter
of fact, the wave functions have some very interesting
geometrical properties in the presence of the field.

Let us now review, briefly, Straley's method' as ap-
plied to the present problem. The argument that Eqs.
(3.2a) and (3.2b) are satisfied in the presence of a nonvan-
ishing vector potential follows from the observation that
both A (r„,rB) and E(r„,rB) are components of a vector
and thus satisfy

where the summation is over pairs of sites (or links) with
A (rg, rB, r)+A (rB,r~, r)=o. (3.9)

and

ra =rz+d;
Brz ——rz+d

d; +d; =0.

(3.5a)

(3.5b)

(3.5c)

The site potential is unaffected by the field, so (3.2a) is au-
tomatically valid. In computing the square of the kinetic
energy operator T[A], we have to evaluate products of
the form

i A ( r &, r&, t) i A ( r&, r&, t )

(3.10)

It is now easy to prove' that the operators U and T thus
defined do satisfy the conditions (3.2a) and (3.2b), i.e.,

U =U, T =I .

External electromagnetic fields can easily be incorporated
into the WT model. We work within the gauge Ao ——0 in
which the electrostatic potential is zero. Thus electric
fields are to be calculated from a time-dependent vector
potential

(3.6)

which leads to (3.2b).

A. Eigenstates of the %'T model
in an electromagnetic field

Within the framework of the adiabatic approximation
we can now calculate the eigenstates and eigenvalues at
time t if we assume that the electric field F. is very weak
and we restrict ourselves to time scales ~, such that
rEao «A, where ao is the lattice constant (ao= 1). Stra-
ley showed that if Eqs. (3.2a) and (3.2b) are true, then
there are two types of states in the spectrum of H.

Propagating states

The standard prescription for incorporating a vector po-
tential in a lattice system is to multiply all bond ampli-
tudes by a phase e """,where yb „d is the line integral

Propagating states are states which are not in the null

space of the projection operator U. The operator U and
U T U commute. Thus we can find states of the form

yb, „d
——I dl. A . (3.7)

Thus we end up with a generalized WT model, with the
same site potential and bond amplitudes of the form

EA (fA, I'g, f)
V2e

' ' for the bond (r„,rB). In order to incorpo-
rate both electric and magnetic field effects, we will take

Straley then shows that 4, further satisfies

(H —y'V, H)%, =(V2+ V, V2E)%, .

{3.11a)

(3.11b)

(3.12)

e
A (rA rB r) A (rA rB)+ gE(rA rB)r

cA
(3.g)

Thus, if E is the eigenvalue of H, i.e., H%'z ——E%'F, then

(H —y ViH)+B (E yViE)%'B . —— —
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2. Nonpropagating states

+h ~h

) „)(
Ih 2h

FKJ. 2. Ring state in zero fieId.

WE =P-, +, , (3.14)

with

2
+Q, U+ VpT (3.15a)

The relation between 4IE and 4, is provided by the opera-
tor P,

Nonpropagating states are states in the null space of U,
A

p
A

i.e., U+=0. Since T is an exchange operator (T =I ) its
eigenvalues are S =+1. The nonpropagating states are
eigenstates of T projected into the null space of U. Their
energy eigenvalues are

H% =(y V, U+ V, T(A))% = V, T(A)% =+ V,e, (3.17)

since T =I is valid even with A&0. This set has a huge
degeneracy, which varies with the Bravais lattice, but it
is always extensive. (In fact, there are two sets of non-
propagating states with energies + Vq. ) This in turn im-
plies that wave packets constructed out of states in this
degenerate set do not propagate, i.e., the group velocity
vanishes. Furthermore, (3.17) indicates that their eigen-
values are always + Vq for all values of the vector potential
We will show below that this fact implies that the non-
propagating states do not contribute to the currents. Of
course, the wave functions do change with the vector po-
tential. Let us comment on passing that such "ring"
states are also present in other lattices, such as the exam-
ple worked out by Sutherland, and on a Penrose lattice. '

For instance, in Fig. 2 we see a nonpropagating state
I g &+ (without a field) with energy + V2 for the case of a

two-dimensional square lattice (a "ring state") by con-
structing linear combinations of symmetric and antisym-
metric states on

and

Q, =43 Vr+V2+V, V2e. (3.15b)

I n+ &
= (

I
lh &+ 12h & ) —(12.&+ 13.& )

+(13h &+14h &)—(14.&+
I l. &) . (3.18)

The eigenvalues are
Clearly,

T
I n+ &

=+ V
I n+ & (3.19)

E+ = 27'Vi+Q. . (3.15c)

But +, is the eigenstate of U T U, with eigenvalue E/y,
which is not in the null space of U. Let us denote
by 1 I

rz & ) the Hilbert space of states
I
r„&=(1/

v y) g~,
I
r„,d,".

&, which spans the states outside the
null space of U. In this basis the operator U T Uis

It is clear that one could construct such ring states around
any plaquette (or group of plaquettes). Such a set is not
orthonormal. It is possible to construct an orthonormal
basis for the space of eigenvalue + V2 (or —V2) but they
are clearly delocalized. If an external field is now turned
on, we face the problem of matching phases. Now the
eigenstates of T(A) on a link (say, the link 1-2 of the Fig.
2) are

UT U= —g I rz &(rz
I

e "' ' +H. c. (3.16)
~ ~'~ 'a&

Thus the wave functions +, are those of a one-orbital
problem on a tight-binding lattice in an external field.
Notice though that the mapping discussed by Straley is
true in all dimensions and for all Bravais lattices.

Thus if we know the eigenstates and eigenvalues of the
one-orbital Hamiltonian U T U we can calculate the
eigenvalues and eigenstates for the network lattice using
(3.14) and (3.15). Thus the Landau levels of the one-
orbital problem determine the Landau levels on the net-
work lattice through (3.15).

Thorpe and Weaire used a mapping of this sort to cal-
culate the density of states (DOS) for the diamond lattice
in terms of the DOS for the fcc lattice.

I+&12 e
I

lh &+e "
12h & (3.20)

We now seek linear combinations of link eigenstates
which are in the null space of U. The states are now of
the form of a sum of links, of a path I of the lattice

In+&= g e """
le+&li k.

links (I )

(3.21)

The phases Ph„q are to be determined by the consistency
condition U1 q+&=0. It is easy to show that the con-
sistency condition cannot be satisfied if I is an open path
(or the union of open paths). Thus I is either a closed
path (or the union of closed paths) or a path that closes
through the boundaries. Furthermore, the only admissible
paths must be such that the oriented sum of the vector po-
tentials around the path is zero mod(2n. )
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The gauge-invariant current operator for the bond with
end points at rz and rq +d; is

C'3.24)

Consider the quantity Dz[A] given by following deter-
minant

Dz[A]=det(y V& U+ V&T[A] EI ) .—

FIG. 3. Ring state for field P= —, . The arrows indicate the
direction in which the phase increases.

The expectation value of the operator J;(r„,rz) for an
eigenstate of energy E is

( J;(rg, rs) ) =/ 5(E E„)(n—
~
J;

~

n ), (3.26)

@&A„„k——2mj (j =0, +1,+2, . . . ) . (3.22)

Note that the electric field term is curl free and does not
affect this condition. Using a lattice version of Stokes
theorem we can state (in units in which the lattice con-
stant is one),

(3.23)

where P is the magnetic flux within a plaquette,
P=B/2'. Hence the construction only applies for ration-
al magnetic fields of the form P=p/q, with p and q rela-
tively prime integers. We then conclude that the number
of plaquettes Nr enclosed by the path must be a multiple
integer of q. Under these conditions it is possible to find a
consistent set of matching phases such that (p/q)&r =j.
See Fig. 3 for an example.

which can be written in the form

1 1 5H(A)
( J, (r„,rs)) = trIm

tr V2 H (A) E6A (r~—, re )

Im tr In[H (A ) E]—1 6
~V2 5A(rg, rs)

1
Im ln det[H(A) E] . —6

~V2 5A (rg, rs)

(3.27)

In (3.27) an i E prescription is assumed.
The determinant DF[A] can be written formally in

terms of the eigenvalues of H

B. Currents in the WT model D [A]=(V —E) ( —V E) g (E —E), —
I

(3.28)

We are interested in computing the expectation values
of the current operators for eigenstates of energy E. In
particular, we will want to know about both ohmic and
Hall currents and what is the contribution of the non-
propagating states to them.

where n+ (n ) is the degeneracy of the eigenvalue
E =+ Vz( —Vq) and Et are the eigenvalues of the propa-
gating modes, (3.15). Here we consider problems in which
n+ n=n ——Using E.q. (3.15) we can write

@VS yViD [A]=(E —V )"g —Q[A] —E +Q[A] E—
2 I 2 I

2

2 2

@VS

2
+ V2+ v) V2st(A) (3.29)

From (3.29) we learn that (i) the nonpropagating modes do not contribute to the current since their eigenvalues are indepen
dent of the vector potential, and (ii) DE(A) depends on the vector potential only through the eigenvalues Et of the one-
orbital operator U T U. This latter observation implies that there must be a relationship between the gauge invariant
current operator of the WT model and that of the one-orbital problem. More specifically, we find
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51nDE(A)J;)= Im
n. V~ 5A;(r„,r~)

1
Im g ln.5

n. Vp 5A;(r„,r~ )

2 2

2
+ V', + V, Vz E,(~)

1
Im tr

1
( —Vi Vp) H,5

2 (1' V& /2) + Vq+ V& VzH[A] —[(y V& /2) —E]
(3.30)

where H is the one-orbital Hamiltonian

H=yU T[A]U, (3.31)

(3.32)

Hence, we have

(3.33)

on the same Bravais lattice. The gauge-invariant current
operator for H is just

Thus we have shown that the currents of the network lat-

tice and that of a single-orbital Hamiltonian on the same
Bravais lattice are essentially identical (up to a sign) if the
energies of the eigenstates are related by (3.34). Equation
(3.30) also shows that only the propagating states contri-
bute to the gauge-in, uariant current. We finally note that
(3.27) with (3.28) is a Streda-like formula since they show

that the only eigenvalues that contribute to the current are
those which change with the vector potential.
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