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Ab initio phonon quantities of simple metals from Hartree-Fock cluster techniques
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It is shown that traditional Hartree-Fock total-energy cluster calculations applied near or outside
of what is believed to be the limit of their applicability can provide unexpectedly good agreement
with some measured phonon quantities. A conceptually and computationally simple framework is
presented for ab initio lattice-dynamical calculations of simple metals. Representative results for
Li, Be, and Na demonstrate the applicability and the limitations of the present scheme.

In contrast to electronic-band-structure calculations,
truly ab initio phonon-spectrum calculations for simple
metals have appeared only during the last few years and
in a rather limited number. ' The situation for transition
metals, which will not be considered here, is even worse.
One of the main computational difficulties is that the rel-
atively small phonon frequencies are usually calculated as
differences between two very large total-energy values,
with uncertainties of the same order as (or sometimes
larger than) the phonon frequencies themselves. The very
large uncertainties in the phonon calculations stem from
complicated matrix elements and sums which must be
done in reciprocal space for both a periodically strained
crystal (frozen-in phonon) and the original crystal. Alter-
native approaches use perturbation theory for the energy
difference, with equally complicated matrix elements and
inclusion of several (third and even fourth) orders of per-
turbation terms. ' On the other hand, in several very im-
portant situations (for instance, in calculating the super-
conducting transition temperature or the Debye tempera-
ture, or even a few high-symmetry phonon frequencies),
only a limited but very compact amount of information is
required to predict very important characteristics of the
material truly ab initio. The present approach, invoked,
in particular, for this type of situation, attempts to cir-
cumvent most of the problems mentioned above by work-
ing in real space with a drastically limited number of
crystal cells and by narrowing its predictions by concen-
trating on a restricted but judiciously chosen amount of
information. In this approach, a small atomic cluster
comprised of a reference atom and its nearest and, at
least, next-nearest, neighbors is used to simulate the infin-
ite crystal. Then, traditional ab initio Hartree-Fock
cluster-computational techniques can provide total-energy
differences as a function of atomic displacements from
equilibrium. The total-energy differences (not the total
energies), in this unusual and rather unorthodox method
yield either average phonon quantities (such as the Debye
temperature) or even particular high-symmetry phonon
frequencies in the "frozen-phonon" approximation. ' Al-
though completely outside the scope of the present paper,
other low-symmetry phonon frequencies could, in princi-
ple, be calculated by fitting the parameters of a particular
force-constant model to the ab initio —calculated high-
symmetry phonon frequencies. ' This apparently over-

simplified approach turns out, as will be illustrated below,
to be able to produce good quantitative results at relative-
ly minimal computational cost and with the added advan-
tage of simplicity and transparency in the calculations.

Several obviously legitimate and fundamental questions
concerning the suitability of small-cluster techniques for
such types of calculations should be addressed before the
results of the calculation, which can justify the choice a
posteriori, are presented. There is apparently a contradic-
tion between the nature of the infinitely extended phonons
in simple crysta11ine metals and small-cluster techniques,
which are designed by definition for small systems or lo-
cal properties of infinite systems, since neither the pho-
nons nor the metallic bond are local in nature. There is
no obvious answer to this fundamental conceptual con-
tradiction. Some answer could perhaps be visualized
within the spirit of the tight-binding (TB) formalism
(whose validity is also questionable for metals, but at a
completely different level of objection). In the TB formal-
ism a few parameters determined with a limited number
of atomic neighbors (first and second, or even third
nearest neighbors), and mere use of the existence of long-
range order can determine the complete electronic band
structure. The concept of the phonon is only used with
reference to the infinite system, whereas in the model a
frozen displacement pattern enters the total-energy differ-
ences. Since only differences of total energies and not ab-
solute values (for which an enormous discrepancy with ex-
periment may exist ) enter the calculation, it seems
reasonable to assume that the more-distant-neighbor ef-
fects tend to cancel out. This looks like a very plausible
conjecture, especially for the force constants and average
phonon frequencies which are determined from the second
derivatives of the total-energy curve. These derivatives
evaluated at the equilibrium distance are dominated by
the direct orbital overlap and the repulsive interaction.

Generally speaking, for elemental crystals, the zeroth-
and first-order perturbation contributions of the single-
particle energies to the dynamical matrix, Do+D~ (in
standard notation ), give rise to essentially short-range
forces which do not much extend beyond the range of
direct orbital overlap. The remaining (second-order)
term, D2, apparently not accounted for here, includes the
long-range forces which are responsible for the finer
structure of the dispersion curves and the phonon
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anomalies.
Much of the success of the present calculations, as will

be illustrated below, should be recognized as being due to
the choice of the unrestricted-hartree-Fock (UHF) method
for the description of the metallic-cluster Hamiltonian.
The UHF method has been judged earlier as the most ac-
curate available simple Hartree-Fock —type method for
metal clusters. ' The lack of correlation, however,
presents another open problem which was addressed im-
plicitly above and which can, in principle, be solved by
configuration-interaction (CI) or perturbation techniques.
The use of these techniques, however, besides their contro-
versial effectiveness, would destroy the simplicity, the
transparency, and the low computational cost of the cal-
culations. More details about using the UHF method in
cluster calculations can be found elsewhere. ' The
present clusters, simulating the bcc crystal structure for
Li and Na and the hcp for Be, include first- and second-
nearest neighbors. The basis functions used in the calcu-
1ation are listed in Table I. Some of the results of the
present calculation are summarized in Table II in obvious
notation. These results are obtained by elementary
methods from the total-energy —difference curves of Fig.
1 for the three representative simple metals Li, Be, and
Na.

The average phonon frequency (or, more precisely, the
average force constant) M(co ) was calculated directly as
the second derivative of the binding-energy curve at the
equilibrium spacing. The bulk modulus B was calculated
through the relation

1 8 U8=— (I)ov'

from the equilibrium nearest-neighbor distance Ro and
the second derivative of the binding energy curve,
U = U(R).

This last step involves an elementary substitution of
the atomic volume V in terms of the nearest-neighbor dis-

tance R. Finally, the Debye temperature OD was simply
obtained by equating, as usual, the average phonon fre-
quency (co ) with —,'OD.

The agreement with experiment in Table II, as has been
already explained, is considerably good in view of the ap-
proximations and even oversimplifications of the model
discussed earlier. The exceptionally good agreement for
Be could be mainly attributed, as was illustrated earlier,
to its largest departure from free-electron behavior. This
departure renders Be more amenable to a Hartree-Fock
cluster description than the others.

To get more information out of the present scheme, we
must move to more uncertain grounds, pushing the limits
of the method too far. However, even if only to satisfy
our curiosity, it is worth finding out if the results we can
get do make any sense. Thus, in addition to the average
phonon quantities displayed in Table II, single-phonon
frequencies can be calculated, as mentioned earlier, for
high-symmetry phonons. Within the frozen-phonon ap-
proximation, ' the frozen atomic displacements corre-
sponding to the phonon under consideration are estab-
lished by group theory and the total energies for these dis-
placed configurations are calculated as a function of the
displacement u. The fitting of these total energies, E(u),
by a polynomial in u of the form

E(u) —E(0)=—,Au + ,'Bu +——,Cu

yields the coefficients A, B, . . . , providing not only the
harmonic frequencies but also higher anharmonic contri-
butions. The constants B and C (A is the M(co ) of
Table II) for Li, Be, and Na for a uniform displacement
u, obtained from the total-energy curves of Fig. 1, are list-
ed in Table III. Although large uncertainties exist (the
quoted uncertainties reflect only uncertainties due to the
fitting process), especially for the quartic term, the num-
bers do make some sense. The reduced anharmonicity of
Li, compared with Na and taking into account its much
smaller mass, is a real characteristic confirmed by more

TABLE I. Gaussian-type orbital basis set used in the calculations. Exponents (Expon. ) and coefficients ICoeff. ) of contracted
Gaussians.

Orbital
type Expon.

Li
Coeff. Expon.

Be
Coeff. Expon.

Na
Coeff.

266.274 690
40.048 140
9.028 710
2.433 000
0.710630
0.047 790

0.125 59
0.924 98
1.000000
1.000 000
1.000 000
1.000000

547.083 000
81.602 300
18.237 800
4.940 190
1.474 380
0.177 800
0.059 380

0.013 16
0.992 69
0.299 53
0.757 55
1.000 000
1.000000
1.000 000

12 262.838 000
1 836.780 200

414.620 000
115.111780
36.166 133
12.162 366
2.281 458
0.721 455
0.044 188

0.005 75
0.044 36
0.223 23
0.801 30
1.000000
1.000000
1.000000
1.000000
1.000 000

0.080000
0.020000

0.589 69
0.531 18

0.509 000
0.118000
0.065 000

0.173 56
0.895 50
1.000 00

80.830 968
18.510942
5.536 469
1.761 295
0.536 547
0.085 000

0.013 84
0.091 27
0.298 26
0.494 60
0.344 95
1.000000
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8
(eV/A')

—1.02+ 10%
11.80+ 10%

—0.32+ 15%

C
(eV/A )

—0.32+30%
280.0+45%
—9.0+ 35%%uo

Dao

M(co')

3.7
1.6
3.5

TABLE III. Cubic (8) and quartic (C) constants in the
total-energy expansion of Eq. (2) (see text). The constant ao in
the third column is the equilibrium nearest-neighbor distance.
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in excellent agreement with the experimental value,
FIT+. 1. Relative energy 8'=E(u) —E(0) vs displacement

from equilibrium, u. Solid line represents the results for Li,
long-dashed line gives the results for Be, and the dotted-dashed
line represents the results for Na.

accurate pseudopotential calculations. ' This is due to the
strong ion-ion interaction in Li, which has a relatively soft
repulsive core. The choice of the finite values of u for
which E(u) is calculated is determined mainly by two re-
quirements: First, they have to be sufficiently large to
produce an energy numerically distinguishable from the
undisplaced energy E(0). At the same time, the displace-
ments should cover a range which includes typical ampli-
tudes of the real vibrations in the crystal. These can be
obtained by the Debye formula'"

( 2)
9A' T

MOOD

where T is the temperature, M the mass, and A and kz
are Planck's and Boltzmann's constants, respectively.
This frozen-phonon procedure has been applied as the
most stringent test of the present scheme for the (111)
zone-boundary LA mode of Li (for which displacements
in neighboring cells are out of phase by 180 ) with the re-
sults

A =2.2+0. 1 eV/A

and

B = —8.6+1 eV/A

and with harmonic frequency

empt 37 5 1 meV

of Beg and Nielsen, ' for T = 110 K. No doubt this ex-
cellent agreement, in view of the drastic approximations
involved, must be due, in part, to fortuitous cancellations
and, in part, perhaps to the fact that the dispersion curves
of Li, which are almost featureless without much finer
structure, are dominated by the direct ion-ion interactions.
To extend this method to heavier elements, atomic pseu-
dopotentials' should be used to eliminate the inner-core
electrons. However, preliminary work for Al using
Topiol's pseudopotential' could not reproduce the quality
of the results for Li above, or the results in Table II ~ It is
an as-yet-unsettled question if this reflects a deficiency of
the pseudopotential or of the method of calculation itself.
The problem of the proper choice of the atomic pseudopo-
tential and its implications for the type of calculations
presented here is currently under investigation.

Although the very good agreement with experiment for
the results already presented is very impressive and is
perhaps indicative of the maximum possible precision that
could be achieved in some "simple cases, " it is not the
main objective of this work. The proposed scheme aims
at relatively gross features of the phonon and electronic
spectrum obtained at mimmal computational cost and
maximum possible transparency of the calculations. In
this respect, standard corrections" which are straightfor-
ward but not computationally economical have not been
considered here. Likewise, applications to heavier ele-
ments and compounds will be considered in future work.
These applications, especially for materials with high
technological importance, will test the practical signifi-
cance of the proposed simple method.

TABLE II. Comparison of calculated (calc. ) and experimental (expt. ) phonon quantities.

Material

Physical
quantity

Bulk modulus (B)
(10' dyn/cm )

This calc. Expt. '
M(co2)
(eV/A')

This calc. Expt. This calc. Expt ~

'
Debye temperature (OD)

(K)

Li
Be
Na

0.099
0.966
0.056

0.116
1.003
0.068

0.81
16.80
0.61

0.73
16.47
0.52

359
1441

172

344
1440

158

'Values quoted in Ref. 7.
Values from Ref. 8.
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