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Role of coherences in the relaxation of adsorbates
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Adsorbed species on a solid-state surface interact with the large number of substrate modes,
which gives rise to thermal relaxation. Commonly, the temporal evolution of the quantum state of
the adsorbate is described by a master equation for the level populations (vibrational bond, internal
modes, etc). It is pointed out that this approach does not necessarily give a correct account of the
coupling to the solid when the effective level widths become comparable to the level separations, or
larger. It is shown that the evolution of the populations does not decouple any more from the time
evolution of the coherences (off-diagonal matrix elements), which implies that a random-phase ap-
proximation cannot be justified, and that the density matrix of the adsorbate is not determined only

by the golden-rule transition constants. Especially, the line profiles turn out to be very sensitive to
the coherence-coherence couplings. Although the coherences vanish in thermal equilibrium, their
time-regression operator, and hence their mutual couplings and their couplings to the populations,
which determine the absorption profile, do not. This information is lost in a master-equation treat-
ment of relaxation.

I. INTRODUCTION

Coupling of adsorbed atoms or molecules on a surface
to the degrees of freedom of the substrate, amounts to ef-
fective thermal relaxation of the internal molecular
modes, or the vibrational bond with the solid. For mole-
cules like CO on a metal surface, the excitation of internal
stretching modes (vibrational levels) corresponds to a
charge displacement, which couples to the motion of the
electrons in the conduction band of the metal. Interaction
of the electron cloud of the single molecule with the large
number of electrons in the substrate then provides that the
small system (the admolecule) is driven towards thermal
equilibrium with the heat bath (the metal). ' This process
is usually regarded as electron-hole pair formation in the
metal. Another example of relaxation of adsorbates per-
tains to the kinetic coupling of an adatom in a vibrational
(electromagnetic) bond with a crystal to the thermal
motion of the surface atoms, which support the bond. In
this fashion the kinetic and potential energy of an atom in
an excited bound state on the surface, can be transferred
into kinetic and potential energy of the crystal atoms.
Usually, this process is viewed as a phonon exchange be-
tween the adatom and the substrate. Finally, we mention
the irreversible dipole coupling of dye molecules (coatings)
on a dielectric to the surface-plasmon field. This interac-
tion is responsible for a dramatic change in the lifetime of
the molecule, which in turn yields the celebrated
phenomenon of enhanced Raman scattering, and surface-
induced (Raman) resonances.

Commonly, the above-mentioned mechanisms for
molecular relaxation, due to coupling with the substrate,
are incorporated in the rate equations for the level popula-
tions n;(t) (internal vibrational, kinetic, or electronic) of
the adparticle as

d
n;(t) = —g [n;(t)a;~ nj(t)aj, ]—+

dt '

po(t) =Tr,p(t), (1.2)

where Tr, indicates the partial trace over the reservoir
states. Taking the diagonal part of the equation then re-
sults in the master equation (1.1) for the populations

n;(t)=(i
~
po(t) ~i ) . (1.3)

If we consider the off-diagonal matrix elements (the
coherences) of po(t), we obtain

x ('
I po(t) I j)+ (1.4)

for i&j, where

(1.5)

where the transition constants a;~ are determined by the
golden rule. Level ~i ) decays to the other levels

~
j) at a

rate n;a,1 (loss term), and gains population from transi-
tions of levels

~
j) to ~i) at a rate njaj; Balanc. ing the

contributions then gives the master equation (1.1), where
the ellipsis denotes the remaining interactions with, for in-
stance, a laser field. In a more thorough approach,
which yields exactly the same result for the coupling with
a heat bath, one starts with the full Schrodinger equation
for the density operator p(t) of the solid, the adparticle,
and the interaction. With standard reservoir theory, pro-
jection techniques, ' or a Langevin approach, one then '

derives an equation of motion for the reduced density
operator po(t) of the adsorbate, defined as
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equals the inverse lifetime of level
~

i ), due to transitions
to every other level

~
j), and irido; is the energy of ~i).

Hence any initial coherence (i
~
po(0)

~
j) vanishes ex-

ponentially on a timescale (A;+AJ )
' in the evolution to

thermal equilibrium (long-time limit t~ oo, or steady
state). In a random-phase approximation one omits the
coherences from the beginning and considers only the
time evolution of the populations. Since Eq. (1.4) for the
coherences does not couple to the master equation (1.1)
for the populations, this approach is justified by more
elaborated theories.

However, this is not the whole story. First, the master
equation does not embody the full dynamical behavior of
the adparticle. It only provides information on the distri-
bution of populations, the energy content of the molecule,
and the energy transfer into the solid. [Equation (1.1) im-
plies an equation for energy conservation, because a level
at irta~;, which is populated with n;(t), corresponds to an
energy n;Ace; of the molecule. ] Spectral information, like
the line profiles for the absorption of radiation and the
temporal correlations between the populations, which ap-
pear for instance in the response to a pulsed laser, are
governed by the time regression of the coherences, rather
than by the master equation. " Therefore, in discarding
Eq. (1.4) one looses valuable information on observable
properties of the system.

Second, in the derivation of the master equation there is
always the tacit assumption that the width of a specific
transition ~i)~

~
j), which equals a;1, is much smaller

than the level separation
~

co; —coj ~. Then one drops
fast-oscillating terms with the Bohr frequencies
=co; —~j, with the argument that they will approximately
average out to zero. This is a correct procedure if

~

b, ;J ~

~~a,j. In general, however, it is not obvious that
this condition is always satisfied. To be specific, for
electron-hole pair formation, both Q j and 6'j acquire
values of the order of a picosecond, and for CO on
copper, for instance, the inverse lifetime of the stretching
modes exceeds the level separations. In the case of ad-
sorption of atoms on a crystal, the timescales for relaxa-
tion typically range from nanoseconds to picoseconds.
For weakly bounded atoms (shallow potentials) the levels
become closely spaced, and their separations can easily as-
sume the order of magnitude of the damping constants.

In this paper we shall retain the couplings, which are
due to the overlap of levels, and point out their signifi-
cance. Especially, the absorption profile for weak radia-
tion appears to be sensitive to the coherence-coherence
coupling, as will be illustrated by an example.

of relaxation theory in this section. ' With H, the Hamil-
tonian of the adsorbate, which includes the binding energy
to the surface (attractive force of electromagnetic origin),
and H, the substrate Hamiltonian, the equation of motion
for the density operator p(t) of the active system reads

iiri p—(t) =[H, +H„+SR,p(t)],d

p (t)=p(t), Trp(t)=1 .
(2.1)

L =R [H . ] L =Pi [8 ]
—1 —1 (2.2)

we define the transformed density operator as

o.( t) =exp[i(L, +L„)t]p(t),

which obeys the equation of motion

(2.3)

i' rr(t)=[S(t)R(t), o.(t)] .
d
dt

(2.4)

The free evolution of S and R is displayed in their time
dependence, according to

Here the interaction between the molecule and the sub-
strate, which gives rise to the relaxation, is divided as SR,
where S=S is a molecular operator (S denotes systems),
and R =R (reservoir) is an operator in the subspace of
the solid. For instance, for coupling by single-phonon
transitions, the operator S equals the derivative of the
binding potential well, perpendicular to the surface, and R
is the amplitude operator of an atom in the crystal. '

With a Taylor expansion it is always feasible to factorize
the interaction as g, S;R;, but in order to avoid many ob-

fuscating subscripts, we only retain a single term. In the
case of phonon coupling, the subscript i indicates the
number of phonons which are involved in a one-step tran-
sition. By writing SR for the interaction, we only keep
track of single-phonon transition. This is already very ac-
curate if the transition frequencies A,J are smaller than
the Debye frequency of the crystal, since then every pair
of levels is resonantly coupled by a single-phonon interac-
tion.

The standard integral of Eq. (2.1), which is suitable for
the development of relaxation theory, is most conveniently
derived with the aid of the interaction picture. With the
Liouvillians

II. RELAXATION THEORY S(t)=exp(iL, t)S, R(t)=exp(iL„t)R . (2.5)

In order to display clearly the various approximations
and to set the notation, we summarize the basic elements

Iterating Eq. (2.4) twice and differentiating the result with
respect to time then yields the integral

~ d
i o(t) =Pi '[S(t)R(t),o(0)]—ih' 2 J dt'[S(t)R(t), [S(t')R(t'), cr(t')]] .

dt 0
(2.6)

As the initial value we can choose arbitrarily o(0) =oo(0)p,q, with oo(0) =Tr„o.(0) the reduced density operator of the
adsorbate and p,q the thermal-equilibrium state of the solid. By definition, p,q commutes with H„and we shall assume
that
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Tr„Rp,q
——0 . (2.7)

This means that the interaction does not give rise to a net energy content of the molecule, which is exact in most cases.
Otherwise the restriction (2.7) can be enforced by a proper transformation, which shifts the interaction over its average.
As a second step we write cr(t') =o 0(t')p, „+ correcti on, which can always be done. After taking the trace in Eq. (2.6)
over the reservoir states, we then obtain

d 1
pro(t) = — f ds[6(s)S(t)S(t —7 )0 o(t —7 ) +G*(T)oo( t —7 )S(t —7 )S( t)

dt 2m

—G*(r)S(t)cro(t ~)S(t —r) —G(~)S(t ~)oo(t —~)S(t)]+correction . (2.8)

For later purposes we do not impose the condition o.0——o.0, which would allow a contraction of terms. The interaction
with the substrate is incorporated in the complex-valued reservoir correlation function

G(w) =2M Tr„R(~)Rp,q, (2.9)

which can be evaluated immediately for any prescribed R and H„. Among other features, this G(w) encompasses the
temperature dependence of the coupling. Equation (2.8) is the usual starting point for reservoir theory.

A particularly transparent representation of Eq. (2.8) emerges if we adopt a Liouville-operator notation for the cou-
plings in the integrand. To this end, we substitute S(t ) =exp(iL, t)S, transform back to the p picture, and define

=[S
Then Eq. (2.8) assumes the form

d l —iL
i po{t)=L,po(t) — Ls drI G(~)e ' [Spo(t —~)]—G*(7)e ' [po(t —~)S]]+correction .

dt '
2m

Next we introduce the correlation operator

L (~) . . =S G(~) —G*(~) . . S,
which enables to rewrite Eq. (2.11) compactly as

d l t —iL
i po(t)=L, po(t) — Ls dwe ' L, (r)po(t —r)+correction .

dt 2~ 0

(2.10)

(2.11)

(2.12)

(2.13)

As long as the correction terms are taken into considera-
tion, and provided that condition (2.7) holds, this is still
an exact integral of Eq. (2.1). Equation (2.13) clearly re-
veals the significance of L, (~). It accounts for the
memory in the interaction.

they can be discarded in comparison with a;z. In the in-
teraction picture, oo(t —r) evolves on a timescale a;~
which implies that we can replace o (t o—r) by cro(t) in Eq.
(2.8). In the p picture the density operator oscillates with
the Bohr frequencies, and hence the corresponding ap-
proximation in Eq. (2.13) is'

III. RESEVOIR CONDITION
exp[iL, (t —r) ]po(t —w) =exp(iL, t )po(t) . (3.2)

a,~w, ((1 (3.1)

for every i,j. For rare-gas atoms on a crystal like KC1,
typical values of the product a;~~, range from 0.1 to 0.01.
By definition, the value of the integral in Eq. (2.13) has an
order of magnitude of a;~, and it is easy to estimate' that
the correction terms are of the order of a;~~, . Therefore

A solid has a broad, continuous spectrum of modes,
which are coupled to the molecule by the SR interaction.
This property assures that the correlation function G(w)
from Eq. (2.9) decays to zero very fast for increasing ~.
Typically, the time width of G(~) is of the order of the in-
verse cutoff frequency of the mode distribution, which is
the Debye frequency for a harmonic crystal. Hence this
time is much shorter than any timescale on which cJO(t)
varies, due to its coupling with the same continuum. If
we indicate the correlation time of the reservoir by ~„and
the damping constant for the transition

~

i )~
~ j ) by a;J,

as in Eq. (1.1), then the reservoir condition reads

Then we can take po(t) outside the integral, and again
with condition (3.1) we can replace the upper integration
limit by t= ao. Combining everything then leads to the
concise form of the equation of motion

. d
i po(t) =(L, i I )po{t) . —

dt

The Liouville operator I is defined by

r= '
L, f "d,.-""I.,(,),",

2w

(3.3)

(3.4)

which accounts for the relaxation of the molecule, due to
the coupling with the modes of the substrate. Recall that
the only assumption in deriving Eq. (3.3) is the condition
(3.1), which is fairly justified for adsorbates. Equations
(3.3) and (3.4) constitute the full effect of the coupling to
the substrate, including the time evolution of the coher-
ences, coupling between coherences, level shifts, etc. The
advantage of the Liouville approach, in contrast to a
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master-equation treatment, which relates matrix elements,
is that the dynamics of the interaction is completely
disentangled from the structure of the equation of motion,
Eq. (3.3).

I o= —, gsj(gjS I

i ) (j I

o' g—&Scr i ) (j

—g„ I

i &&j
I
os+g, ,*o

I

~ &&j s), (4.9)

IV. EVALUATION OF I

Equation (3.4) defines the relaxation operator 1 in
terms of the Liouvillians L, and L, ( r). If we remember
that

exp(+iL, r ) =exp(+iH, rifi) exp(+iH, rib),
(4.1)

which defines the action of I or an arbitrary Liouville
vector cr. Here S;j ——(i

I
S j) is a matrix element of the

molecular part of the interaction.
Equation (4.9) is a hybrid representation of I, since it

contains matrix elements S;J, as well as the operator S it-
self. With the closure relation

(4.10)

and then insert the definition (2.12) of L, (r) into Eq.
(3.4), we find that 1 can alternatively be represented by

I =L, (Q — Q ),
which involves the Hilbert-space operator

(4.2)

Q= f dr 6(r)e ' S .
2m

(4.3)

Notice that Eq. (4.2) still contains four terms, because L,
is a commutator. This also immediately implies the prop-
erties

(I o. ) =I o, Tr, (I cr)=0, (4.4j

P, = li ) (i
I

, (4.5)

for any cr. These relations are necessary for the conserva-
tion of Hermiticity and trace in the time evolution of
po(t).

Since L, appears in an exponent in the definition of Q,
an expansion in matrix elements is most convenient on a
basis where L, is a diagonal, e.g. , the adsorbate states
Ii ). For simplicity we shall suppose that the states i )

are nondegenerate. This is no restriction at all, but it
avoids cumbersome notations. In terms of the projectors

we can cast Eq. (4.9) in the form

I a.= —,
' g (ck;;j k)(j

I
cr+ck;;jo j)(k )

i,j,k

z g (ckljl t &&j
I

'cr
I

k &&i
I

+cktjl l&'
i,j,k, l

x&klolj)&~ ),
where we introduced the coefficients

ck)~„——Sk(S~„g„~ .

(4.1 1)

(4.12)

Hence the relaxation operator is determined by the reser-
voir parameters g,J and the matrix elements S,J between
the wave functions i ) and j ) of the adsorbate. Both

g;J and S;J can be evaluated directly, once the kind of sub-
strate and the molecular wave functions (internal modes),
or the binding potential (vibrational coupling to a crystal),
are prescribed. '

The relaxation gives rise to an effective width of the
levels (their inverse lifetimes). If we assume that the over-
lap between different resonances is negligible, then we
only have to retain couplings between pairs of levels in
Eq. (4.11), rather than between four levels simultaneously.
If we further neglect the imaginary part of g;j (the level
shifts), then Eq. (4.11) attains the familiar form'

the exponential in Eq. (4.3) can be expanded as

exp( iL, r) =g—exp( ib, ;jr)P; . . P— (4.6)

I cr = —, g a;j ( P; cr + crP; —2Pj ( i
I

a. i ) ), (4.13)

Then Q assumes the simple form

Q = —, g gj, P;SPj,

where the reservoir parameters gJ, are defined by

QO

gj; =— dr exp( —i 6;jr)G(r),

(4.7)

(4.8)

in terms of the rate constants a;J for the transitions
i) j)

ctj Reckllk
I
ski

I
«gkl2 (4. 14)

It is easy to check that the simplified form (4.12) leads to
the master equation (1.1).

V. EQUATION OF MOTION

Numerical solution of the equation of motion (3.3) re-
quires an expansion in matrix elements. With Eq. (4.11)
for the relaxation, and

which is essentially the Laplace transform of G(r). Sub-
stituting Q and its Hermitian conjugate into Eq. (4.2)
gives

L.po=X~ (
I

~ &&t
I po —poli&&t I

»
l

for the free evolution, we obtain

—&m
I po I

n ) = —ib, &m
I po I

tt &
—

2 g (c j&j I po In &+c*.j&m I po I
j&)+ ' g (c;, , &j

I po I i &+c* j&i I po I
j&) .

I,J
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If we subsequently set m =n and use po
——po, we find

& m
~ po ~

m &
= ——,

' g (c;;J&j ~ po ~

m &

j7J
—c;-, &I I po I

i &)+H.c. (5.3)

for the time derivative of the population &m
~ po j

m &.

This result is by no means equivalent to the master equa-
tion (1.1). Even if we were to neglect the imaginary part
of the coefficients, then the time evolution of the popula-
tions would still couple to the real part of the coherences
&j ~ po ~

m & (j&m), due to overlapping resonances. Con-
versely, the time evolution of the coherences, as it follows
from Eq. (5.2) with m&n, couples to the populations and
to every other coherence, in contrast to the simple ex-
ponential decay [Eq. (1.4)) in the limit of nonoverlapping
resonances. In conclusion, if the widths of transitions be-
come comparable with the level separations, it is inevit-
able that the coherences be taken into consideration,
which in turn prohibits the derivation of a genuine master
equation. Stated otherwise, in this case a random-phase
approximation cannot be justified.

VI. STEADY STATE

then Eq. (5.3) reduces to

g (n;a;J —njaj;)=0, g n; =1,
J l

(6.2)

where the rate constants a;z are defined in Eq. (4.14).
This equation is exactly the same as Eq. (1.1) for t~ oo,
with the left-hand-side set equal to zero. Hence the long-
time solution of the density matrix is diagonal, and deter-
mined by the golden-rule transition constants a;~. Note
that the imaginary parts of cklIk do not contribute. In
terms of the solution nk of Eq. (6.2) and the projectors
Pk, we can write po as

po g nk~k
k

(6.3)

which will be used in the next section.
Only in the transient region the coherences affect the

details of the time evolution of the populations nk(t).
Therefore it might appear that the importance of the cou-
pling to the coherences, and in particular the coupling be-
tween different coherences, is marginal. This is, however,
not the case. Even in the steady state, where the coher-
ences disappear identically, their time regression has a
great significance for the calculation of observable quanti-
ties. It should be emphasized that, for instance, a level

Of particular importance is the long-time solution

Po ——po(t~ ao). This steady-state density operator obeys
dpo/dt =0, and its matrix elements follow from Eqs. (5.2)
and (5.3) with the left-hand sides replaced by zero. The
relaxation of the reduced density operator to a steady state
is a result of the coupling to the substrate. Apart from
extravagent situations, this po is unique. Therefore we can
solve Eq. (5.3) by trial and error. If we assume that the
coherences vanish in the steady state, e.g.,

(6.1)

population is not directly accessible to experimental obser-
vation in general.

VII. ABSORPTION PROFILE

d —p E (7.1)

With d(t) the Heisenberg representation of d, the number
of absorbed photons per unit of time from the incident
field with frequency cu equals'

I(co) =I&(eofi c) 'Re J dt e' 'Trp[d(t), d], (7.2)

where Iz is the laser power (energy per unit of time
through a unit area, perpendicular to the direction of
propagation). Multiplication of I(co) by fico gives the ab-
sorbed energy per unit of time. Here, p is the thermal-
equilibrium state of the entire system, and the time regres-
sion of d (t) is governed by the Hamiltonian H, +H„+SR
from Eq. (2.1).

After a transformation to the Schrodinger picture, we
can eliminate the reservoir degrees of freedom from the
integrand in Eq. (7.2) along exactly the same lines as we
derived Eq. (3.3) for the reduced density operator po(t).
We obtain

A common method to observe resonances of adsorbates
is by irradiation of the surface with a low-power mono-
chromatic laser, and measuring the absorption as a func-
tion of the photon energy (frequency). Probing the system
with a weak radiation field has the advantage that it does
not disturb the molecule (excitation of internal modes),
nor desorb the layer or heat the substrate. Furthermore,
the intensity of the radiation (scattered or transmitted)
can be detected with high accuracy, partly due to the fact
that only a relative measurement is required, which relates
the absorption at a particular frequency to a calibrated
off-resonance background level. Care should be exercised,
however, in the interpretation of the spectrum. It is not
the free molecule which absorbs the radiation, but the
joint system of molecule, substrate, and interaction. Con-
versely, this feature provides an interesting tool to investi-
gate the molecule-surface interaction (binding potential,
charge-exchange mechanism), or properties of the sub-
strate (dispersion relations of phonons or polaritons).
Especially for a transparent crystal, like for instance ir
light on KC1, information about the crystal can be ob-
tained by spectroscopic methods in this way, which is not
feasible without the coating. The adbond-mediated ab-
sorption profile will reflect the details of the coupling
mechanism of the molecule to the substrate, and the prop-
erties of the solid itself. We remark that even if both the
adsorbate and the substrate are transparent for a particu-
lar frequency, the bond can be optically active. This is for
instance the case for rare-gas atoms on an alkali chloride
crystal. Then the absorption profile will reveal the prop-
erties of the wave function of the vibrational state, and as
we show below, in great detail.

If we indicate by p the dipole-moment operator of the
molecule or the bond (or both), and by e the polarization
of the probe beam, then the absorption profile is deter-
mined by the time regression of the operator



HENK F. ARNOLDUS AND THOMAS F. CxEORGE 35

Trp[d(t), d] =Tr, d e ' [d,po] (7.3)

where Tr, runs over the adsorbate states only. Equation
(7.3) can be regarded as a Liouville-operator representa-
tion of the quantum-regression theorem. ' Then we insert
Eq. (7.3) into Eq. (7.2) and perform the time integration,
which yields the representation

and that trace is conserved in a time regression with
exp[ —i (L —i I )t ]. We recall that the commutator
[d,po] gives rise to the terms dpo and pod, which corre-
spond to stimulated absorption and emission in the laser
mode, respectively. The profile I(ru) is the balance be-
tween these two processes.

Since we suppress the degeneracies of the levels, we can
expand the operator d on the adsorbed states as

I(cu) =I~(E0A c ) 'Re Tr, d [d,po]
m —L, +iI (7.4)

d=Xd li&&jl (7.7)

—i(L —i1 )t
lim e ' [d,po] =p&Tr, [d,po] =0, (7.5)

in terms of an operator inversion. The upper limit t = ~
does not contribute, due to the identity

With the representation (6.3) of the steady-state solution,
we find

which in turn follows from the facts that po is the solution
of

[d,po] =g (n, n;—)d;,
~

i ) &j ~

(7.8)

(L, i I )po—0—— (7.6)
Substitution into Eq. (7.4), expanding d as in Eq. (7.7),
and taking the trace then gives

I(co)=Ip(eofr c) ' g (n~ n;)Red&d—k1&k
~ ~i)&I

~ ~

i) .
i,j,k, l co —I,+i I (7.9)

The matrix elements of co —L, +iI can be read off im-
mediately from Eq. (5.2), and after inversion of this ma-
trix, Eq. (7.9) yields the absorption profile. Hence for a
system of X levels, the evaluation of I(cu) requires only
the inversion of an N & N matrix.

From the explicit representation (7.9) it follows that
I(co) is determined by the time regression of the coherence
~i ) &j

~
(i&j). In the time domain, like in Eq. (7.1), we

propagate ~i ) &j
~

with exp[ i(L, —iI )t], a—nd then take
the coherence &k

~ ~

l) of the result at time t A.
Fourier transform then gives the spectral profile. This
elucidates the importance of the coherences in the obser-
vation of adsorbates with spectroscopic methods. It is
their time regression which determines the spectral distri-
bution, whereas the populations only appear as an overall
factor nj —n;. Furthermore, the spectral resolution in-
volves the complete operator L, —i I, which represents
the free evolution of the molecule, the damping, the level
shifts, and all the couplings between coherences and popu-
lations.

In the secular approximation, Eq. (4.13), where only
couplings between pairs of levels are taken into account,
only the terms with i =k, j=l survive in Eq. (7.9). We
notice that for i,j&k, l an overall factor d,jdkl arises,
rather than

~

d;~.
~

. This product of matrix elements car-
ries information on the relative phases of the dipole-
moment matrix elements d;&, which is not the case in the
secular limit, where only

~
d;

~

appears. Therefore, for
transitions which have a sufficient overlap, it should be
feasible to extract their relative phase from an absorption
measurement.

VIII. TWO-LEVEL SYSTEM

In order to display the significance of the various no-
tions, we utilize the two-level system. For the case of a
vibrational coupling of an atom to a crystal, this situation
can occur if the potential well is shallow enough, so that it
supports only two discrete levels. The steady-state popu-
lations are readily found from Eq. (6.2). We obtain

a2] a&2
n& —— n2 =

ap) +Q )p ac& +a Iz
(8.1)

Next we neglect the self-coupling of a level, which means
that we assume S» ——Sz2 ——0. The equation for the coher-
ence p21(t) follows from Eq. (5.2). Explicitly,

d 1

dt
P21(r) E621 P1(2) r2 (c2112+c1221) P1(2)r

1+ 2 (C2121 +C 1212 ) P( 12)r (8.2)

2 I
S21

I (g21 +g12 )

S» = IS» I
exp(ip),

(8.3)

(8.4)

where the latter defines the phases 1I) of S2, . Then Eq.
(8.2) attains the form

and the equation for p12(t) =p21(t)* follows after a com-
plex conjugation. We shall write A2~ ——coo for the reso-
nance frequency of the adsorbate, before coupling to the
reservior, and we introduce the notations
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dt
pz1(t) = —(icop+rt)p21(t)+g exp(2ip)p12(t), (8.5)

=a21+a12 . (8.7)

1 (~ 21 ++ 12 ) (8.6)

where we used

which shows immediately that p21 ——p12
——0, in agreement

with Eq. (6.1). The second term on the right-hand side
represents a coupling between the coherences pz1(t) and
p12(t). This term would be discarded in a secular approxi-
mation.

Equation (8.5) together with its complex conjugate con-
stitutes a closed set, which has the characteristic frequen-
cies

+=+I~o[ o+ (n' —n)l ——.'«21+ 12)'I'"

In the secular limit cop &&a21+a12, they reduce to

1

Cl) + +COP —
2 i ( a 21 +a 1Z )

and hence the resonance is situated at cop with a width
1

equal to —,(az, +a12). Conversely, for a21+a1z »cop we
find co+—0, co =—i(a21+a12), which are both situated
at co=0.

The full absorption profile I(to), Eq. (7.9), is deter-
mined by the Liouville operator co —L, +il . From Eq.
(5.2) we can easily construct a matrix representation for

i(L, —i I —), which in turn gives

Co+ia 21
—ia12

—ia 21 co+ ia12

0

0

0

co —L, +iI =
0 0

0

co cop+i—rt —ig exp(2ig)

irtexp—( —2ig) co+coo+irt"

(8.8)

on the basis
l
2)(2 l, l

1)(1 l, l
2)(1 l, l

1)(2 l. Inversion of this matrix and substitution into Eq. (7.9) then readily
yields

a21 a12 1 2l COp

I(co) =BI& —Re
&21 +& 12 ~ (CO+COp+ i'r} )(cO —COp+ i'g ) +7}7)

(8.9)

where we introduced the Einstein 8 coefficient

ls z1 ~
I

2

Cps C
(8.10)

pertaining to stimulated transitions between
l

I ) and
l
2).

Notice that the phase p of S21 disappears from I(co), as
could be anticipated. Only relative phase differences be-
tween wave functions of pairs of levels might have a signi-
ficance, and hence the phase difference P, related to the
wave functions of a two-state system, should vanish in ob-
servable quantities. The resonances of I(co) are situated at
the real parts of the zero's co+ of the denominator. Since
Reco+ ———Reco there is only a single peak in I(co) for
positive frequencies co.

In the secular limit we can omit the term gg* in the
denominator (with respect to cop), and then the profile
reduces to

On the other hand, an increase of Reg in I(co), broadens
the line, without shifting it. The qualitative different ef-
fects on I(co), as compared to the approximation I(co, ),
arise purely due to the inclusion of the coherence-
coherence coupling. The shift of the line in I(co) should
not be confused with the shift Imp (Lamb shift), which is
always present but, in general, small. Shifts and widths of

0.70

0.35

a21 a12 1
I(co), =BI~ —Re~ a21+a12 m. p+i g

(8.11)

which is a Lorentzian around cop+ Imp, with a half
width at half maximum equal to Reg= —,'(a21+a12). In
Figs. 1 and 2 we have plotted I(co) and I(co), for Imp =0
and for different values of Reg. Note that I(co) and
I(co), assume the same value at the transition frequency
cop, if Immi =0. Increasing Reg shifts the peak in I(~) to-
wards lower frequencies, without a significant broadening.

0
0

FIG. 1. Absorption profile I(cu) from Eq. (8.9) as a function
of co. The overall factor BI~(a&1 —a12)/(a~~+al2) is taken to be
unity. Frequencies are in units of ~0, and the relaxation con-
stant equals g=0.5. The profile which is symmetric around coo

is the secular approximation I(co), from Eq. (8.11).
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0.70—

0.55

0
0 2 Qfo

FIG. 2. Same as Fig. 1, but with q=1.5. In this case the
width of the transition is larger than the level separation, and it
is seen that the resonance at coo vanishes completely. The com-
bined system of adsorbate and substrate gives rise to a resonance
near co=0, which is not found in the secular limit. There the
peak at coo 1s smeared out to form a continuous background.
This exhibits clearly the significance of the nonsecular couplings
if the levels have overlapping resonances.

absorption lines are directly amenable to experimental ob-
servation, and hence a verification of these predictions
should be feasible.

IX. CONCLUSIONS

Coherences play a pronounced role in the relaxation of
adsorbates if the widths of the transitions (relaxation con-
stants) become comparable to or exceed the level separa-
tions. In the transient region the time evolution of the
populations of the adsorbate states couples to the evolu-
tion of the coherences, which prohibits a description in
terms of a master equation. For taboo (steady state,
thermal equilibrium) the coherences vanish, and a time-
independent master equation emerges, which contains the

golden-rule transition constants as parameters. Measur-
able quantities which are determined by a two-time quan-
tum expectation value, like correlation functions or
spectrally-resolved properties, however, involve the time-
evolution operator L, iI—for the density matrix po(t).
This includes all couplings between populations and
coherences, and between coherences among each other.
Even in the steady state, where the coherences disappear,
their time-regression operator obviously does not. There-
fore, a correct evaluation of steady-state properties re-
quires that the coupling with coherences is retained. In
other words, a random-phase or secular approximation is
not exact in general.

We have applied a Liouville-operator formalism to
derive a condensed form, Eq. (3.3), of the equation of
motion for the reduced density operator po(t) of the adsor-
bate. After some algebraic manipulations, and an expan-
sion in matrix elements, we arrived at Eq. (5.2), which
generalizes the master equation (1.1). It should be stressed
that Eq. (5.2) contains the same parameters as Eq. (1.1), so
that no additional information about the system is re-
quired. Only the coupling between the different matrix
elements is more complicated. Discarding various nonsec-
ular couplings yields again Eq. (1.1).

Subsequently we have considered the probe-absorption
spectrum I(co), which was expressed in the resolvent
(co L, +i I ) —' in Eq. (7.9). With a two-level example it
has been illustrated how the formal expression can be
evaluated and what the relevance of the coherence-
coherence coupling can be for the spectral distribution.
The results have been compared with the secular approxi-
mation, where I(cu) is a Lorentzian.
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