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EH'ects of gravity on equilibrium crystal shapes: Droplets hung on a wall
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General properties of equilibrium crystal shapes pinned on a vertical wall and subject to gravity
are sought. For two-dimensional crystals, or three-dimensional ones with axial symmetry held in
suitable geometries, we are able to express the results in terms of the well-known gravity-free
WulA'-Winterbottom shapes. All results are valid for an arbitrary, given, orientation-dependent
surface-tension function.

The century-old subject of equilibrium crystal shapes'
has received considerable recent interest, both experimen-
tally and theoretically. On the experimental side, tech-
nologies far superior to those of Wulff allow the observa-
tion of crystals in equilibrium with their surrounding
medium. Theoretically, their relationship to surface
roughening and other subtle phase transitions in two di-
mensions 5 entices researchers from many fields.

To start from a microscopic Hamiltonian and end at an
equilibrium crystal shape is, at present, a two-step process:
(a) Derive o (n), the free energy per unit area associated
with a+at interface with normal n between the crystal and
the medium and (b) put a into the Wulff construction to
come up with the equilibrium crystal shape.

While we do not have a rigorous justification for this
two-step procedure, it is widely believed to be correct for
macroscopic crystals whose smallest radius of curvature is
much larger than the lattice constant.

Two difficulties still remain when we wish to compare
theoretical predictions to earth-bound experiments. One is
inherent in step (a), although many models (such as solid
on solid and mean field) are deemed adequate for comput-
ing o. The other is the effect of external forces, such as
gravity, which spoils step (b), even if an exact a is avail-
able. The deviation from the Wulff construction becomes
more severe as the size of the crystal becomes larger.
While the first difficulty is no less a problem than solving
the three-dimensional Ising model, the second is no more a
problem than one in the calculus of variations. In this pa-
per, we communicate some new results in a continuing
pursuit for solutions to the second problem.

Part of the difficulty encountered with effects of gravity
is the strong dependence of solutions on the details of the
supports. This is a common experience, especially for iso-
tropic o cases: Water droplets on tabletops are shaped
differently from those hanging from faucets. In both two
and three dimensions, a large variety of situations have
been explored for isotropic o.

For general a's and nonspherical equilibrium shapes
only a few workers address the problem of gravity. Ca-
brera and Garcia evaded the issue essentially. Avron,
Taylor, and Zia considered sessile drops, i.e., crystals sup-
ported by a homogeneous flat horizontal surface such as a
tabletop. For an arbitrary given a, exact solutions (quad-

rature) are found in two dimensions while general proper-
ties are proved in all higher dimensions. The effect of
gravitational-induced faceting was discovered and extend-
ed by Taylor to gravitational-induced curvature. Another
group'0 was more ambitious and studied crystals support-
ed by curved supports, but with little concrete results.

Here we consider a diA'erent form of common support:
pinning to a wall (vertical flat substrate). Physically, such
"pinnings" frequently occur as a result of impurities which
have a lower or higher interaction with the crystal than
with the medium. To keep the problem simple and tract-
able, we consider only two dimensions with pinning at the
top point of the crystal (the hung crystal). For three-
dimensional crystals, the cases considered here are applic-
able to crystals with axial symmetry, held in suitable
geometries. In this Communication, we briefly indicate
our methods, report the general results [which are valid for
an arbitrary, given function o(n)], and discuss their phys-
ical significance. Detailed analysis and solutions to several
related problems will be presented in a later publication. "

To describe the shape of a crystal with fixed volume V,
which is in equilibrium with its medium, we start with a
given a(n), the free surface energy for the interface be-
tween the crystal and the medium. For problems in two
dimensions, n may be parametrized by the angle it makes
with the x axis p. With neither gravity nor substrate, the
equilibrium shape is found by WulA'. ' Denote the x and y
coordinates of the Wulff shape by x~ and ytt. For a(p)
leading to smooth shapes, these are explicitly given by'

and

xtt (p) =cos(p)o —sin(p)(da/dp)

ytt (p) sin(p)cr+cos(p)(da/dp)

Otherwise, they are still uniquely determined by a and we
will assume (xtt, ytt ) to be "given" in the same sense that
o is given. Note that the units of x~ and y~ are those of
o while the physical coordinates (x,y) of the crystal sur-
face are (xtt, ytt ) scaled to fit V by a dimensionful param-
eter.

For a crystal shape in the absence of gravity but at-
tached to a flat homogeneous substrate with an orientation
axed relative to the crystalline axes, we need Win-
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terbottom's construction. First, let the crystal and medi-
um lie in the x & 0 half space with the origin set at one of
the two ends of the crystal. Next, let o.& be the difTerence
between the medium-substrate surface energy and the
crystal-substrate one. Assume xz(n) & cr& & xz(0); oth-
erwise we would have the singular cases of complete dry-
ing or wetting. Now, the Winterbottom physical shape
may be expressed in terms of Wulff's: x =(x~ —crs)/k;
y =[yn —y~(Pn)]/X, where X is a scale parameter for
fitting V and pic is the contact angle at the origin, satisfying
xn (pn) a~. [See Fig. 1(a) for a o&& 0 case.] The other
contact angle is denoted by pf. These results come from
minimizing an energy functional of, say, x(y), consisting
of surface energy terms [fo da and Jo&e(x)dy, where
e =1,0 if x & 0, ~ 0] and a Lagrangian multiplier term
for the volume constraint (Xfx dy).

To describe a crystal pinned on a wall under the
influence of gravity, we need additional terms in the ener-

gy functional corresponding to the pinning and gravity.
The latter is simply g fyx dy, where g is the product of the
acceleration due to gravity and the difference of crystal
and medium densities. The former is another a-like term,

X

coming from impurities on an otherwise homogeneous
wall. For simplicity, we consider a single impurity local-
ized at y =0. The strength, denoted by J, can be infinitely
attractive, corresponding to a crystal being hung by its
upper "edge" [cf. Fig. 1(b)]. Mathematically, we add a
term Jb(y) to o& in the surface energy functional. In
practice, such pinning terms translate into a boundary con-
dition: x(0) 0, while the exact value of J never enters.
The functional to be minimized is

F[xl = dy e(x) [[crJ(1+x') —cr~+ Jb] —tx+gyx],
(1)

where x=dx/dy. The sign in the volume constraint term
is clearly arbitrary, though it is chosen to conform to the
g =0 limit where X & 0. Recall that cr can be an arbitrary
function of p, which in turn depends on x via x = —cot&.
Thus, the Euler-Lagrange equations correspond to two
boundary conditions "and a nonlinear diff'erential equa-
tion of arbitrary form.

Before presenting the solution, we should remark on the
mathematics of the minimization and the physics of the
boundary conditions. First, because of gravity, F is strictly
unbounded from below, even if it is constrained to fixed V.
It can always be lowered by breaking the crystal into two
pieces, one bit over the pin and another piece running oA

to y = —~. So the minimum we seek is a local one, corre-
sponding to a connected crystal. (Note also that if ). is
fixed instead of V, the solution to the variational problem
is a saddle point. The physical meaning is that of a critical
nucleation droplet needed for a first-order transition to an
equilibrium state with semi-infinite regions of crystal and a
medium divided by a meniscus at y =k/g. ) Next, we com-
ment on the two "edges" of the crystal. On the free end,
x =0 and the contact angle is just p/, while y is an un-
known. On the pinned end, x y =0 while the contact an-
gle p~ is an unknown. These unknowns will be functions of
A, and g, which must be solved in terms of V and g. Physi-
cally, we should expect that fixing V and increasing g (or
vice versa) would change the length of the crystal and the
contact angle at the pinned edge.

Though generally nonlinear, the diAerential equation
may be solved by quadrature. Defining K(p;p~ )
—=yn (p~) —yn (p), the solution is best displayed parame-
trically, in a form most suitable for checking the gravity-
free limit:

y(P) =(X/g) [I —[1+2' 2K(y;y~)) '~']

(2)

(b) (c)

FIG. l. (a) Winterbottom's construction for a crystal ad-
sorbed on a substrate located at the y axis, (b) a crystal hung by
an impurity located at y 0 on an otherwise homogeneous verti-
cal wall, (c) a hung crystal displaying a concave portion.

x(y) =„dp(dxn/dp)b. +2gK(y;y, )lJ yf

To obtain these, we have imposed part of the boundary
conditions, i.e. , x(pf) =0 and y(p~) =0. The other condi-
tion leads to an equation for the contact angle:
0=x(p~) =I&'dp[ ]. This is not a simple equation for
finding pz as a function of )i, and g. If we wish to find pz in

terms of V and g, there is the added labor of folding in
whatever the functional form for A. (V,g). Thus, it is very
surprising to find the simple result

gV-xw(y, ) —~~ (3)

This equation provides an easy, graphic determination of
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p~, just as the Winterbottom construction determines gati.

Once p~ is found, all quantities on the right-hand sides of
(2) are explicitly known. One immediate consequence of
(3) is that there is maximum value of gV allowed, i.e.,
xtt (0) —a&. For fixed g, this corresponds to a critical V„
beyond which, there is no local minimum for F (even
when it is constrained to have a fixed volume). We may
label this situation gravitationally induced wetting (GIW).
Physically, the (connected) crystal shape consists of an
indefinitely long interface hugging the wall, the price of
which is more than compensated for by the gain in gravita-
tional energy associated with the bulk of the crystal.

The hung crystal displays another interesting feature.
Before gV reaches its critical value, its shape develops a
concave portion [Fig. 1(c)]. This phenomenon occurs at a
V* for which X(V*,g) =0. For V & V*, k is negative, so
that there is a region where the effective pressure on the
crystal is positive and the interface becomes concave.
Indeed, the point of inflection in the crystal shape occurs at
y =y =X/g, which is "physical" only for negative X. The
concave portion is identical to the convex part from y to
2y, rotated by 180 . V* is not as easy to determine as V, ;
one must first find g from

0=„dy(dxts/dy)/ JK(tip;y, ),
then gV*=xtt (g) —o~. In this connection, we oA'er a
very convenient way to measure cr„ the step-free energy
associated with a facet, when the crystal displays an

inflection point. For g=0, the equilibrium shape being
scale invariant, the "length" of a facet is proportional to,
but does not determine, cr, . However, g provides an abso-
lute length scale, and a, is given by

(4)

where yo locates the center of the facet and L is its length.
Finally, we emphasize that certain normals in the

gravity-free equilibrium shape are absent when g & 0. For
V ( V*, those with angles between &0 and pz are absent
due to (3). For V & V*, ones with angles larger than that
at the inflection point are absent. The efrect is especially
dramatic if there are facets with p between gati and 0 which
could disappear as g or V is increased.

In this Rapid Communication we reported several
mathematically simple and physically useful results associ-
ated with the eff'ects of gravity on the equilibrium shape of
a crystal hung on a vertical wall. We have also investigat-
ed a number of related problems: crystals supported by
their lower edges, menisci pinned on a wall, inclined planar
substrates, pendant drops, and crystals attached to corners
of two substrates. Details of the analysis leading to the
above results and studies of the related problems will be
published elsewhere. "
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