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Modified Sjolander-Stott integral equation for the electron distribution around an impurity
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A modification in the structure of the integral equation for the nonlinear electron distribution
around a heavy impurity originally given by Sjolander and Stott has been obtained using the
equation-of-motion approach for the Wigner distribution function. The modification arises due to
the frequency-dependent effect in the local-field correction factor. Finally, brief remarks have been
made regarding its physical significance and calculation.

I. INTRODUCTION

It is well known that nonlinear electron distributions
play an important role in studies of metals. For example,
the calculation of positron annihilation rates in metals re-
quires the knowledge of a nonlinear electron distribution
function. In recent years there has been an interest in the
calculation of the electron density distribution around
point defects such as impurities and vacancies in the elec-
tron gas. Sjolander and Stott derived, sometime ago, an
integral equation for the nonlinear response of electrons to
the disturbance caused by a small concentration of impur-
ities, by extending the theory of electron correlations of
Singwi et al. to the case of a two-component system con-
sisting of electrons and impurities. Application of their
theory to the problem of the charge distribution around
mobile and fixed-point impurity charges gave reasonable
results for negative charges. The positron annihilation
rates in an electron gas for densities r, (4 predicted on
the basis of their theory also gave good agreement with
experimental values. For smaller densities r, ) 5 and the
mass and charge of the positron, as also for the case of a
fixed proton, the method broke down. Subsequently,
Gupta, Jena, and Singwi ' in a series of papers considered
a modification of the nonlinear theory of Sjolander and
Stott which is exact in the long-wavelength limit, and
furthermore which took into account a density derivative
term. In all these developments the local-field correction
factor is considered to be a wave-vector-dependent real
quantity usually denoted by G(q). This assumption is
justified if the perturbing field is very weak. For a vary-
ing perturbing field the local-field correction factor G(q)
is also frequency dependent and in general is a complex
quantity. In this note we would like to take account of
the frequency-dependent local-field correction factor
G(q, co) and obtain a modified integral equation for the
structure factor @~2(q), which is the Fourier transform of
the electron distribution around an impurity. The effect
of the frequency-dependent local-field correction factor
for a homogeneous electron gas has been studied exten-
sively recently by Shah and Mukhopadhyay. ' In our
present approach we will follow the approach of Shah
and Mukhopadhyay and extend their results to a two-
component plasma. The method is based on the
equation-of-motion approach for a one-particle Wigner
distribution function. The details of the method have

been incorporated in Refs. 5 and 6, for the homogeneous-
electron-gas problem. Similar results were also obtained
by Hasegawa and Shimizu starting again from the equa-
tion of motion for a one-particle Wigner distribution
function. The fundamental assumption in the Singwi ap-
proach to deriving the Sjolander-Stott integral equation is
to write VQJ(r)=g J(r)VQJ(r), where tbj and P;~ are,
respectively, the effective and bare two-particle interaction
and g;~. (r) is the partial pair-correlation function related to
y,j(q) through Fourier transform. In the present method
we derive systematically the relation between the effective
and the bare interaction using a generalization of the
equation-of-motion approach for the homogeneous elec-
tron gas. In the following section we obtain the modified
integral equation for y, z(q) and in the final section we
discuss the frequency-dependent effects on y, 2(q).

II. MODIFICATION OF SJOLANDER-STOTT
INTEGRAL EQUATION

In this section we generalize the local-field factor to in-
clude the frequency-dependent effect in a single-impurity
problem. We therefore consider a two-component plasma
system consisting of electrons of density n

&
and an impur-

ity plasma of density n2. Following Gupta, Jena, and
Singwi, we write the induced density n;(q, co) due to a
weak external potential P,'„,(r, t) acting on the ith com-
ponent (here i = I and 2) of the plasma system as

2

n;(q, co) = gX,",(q, co)tb,'„,(q, co) .
J =1

Here X,'J. (q, co) is the retarded density-density response
function for the interacting system and P',„,(q, co) is the
Fourier transform of the space-time-dependent external
field P,'„,(r, t). The induced density n;(q, co) can also be
written in a generalized random-phase-approximation
scheme as

n;(q, co) =X," (q, co) P,'„,+ g f,j(q, co)nj(q, co)
j=1

where 7,' is the retarded density-density response func-
tion for the ith type of free particles of the system and
@,J(q, co) is the effective interaction between the ith and
jth components of the two-component plasma. In the
equation-of-motion approach of Shah and Mukho-
padhyay the induced density n;(q, co) satisfies
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3 I

n;(q, co)=X," (q, co)[P',„&(q,co)+P;, (q)nj(q, co)]+ J,X,
"

(q, q', co)P;, (q')y;, (q —q')n, (q,„)
(2~)'

-{2)
+ X,

"
(q. ,q', co)P~ J(q')D) (q —q', q', co)nj(q, co),

(2m )
(3)

e';~ (q, co)
=5;, +P&X J(q, co) . (5)

Compar1ng Eqs. (3) and (2) we easily see that in the
equation-of-motion approach g;~. (q, co) is given by

QJ (q, co) =P;~ [1—G J"(q,co) —G 1 '(q, co)], (6)

where

G,',"(q,co) =— d'q' X"(q,q'co)

n1 0;,(q) j (2~)' X". (q, co),o &V «')

and

G 1 '(q, co)=—

x y;, (q —q')

1 1 d q' Xi (q, tq, co)

n, (b;, (q) (2m. ) X,
"

(q, co)
P;, (q')

(7)

-{2)
XD;, (q —q', q', co) . (8)

The appearance of G ~
'(q, co) in Eq. (6) is the new addition

which does not occur in the approach of Gupta et al. In
Eqs. (3), (7), and (8), X,

"
(q, q', co) stands for

n; (k —q'/2) —n;(k+ q'/2)
A'V z co —(R/m;}(k q)+i5

where m; is the mass of the ith component of the plasma
and further X,

"
(q, co) =X," (q, q, co) and V is the volume of

the system. In the classical limit, i.e., for A~O, we have
I

X,
"

(q, q', co)=
2 X,

" (q, co) . (10)
q

We now easily see that if we drop G,z
' in the expression

of P,z(q, co) given by Eq. (6) and utilize Eq. (10), then we

-{2)
where the j summation is implied and D,z is related to
the irreducibile density-density correlation function and is
given by [see Eq. (30) of Ref. 6].

D~ (q —q, q', co)

i
X';, (q', co1 —co)/»' (q —q' co1) .

n ( ~ 277

(4)
Here in (4), X,'1 is the causal density-density response func-
tion and in the random-phase approximation is related to
the causal dielectric tensor E''j by

XX';, (q —q', co, ) .

(12)
In the rest of our consideration we will take Eqs. (11) and
(12) for G,(J'1 and G(J'), respectively. It results from a gen-
eralization to a two-component system of the work of
Shah and Mukhopadhyay on the uniform gas. The ap-
proximation scheme used by Shah and Mukhopadhyay is
originally due to Singwi et al. In the limit of small im-
purity concentration we have from (1}and (2) the follow-
ing expression for X12(q,co):

X12(q, co) =X11(q,co }X2 (q, co)$12(q,~) . (13)

In writing down Eq. (13) we used X12——X21 and $2, ——$12.
We now define the appropriate dielectric tensor ej(q, co)
through the retarded response function

=&;, +P;, (q)X;",(q, co)
1

»~(J (q, co)

and use the following relation,
T

(14)

n;
n; 5,) + y;,.(q)

n&

oo 1de Im
e,', (q co)

(15)

to obtain the modified integral equation for y,"(q). Com-
bining Eqs. (13), (14), and (15), we obtain

recover the standard expression for P,z as given in Refs. 1

and 3, namely,

g;J = 1t1;J ( 1 —G J )

with

3 J I

n1;, q (2m. )' q2

which is Eq. (8) of Ref. 3.
Using Eqs. (10), (5), and (4) and the fact that

y;J(q')X," (q, q', co) is an odd function of q', we can also
put Eq. (8), as in Ref. 6, in the following form:

d3
( G J. '(q, co) = — f 3 2 p;~(q')p;~(q —q')

n1;J q (2m. ) q

Qco]
X X'; q', ~& —~

n, 2~

1 4'12 I

rp12(q}= —— J des Im X2 (q, co)
o F11(q,co)

+— f dcolm X2 (q, co)
412 ,p 1

7T n2 »11(q,co )

[1—G'1'2'(q) ]

—1 G12'(q, co}
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If we now use Eq. (9) then for fixed impurity nz, we have
('

0
Xz (q, co)= 1 1

2 2

co — +i5 co+ +i5
2m 2 2m 2

then the first integral in Eq. (16) can be easily worked out and for mz~ ao we have for riz(q) the following integral
equation:

r iz(q) =I(q)+ —I + f1 0iz 1 d q' qq'
~) i(q, O) 4(( n ) p)z (2ir)' q' (18)

Equation (18) differs from the standard Sjolander-Stott integral equation by the presence of an additional inhomogeneous
term I(q), where

I(q)= — f dco Im Xz (q, co)
vr nzPii ei i(q, co)

—1 G iz'(q, co)

Equation (18) is the new result of the present note. In the
following section we briefly remark about the calculation
of I(q).

I(q) =— 1 —1 ReG iz (q, O) .
4'12 (z)

&)i(q, O)
(19)

III. CONCLUDING REMARKS

To obtain the real part of G'iz'(q, co) when co~0 we use
the dispersion relation

ReG(z (q, O)= — ImG(z (q, co) .P c/co

The inhomogeneous term I(q) given below Eq. (18) can
be integrated. Since ImG(z'(q, )riq /2mz)~0 in the limit
mz~ oo (i.e., for fixed heavy impurity mass) we are left
with the following expression for I(q), namely:

The imaginary part of GIz'(q, co) can be obtained from
polarizability of the system due to the field P)z. For ex-
ample, from EII. (12) one can easily calculate the imagi-
nary part of G iz (q, co) as( )

ImGIz'(q, co) = z fd q' f dco" Img "(q', co")Img'(
~ q —q' ~, co —co"),

4'iz(q)n i g
(21)

oo

X,'J(q, co) = dco' ImX';J(q, co')

1

M —6) + 7 6 63 +co —l 6
(22)

where Q"(q, co)= —P(z(q)X'(q, co) is the polarizability of
the system. In deriving Eq. (21) we have used in Eq. (12)
the dispersion relation for the causal density-density
response functions X';J (q, co) namely,

and the relation between the imaginary parts of retarded
and causal functions for positive frequencies. We thus
see that a knowledge of the field P(z(q) and the dielectric
function will enable us to evaluate ImGIz'(q, co) for practi-
cal purposes. ImG' '(q, co) for the case of Coulomb field
has been the subject of calculation by many authors. ' It
gives the plasma damping coefficient y defined by
r (~p/2=qz)lmG(z)(q, ~p) where Mp is the bulk plasma
frequency.

Writing ReG iz'(q, O) =G iz'(q), our final equation takes
the form

1 012( l) (z) 1 dq'
riz(q) = 1 —Giz (q)+ 012(q ) Ylz(q —q').»(q, o) (2~)' (23)
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Equation (23) can be easily modified to incorporate the
density derivative term of yi2(q) in the same manner as in
Ref. (3).

The effect of G J
' which occurs in I(q) has altered the

original Sjolander-Stott integral equation in an essential

way and we hope to observe the effects in problems like
the calculation of electron density distribution around im-
purities and positron annihilation rate in electron systems.
We wi11 report on the modification in the physical prob-
lems due to Eq. (23) in the near future.
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