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Quantum theory of the sticking of an atom on a cold solid: Gettering-theory approach
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The sticking of an atom on a cold surface is treated by considering the gettering of a gas in a
closed vessel. For a small enough area of getter, the gettering rate is obtained essentially exactly in

the quasiparticle approximation, and therefore the key quantity is the imaginary part of the gas-
atom self-energy calculated at the initial-state energy. The gettering Hamiltonian has an exact rep-
resentation in terms of the stuck states and the elastic scattering states, and because of this the
gettering T matrix, which determines the gas-atom self-energy, and the rates of sticking and inelas-
tic scattering, can be calculated exactly for nontrivial models. Its calculation when the gas atom
loses energy to either the electron system, or the phonon system, is considered in detail.

I. INTRODUCTION

A fundamental process at the gas-solid interface is the
sticking of a gas atom on a cold solid, but its theoretical
description is not found in standard texts on scattering
theory, ' where it is assumed that the scattering potential
is ineffective in the remote past, and in the distant future,
because the particle is far from the scatterer in these lim-
its. This is true for a reflected particle, but for a stuck
particle the scattering potential is not ineffective in the
distant future. On the contrary it is always effective; the
elastic part of the atom-solid interaction potential binds
the atom to the surface, where it also stays therefore
within the range of the inelastic part of the potential.
Nevertheless, various authors have used stationary
scattering theory to obtain results in the distorted-wave
Born approximation (DWBA), and even if these results
can be shown to be relevant by considerations based on
the time scales of the processes involved, it still seems
quite hard to progress to exact results for simple theoreti-
cal models. We remark too that, in the DWBA, where the
T matrix is calculated with the exact scattering state re-
placed by an elastic scattering state, some of the problems
with using conventional scattering theory to describe
sticking, are obscured.

It is not our purpose to address these matters here, but
partly because of what has been said above, and partly for
other reasons (see below), we shall approach sticking via
the theory of the "gettering" of a gas. Gettering is the re-
moval of a gas from a closed vessel by adsorbing it on a
reactive solid (the getter) placed in the vessel, and it corre-
sponds to a practical arrangement where sticking would
be followed by monitoring the falling gas pressure. This
has no analogue in a beam scattering approach, since it
would require the gas-solid interaction to deplete the in-
cident beam as well as the elastically reflected beam, and
this would of course conflict with causality. But the lead-
ing term in our formula for the sticking rate [Eqs. (g) and
(20) below] is exactly the DWBA rate of conventional
scattering theory, although our approach is designed to
allow exact calculations of the rates of sticking, and in-
elastic scattering for nontrivial models. Gettering is
described theoretically as the decay of a prepared state,

and it has a feature which is of crucial importance for
practical calculations; for a sufficiently large vessel, the
quasiparticle approximation gives the time evolution of
the system wave functions essentially exactly.

We shall be concerned in this paper with sticking, and
inelastic scattering, at zero surface coverage (there will be
only one gas atom in the system), and at zero substrate
temperature (the initial state will have the solid in its
lowest quantum state). At a finite substrate temperature,
the long-time behavior (i.e., for times t which are long
compared with the zero-coverage residence time ~„,of the
atom on the surface) is that there is no gettering just as
there is no sticking on a finite-temperature substrate in a
stationary scattering theory approach. However, in
gettering theory, we follow the time evolution of the sys-
tem wave function so that the sticking rate at zero cover-
age for the physically interesting regime t &&~„, is deter-
mined. This is what we shall do in this paper; on a zero-
temperature solid, r„, is infinite. We will first (Sec. II)
outline the theory of gettering by a zero-temperature solid,
using a Hamiltonian H =Ho+ U+ 8, where Ho is the
Hamiltonian for the noninteracting systems, gas atom
plus solid, U is the elastic part of the gas-solid interaction
potential, and 8'is the inelastic part. In Sec. III we write
down the gettering Hamiltonian, derive the formula for
the gas-atom self-energy due to inelastic events, and relate
the imaginary part of this self-energy to a T matrix. To
obtain a complex self-energy, it is of course necessary for
the getter to have a continuum of excitations, and this
feature is explicit in our notation. The actual calculation
of the T matrix by matrix inversion is considered in Sec.
IV for inelastic events due to electron-hole pair generation
on the one hand, and phonon generation on the other. At
this point an approximation is introduced which means
that a strongly inelastic event is not described realistically
so that the exact calculation of the T matrix on the energy
shell is considered for simple but nontrivial models. Nu-
merical results for the electron-hole pair case will be
presented in a separate paper.

II. GETTER ING- THEORY APPROACH

Consider a gas atom in a vessel having the shape of
a square prism. The solid we are interested in forms one
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(p; I

g+(t)) = ——f dEe '" "Im(i
I
G+(8) Ii ) .

Here G+ is the Green operator

G+(e) =(E+i 0 H)— (2)

of the square faces, the other faces are inert, and the
length of the prism perpendicular to the square faces is b.
At time t =0 the system is in an eigenstate f;(x) of the
Hamiltonian Ho+ U. ttj; describes the gas atom making
elastic collisions with the solid in its lowest quantum
state. For t &0, the inelastic part of the potential (W)
acts to cause the initial state to decay, and other eigen-
states of Ho+ U to become populated. These "other
eigenstates" are the stuck states P„and the inelastic
scattering states P, . If P,+(x, t) is the exact state at time
t & 0, the probability to observe the initial state at time t is

I (P; I
ttt; (t))

I
where

stick /( stick + inel ++coll )

where v„]~ is the number of collisions per unit time the
gas atom makes with the solid. The definition Eq. (9),
which is exact, still leads to unitary results when the rates
are only calculated approximately.

III. GETTERING HAMILTONIAN
AND THE SELF-ENERGY

The Hilbert space of the get tering Hamiltonian is
spanned by the eigenstates of Ho+ U describing the gas
atom either stuck to, or scattering off, the solid in its vari-
ous quantum states. Thus

H= Ii &E;&i
I
+ 2 If&Ef &f

I
+ W, + W2, (10)

f
w = g( It &&l

I

w lf &&f I+ If &&f
I

w Il &&t
I

)

f

and

( l
I
G+(E)

I
i ) = G,+ = f dx, f dx, p,*(x,)G+(s)p, (x, ) .

W2= 2 If&&f I

W If'&&f'I (12)

(3)

By introducing the (complex) self-energy q;(e) of the ini-
tial state

q;(e) =tz;(E) —il;(E),
we can write

G;+(E)= [e+i 0 E;——q;(E)]

Consequently, if we evaluate the integral in Eq. (1) in the
quasiparticle approximation, we obtain the exponential
decay law'

Here
I
i ) is the initial state in which the gas atom scatters

elastically off the solid in its lowest quantum state,
I f )

and
I

f') are other eigenstates of Ho+ U in which the
solid is excited, and gas atom is either stuck, or elastically
scattered. W= W&+ W2 is the operator for the inelastic
processes, and we do not specify either W or U further at
this stage so as to keep the theory general enough to in-
clude inelastic processes involving either electrons or pho-
nons.

We now calculate the self-energy q; of the initial state
by writing the expression defining the Green function in
the representation afforded by the basis states

I

i ) and

I (P; I
P;+(t) ) I =exp[ —2I;(E; )t/trt] .

The quasiparticle approximation is valid if

(6) c —E; —W;f

1c—Hf

G;

G;f

G;f, 1 0
—fG = 0 1 (13)

I.
, (E, )

I
«E, (7)

and it is a basic property of the gettering approach that
we can satisfy Eq. (7) simply by making the length b of
the vessel containing the gas atom, large enough. The
reason for this is that the inelastic processes described by
W which give rise to the self-energy, and cause the decay
of the initial state, are localized near the surface of the
solid. So by increasing b so as to make the gas atom
spend less of its time near the surface, we can make the
decay rate as small as we please, i.e., we can make I;(E; )

as small as we please. This statement can be verified if
necessary when an explicit formula for q;(e) is available
(see below).

An extremely important consequence of the validity of
the quasiparticle approximation is that I; separates into
the sum of sticking, and inelastic scattering contributions,
I';"'" and I ';"", so we can at once write down the rates of
sticking, and inelastic scattering,

R„;,„=21,'"'"(E;)/fi, R;„„=2I';"' (E; )/lit . (8)

Then the sticking coefficient s follows from the defini-
tion

G;=(E—E; —q;)

with

q;(8)= W/( le Hf) 'Wf; . —

(14)

If we separate 1c.—Hf into the diagonal matrix Gf with
diagonal elements E.—Ef, and the remainder Wf say with
zeros on the diagonal, then

( 1E—Hf )
' =Gf (1—Wf Gf )

Consequently, Eq. (15) becomes

0
q; = W;fGf Tf;,

where

(16)

(17)

Tft. —(1—Wf Gf ) Wft = Wft + Wf Gf Tft (18)

Equation (18) defines the gettering T matrix (a column

Here H has diagonal elements Ef, and nondiagonal ele-
ments f I

W
I

f'), W;t is a row matrix with elements
(i

I

W
I f ), and Wf; is a column matrix with elements

(f I
W

I
i ). From Eq. (13) we find
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= WifGf Tfi TifGf*Wfg (19)

Using Eq. (18) for Wf;, and taking W;r from the Hermi-
tian conjugate of Eq. (18), we obtain

2i Imq;=T,*~(Gf —Gf )Tf;

2~i —g ) (f ~

T
~

i ) (
5(e —Ef ) .

f
Consequently,

I;(E;)=—Imq;(E;)

=77.y [ (f
~

T
~

i ) ] 5(E; Ef ) . —
f

(20)

Equations (6), (7), (9), (18), and (20) are the basic equa-
tions of the gettering theory approach to sticking, and in-
elastic scattering. Since the sum off in Eq. (20) goes over
stuck states s, and inelastic scattering states r, we verify
the statement made at the end of Sec. II that I; is the
sum of sticking, and inelastic scattering contributions.

In the next section, we will consider the calculation of
the gettering T matrix in the approximation in which in-
termediate interactions with energy nonconserving states
are neglected. In this case Eq. (18) for Tf; (E; ) reads

Tff (E; ) = Wf; i ~Wf 5(E; Ef—) Tfj (E;),— (21)

where 5(E; Ef) is a d—iagonal matrix with diagonal ele-
ments 5(E; Ef), and Eq.—(17) for q; (E; ) reads

q;(E;)= —iaWr5(E; Ef)Tf;(E;) . — (22)

To conclude this section, we emphasize that the getter-
ing T matrix defined by Eq. (18) is not the T matrix of
scattering theory. The scattering-theory T matrix is the
square matrix 8'+ W G W and its fi-block has the extra
term Wf;G;ref; over Tf; defined by Eq. (18). It is easy
to prove that, for the Hamiltonian of Eqs. (10)—(12), the
matrix elements of this transition operator between states

~ f ) and ~i ) are zero on the energy shell. This simply
corresponds to the fact that, when the gettering collision
is over (t~+ oo), the wave function describing the system
has no projection on the initial state. The scattering-
theory T matrix, and to a lesser extent the S matrix, are
therefore trivial quantities in gettering.

IV. THE CALCULATION OF Tg; (E; )

The T matrix which determines the decay of the initial
state according to Eqs. (6) and (20) is calculated from Eq.
(21). Evidently a matrix inversion is involved, and be-
cause of the 5-function matrix in Eq. (21) we will develop

matrix) whose elements (f
~

T
~

i ) will determine the rates
of the inelastic processes causing the decay of the initial
state.

According to Eqs. (4)—(9) we need I;=—Imq; on the
energy shell where c.=E;, and although both W;~ and Tf;
appear in Eq. (17), the imaginary part of q;(e) can be
written in terms of Tf; alone. We can assume without
loss of generality that W;t is real so that from Eq. (17),
and its Hermitian conjugate

q;(e) —q;*(e) =2i Imq;(s)

this equation further so that the actual calculation Tf; (E; )

becomes transparent in simple but nontrivial cases. But
there are serious difficulties still to be overcome before the
gettering T matrix can be calculated exactly for a fully
realistic specification of the inelastic processes.

There are two important mechanisms for energy loss
leading to sticking in gas-solid collisions; loss to elec-
trons, ' and loss to phonons. ' We consider the electron
loss mechanism first. It is important for a light reactive
atom on a heavy metal.

The exact situation where multiexcitation final states
would be populated is very complicated, but the model of
the electronic structure we shall deal with has a simplify-
ing feature (below) which rules out multiexcitation final
states. Accordingly, attention will be confined here to the
case where: (i) the electronic structure is described with
sufficient accuracy by single Slater determinants, (ii) low-
lying excited state electronically adiabatic potential-energy
surfaces have the same shape as the ground-state surface,
being merely shifted vertically by the excitation energy,
(iii) the operator W2 in the Hamiltonian (10) is diagonal
in the number of electron-hole pairs in the set [ ~ f ) j.

Only low-lying excited states are specified in (ii) be-
cause only low-energy electron-hole pairs are created in
sticking (see below). Consequently, a system whose prom-
inent adsorbate-induced electronic structure consists of a
very sharp resonance very close to the Fermi level (within
say 25 meV for a gas at room temperature), is excluded.
Because of (ii) the elastic gas metal potential is indepen-
dent of the existence or otherwise of a low-energy elec-
tronic excitation. (i) means that the matrix elements of
the operator W for inelastic processes has a tridiagonal
block structure; states with v electron-hole pairs (v ) 1) are
connected to states with v+1. Correspondingly, there is a
hierarchy of coupled matrix equations relating the block
of Tf; for v electron-hole pairs in the states

~ f ), to the
blocks with v+1. A practical scheme for dealing exactly
with this hierarchy does not exist. One can of course ter-
minate the hierarchy at some small value of v, and then
solve the resulting truncated system, and as a first step in
this direction, we will terminate the hierarchy at v=1.
This is what the assumption (iii) does; it makes Wf diago-
nal in the number of electron-hole pairs. We note that
W'i in the Hamiltonian (10) is not affected, but because
W2 is approximated, strongly inelastic events will not be
described realistically. This limitation should not be for-
gotten. It is however important to remember that the en-
tities we shall be dealing with are electron-hole pairs in
the coupled system, and a state of the coupled system
with one electron-hole pair requires states of the uncou-
pled system with arbitrary numbers of electron-hole pairs
to describe it.

An electron-hole pair excitation with energy c. is
characterized by the electron state

~

e") and the hole state

~

s') with e =e"—s', and the operator W has the form

W= dc," dc'u) c.",c.
' C c.

" C c.', 23

where C (s) [C(e)] creates (destroys) an electron with en-
ergy c;

C (e")C(e')+C(e')C (e")=5(c."—c,') (24)
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and w is dimensionless with the basic symmetry

W(E",E')= —W(E', E") . (25)

—w(E'»Ez)5(E'&' —E2) . (26)

The matrix elements of 8' between the ground state,
which we write with one electron-hole pair at cF, and an
excited state with one electron-hole pair are

(E', E"
I

W
I
EF,EF) =(E', E.

"
I

W
I
0)

=w(E.",E')n (EF), (27)

where n(E) is the density of one-electron states. Of course
w and n in Eqs. (26) and (27) depend on the gas atom's
position R, as do the adiabatic electron states, but for
brevity we do not display this dependence. No other ma-
trix elements of W are needed because of (i) and (iii)

I

Then we can show" that the matrix elements of 8 be-
tween two states

I

E'&', E'&), and
I

E2', E2) with the same
number of electron-hole pairs, and which are identical ex-
cept for the electron-hole pair displayed are

( E'], E']'
I

W
I

E2', Ep ) = w (E']', E2')6(E) —Ep)

= IEF EF a)/n(EF)

—
I

0 a)/n(EF), E, =E

lf &=
I Ef Ef,p)l[n(Ef)n(Ef)]'

Ef =EP+ Ff —Ef

(28)

(29)

and after making the change

g~g J dEf n(Ej) J dEf n( fE) .
f P

Equation (21) for the matrix elements of Tf;(E; ) assumes
the form

which have as their consequence that matrix elements of
Tp- for final states with two or more electron-hole pairs
are zero. Consequently, only final states with one
electron-hole pair will appear in what follows.

The initial state
I

i ) in Eq. (22) has the gas atom in the
state

I

a ) say, with energy E, and no electronic excitation
present. The state

I f ) has the gas atom in
I
p) with en-

ergy cp, and there is one electron-hole pair excited. There-
fore we write

oo EF

(p Ef, Ej I

T IO a) =(p, EfEf I
W

I

0 a& iver g f— dE" f dE'&p Ef Ef I

W IE E y)5(E~ Ey E+E .)

Using Eqs. (26) and (27), Eq. (30) becomes
x (y, E', E"

I

T
I

O, a) . (30)

(p EfEf I

T
I
Oa)=(p

I
w(Ef Ef)

I
a)n(EF)

—i~ 2 I&pl w«j E.—E,+Ef) ly&&y Ef Ef+E. E, l

T lo—,a&
y(a

—&plw(Ef Ef E +E»ly&&y Ef E +Ey EfITIoa&I . (31)

The corresponding result for Eq. (22) is

r, (E.)=~ g (E —Ep) I &pl T
I
a& I'f'ln(EF)]'

P(a

(32)

(33)

A further slight simplification of Eq. (31) is possible by
taking account of the antisymmetry of w, and by noting
that, on the energy shell, cf' —cf ——c —Ep. But the most
important simplification for practical computations
comes because energy losses in sticking are generally small
on the scale of electronic energies so only electron-hole
pairs close to the Fermi level are excited. In this case, i.e.,
when c.

"—c' is small, w depends only on the difference of
its two arguments; w(E", E')=w(E" —E.'), and if we make
this simplification, Eq. (31) can be written in the form

&P I
T

I

a &
= &P

I
w(E~ —Ep)

I
a & n(EF)

—2~~ g &PI w(E, —Ep)
I y&&y I

T
I
a)

bound states of the gas-metal potential U, which holds the
stuck atom, but unbound states with energy greater than
c are not accessible in a collision with a cold metal. We
note that (a

I

T
I
a) is excluded from Eq. (32); it is not an

element of the gettering T matrix defined by Eq. (18).
The T matrix in Eqs. (32) and (33) has dimensions (en-

ergy) '. To obtain a dimensionless T matrix, we divide
Eq. (32) through by n(EF). This removes n(EF) from the
first term on the right-hand side in Eq. (32), and from the
right-hand side in Eq. (33), and incorporates it instead in
the new dimensionless T matrix.

Turning now to the case where a gas atom loses energy
to the phonons, ' let' the phonon states of the solid in the
presence of the gas atom at R be denoted

I
m;R), and let

E (R) be the corresponding atom-solid interaction poten-
tial. A gas atom moving on E (R) can transfer energy to
the phonons, and make transitions to states on E„(R).
The operator musing these transitions is'

and Eq. (32) shows explicitly that the required T-matrix
elements are obtained by inverting a matrix of dimension
X, the number of gas atom states in the vessel with energy
below that of the initial state

I
a). % always includes the

W„(R)=(n;R
I

W
I
m;R)

=(A' /M)((n;R
I V~

I
m;R) V~

+ —,
' (n;R

I
V~

I
m;R) ), (34)
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where M is the mass of the gas atom, and V~ the gradient
operator with respect to its position. We note that this
operator is zero if

I
n;R) and

I
m;R) differ by more

than a two-phonon excitation. To parallel the electron-
hole pair case, we confine attention to one-phonon final
states, but this is an approximation which may be expect-
ed to fail for a light gas atom on a heavy solid because the
relevant mass ratio' is unfavorable. We note that phonon
excitation cannot alter the shape of the gas-solid interac-
tion, but only shifts the potential vertically by the phonon

excitation energy. Then the Hamiltonian has the form of
Eqs. (10)—(12) with Eo(R) the elastic potential, and the
operator W defined by Eq. (34). Passing to a continuum
of phonon states, and suppressing the R dependence for
brevity

W„(R)~w (s~, c2)/[n (s~)n (s2)]'

where n (s) is the density of phonon states, enables us to
write the matrix elements of Eq. (21) in the form

&P, f I
T

I
Oa) = &/3I w(sf 0)

I
a)

i~—g f de &PI w(ef, 0
I
y)5(s —s —c)&},s

I

T
I
0,a)

y

=&plw(sf, 0) la) i' g—&plw(sf, s s—) I) )&},s e
I
7 I() a)

y&a
(35)

On the energy shell sf = c. —sp so we can write Eq. (35) in
the form

&pl T la&=&pl w(s so 0) la&

imp—&p
.

I
w(s —sobs —s )

I y)
y&a

(36)

which shows again that a finite-order matrix inversion is
needed to calculate the T matrix. In this respect the pho-
non, and electron-hole pair cases are similar. But there
are two important differences. Firstly there is no factor 2
multiplying the sum on y in Eq. (36), and secondly for
phonons, the energy losses in sticking are not small on the
scale of phonon energies, with the result that Eq. (36) is
slightly more complicated than Eq. (32). The basic reason
for the factor 2 in Eq. (32) is that W can change either the
electron state or the hole state. For phonons there is no
such dual action; 8' simply causes one-quantum transi-
tions in a normal mode.

V. CONCLUDING REMARKS

Gettering theory provides a powerful route to the calcu-
lation of the sticking coefficient, and we have developed
this approach to the point where the calculation of the ex-
act sticking coefficient for a nontrivial model is seen to
involve the inversion of a finite-order matrix. Detailed
computations will be reported in another paper.

Finally, we remark that gettering is a collision process
with some unusual features. To understand them we ob-
serve that the wave function representing the system at
time t can be partitioned into two orthogonal components,
one representing the "reactants" is the only component
present at t =0, but is absent as t~ oo, the other,
representing the "products" is the only component
remaining as t~ oo, but is absent at t =0. A stationary
scattering state li+) is only established as taboo when
& g; I

P;+(t) ) =0. Consequently the elastic reflection coef-
ficient calculated as

I
&i Ii+) I

is zero. Of course this
tells us nothing of importance about the collision of an

atom with a solid; the ratio v„»/(R„;,k+R;„„+v„») is
the get tering-theory definition of the elastic reflection
coefficient.

The distribution of "products when the gettering col-
lision is over can be calculated from

&gf I
g;+(t) & = ——f doe '" "Im&f G+(s) li ) .

From Eq. (13) we find Gf, = Gf Tf; G;, and using this in
Eq. (37), it is not difficult to show that

&ff litj (~))=&f
I
T(&f) I&)/[+f +' q;(+f)] ~ (3g)

On the energy shell, this reads

& 4f I

0+( ~ ) &
= &f I

T(E )I i & /q (F—)''
The same results are obtained from the Lippmann-
Schwinger equation

I
i + ) =

I
i ) + G W

I
i ), namely

&i li+) =0, and

&f Ii+ & = —&f
I
T«) li&/q;«;)

for
I f) on the energy shell. These results for the ele-

ments of the S matrix, whilst of some theoretical interest,
have no bearing on the calculation of the sticking, and re-
flection coefficients, and we shall not therefore give more
details of their derivation here.

The "products" of the gettering reaction are gas atoms
either stuck to, or reflecting off, the solid in its various
quantum states, and of course states

I f ) off the energy
shell are populated as Eq. (38) shows. The gettering is not
complete in the sense that the system wave function as
tab oo does not lie totally in the stuck subspace, because
we have not included a relaxation mechanism on the
states

I f ) .
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