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We extend our previous studies of local excitons in the alkali halides to include relativistic effects
such as spin-orbit, mass-velocity, and Darwin corrections. We examine the alkali iodide series and
certain features in the optical absorption spectra which are due to local excitons. We find that we
must include relativistic effects, as well as an appropriate number of neighboring-ion shells, if we are

to compute the excitonic energies accurately.

INTRODUCTION

In this paper, we extend the studies of local excitons re-
ported in a previous paper to include the alkali iodide
series. !

For the alkali iodide series we have included relativistic
effects (I has Z=53) using a perturbation-theory method.
The inclusion of relativistic effects is necessary, if we are
to extend the methods used previously to systems involv-
ing heavy atoms in a quantitative way. We developed new
computer codes to treat relativistic effects, using perturba-
tion theory, as part of this study.

Optical-absorption studies have been carried out on al-
kali iodides in the ultraviolet region. It has been hy-
pothesized that certain features in the experimental spec-
trum can be explained using excitons on the halide ion.?
The excitons are believed to be of the Frenkel type, in
which the excited state is localized on a single atomic site
but the spectrum is complicated by the proximity of excit-
ed d states to the usual s states. In our previous paper we
reported on excitons in the alkali chlorides. !

The experimental results may be readily summarized.
In LiI and Nal the most important features of the spectra
are two low-lying peaks. In Rbl, KI, and CsI there are
four distinct low-lying peaks and a host of observed
shoulders and smaller features. The same pattern is ob-
served in the alkali bromides. In both cases, the separa-
tion of the lowest-lying peaks appears to increase for the
materials with lighter and smaller alkali ions. A similar
pattern is observed for the alkali bromides. However, for
the chloride there are at most three peaks and the splitting
of the two lowest peaks is invariant from material to ma-
terial.

Phillips® has discussed the splitting for both excitons
and interband transitions in the alkali iodides. He finds
that the splitting for both excitonic and interband transi-
tions is about 0.3 eV greater in Nal than in KI and RbI.
He is unable to explain this effect. Kunz* looked at the
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splitting for the interband transition and was able to show
that the enhancement is due to overlap of the wave func-
tions of the second-nearest-neighbor iodide ions. This
overlap is much larger for Lil and Nal than it is for KI
and Rbl. Due to the very small size of the sodium and
lithium ions relative to the iodide ion, this is to be expect-
ed. If one neglects the overlap of the iodide wave func-
tions, one should expect less-accurate results for Nal and
LiI than for KI and Rbl.

There have been several previous efforts to study the ef-
fects of relativistic corrections in the alkali halides. Ono-
dera and Okazaki® developed a formalism for the
relativistic-Green’s-function calculations of the band
structure and applied this formalism to KI and CsI. They
used the Dirac equation in their work. Kunz® made cal-
culations of the band structure for Lil, Nal, KI, and Rbl,
including relativistic effects as perturbations. Kunz*$
also computed spin-orbit parameters for all the alkali
chlorides, bromides, and iodides using a band-structure
technique, including proper treatment of overlap, and was
able to account for the observed splittings. The work of
Osaka et al.” on the charge-transfer model exciton includ-
ed a spin-orbit correction which used atomic spin-orbit
parameters.

There has also been work done in the general area of
computing relativistic corrections to Schrodinger’s equa-
tion. Herman and Skillman® produced a table of relativis-
tic corrections for atoms. They used a spherically sym-
metric modified Slater potential for the spin-orbit term
and numerical basis functions. Blume and Watson® dis-
cussed a more exact treatment of the two-electron terms
for atoms that would improve on the central field approx-
imation. Hinkley et al.'® discussed the utility of Gauss-
ian basis functions rather than exponential basis functions
for atomic calculations. They found that Gaussian basis
functions could be used and that Gaussians gave values
for the spin-orbit parameter in agreement with those given
by exponential functions contrary to some expectations.
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We attempt to apply spin-orbit calculations to the
Frenkel exciton in alkali halides. We also are attempting
to discover whether we can accurately take into account
additional relativistic effects, so that we may make future
calculations in other large systems.

THEORY

We compute excitation energies by taking the differ-
ences between the energies of the ground and excited
states. We obtain these energies by obtaining an approxi-
mate solution to Schrodinger’s equation, Hy=E1, using
the Hartree-Fock technique and augmenting it by means
of perturbation theory. We begin by making the Born-
Oppenheimer approximation. We use the atomic system
of units with i=e =m =1, where e is the electronic
charge and m is the mass of the electron. The unit of en-
ergy is the hartree (1 hartree~27.2 eV). This is the most
usual set of atomic units in use today.

In the Born-Oppenheimer approximation, the Hamil-
tonian is
J

12 Z
_lg2_ 4

This equation may be derived using the usual variational
technique. !!

When we calculate excitation energies, we use the UHF
equation as a starting point and apply second-order
Rayleigh-Schrodinger many-body perturbation theory
(MBPT) according to the method of Beck and Kunz.!?
We shall consider here, for mathematical simplicity, the
nondegenerate case without taking into account relativis-
tic effects. Extension to degenerate system is simple al-
though tedious.

We let H=Hy+V. H, is the zero-order Hamiltonian,
that is the sum over spaces of the one-electron Fock
operators. V is the remainder of H and is the perturba-
tion. Since the eigenstates of the complete Hamiltonian
can be placed in one-to-one correspondence with eigen-
states of the unperturbed Hamiltonian, we may select any
one of the states to be perturbed and write

H | o) =Eq|o) and Ho | o) =Wy | o) .

So,
J

u,~(r,)+ 2 f d%"z;jj |llj(l‘2) l Zu,-(rl)._
j

(do| V |0:)€; |V | o)
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where i and j refer to electron coordinates and properties
and I and J refer to ion coordinates and properties. The
last term is a constant for a given geometry. In Eq. (1)
the atomic units specified above are used. Z is the atomic
number. We choose the wave function to be a single
Slater determinant made up of one-electron orbitals ¢(i),
where ¢(i)=¢(r)a or ¢(i)=¢(r)B where a and S are spi-
nors. This wave function satisfies the Pauli exclusion
principle. We use the unrestricted Hartree-Fock (UHF)
formalism in which there are no symmetry or equivalence
restrictions on the orbitals. The final state is not restrict-
ed to be an eigenstate of S The final state is an eigen-
state of S,, because the orbitals are chosen to be either
spin up or spin down. The UHF equation is

>8m m fdSrZLuj*(rz)ui(rz)u,-(r.)=8,~u,—(r1) . (2)
] 5% rp
|
1
= —_— V ; SV .
E, EHF+j(§,0) (Wo—W)) (o |V 18;2(d; |V |¢o)

(3)
If we replace the sum over states by a sum over orbitals,
and let the occupied orbitals i and j be replaced by the vir-
tual orbitals a and b in the state ¢;, one finds
1% | Vi — Vijpa | 2
E=Eyur+— —_—, (4)
4 %g Ei+Ej—8a —&p
where

Viis =(6:(1)6;(2) | V | ¢a(1)$(2)) ,
with
P
|ri—1,|
where the second term in Eq. (4) is not zero only for the
proper spin combinations.
We can extend this derivation to all orders in perturba-
tion theory.! If we keep only the dominant term in each
order

Eo=Wy+{(do|V]do)+ X
i(£0)

3 |<¢.-fV|¢,->—<¢oth¢o> ]"

=Wo+{(do|V |do)+

i(5£0)

Since we can expand to all orders we can find E to all or-
ders and we can find |¥). We can then say

Hl =H +Hrel >

Wo—W,; <o Wo—W,;
(o |V |9:)(d; |V |bo) 1 (5)
Wo_W, 1—[(&: |V [6:) =S| V [$0))/ Wo—Wi] |

f

where H ., is the relativistic term. If we consider H,, as
a small perturbation we can compute the effects of H,
using first-order perturbation theory. Usually most of the
correlation energy can be included in the second-order
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perturbation term, so we do not carry the series to all or-
ders before including the relativistic corrections, but rath-
er use the second-order perturbation energy and the
Hartree-Fock wave function.

We shall now turn to the problem of finding the relativ-
istic corrections to the Hamiltonian, which must be in-
cluded in our perturbation theory.!! We begin with the
Dirac equation for a single particle of charge — e in a po-
tential ¢. The Dirac equation is

[(E+¢)—a-cp—PBc?]¥=0, 6
where
v- %]
with ¥, and ¥, two component spinors, and
0 o 1 0
=l o P70 —1]°

where a and B are composed of 4 X4 matrices. The ma-
trices o are the Pauli spin matrices. Now, we may expand
the Dirac equation in powers of (E'+¢)/2c%. E' is the
approximate value of E which results from our expansion.
If we have ¢ spherically symmetry, we have
2
E=— L=t — 5,

1, 1d¢ I ve.
—4020 r dr rxp¢l+4cz V¢ pd}l

or
’ LZ 1 4
E'Y=— > ¢1—¢¢1_.—8c2 2]

1 1d¢ i
— 251y + Vg 7
2c2 r dr S ¢1+ 4(_‘2 V¢ plp] (7)

which we may write
E'Yvy=Hop1+Hpv¥+H o 1 +Hp¥, . (8)

These terms are the nonrelativistic Hamiltonian, the
mass-velocity term, the spin-orbit term, and the Darwin
term. We may transform V¢-p into V¢ which is the usu-
al form of the Darwin term. In the system of units we
use, we may write (1/c¢)=a, where « is the fine-structure
constant. We have neglected the effects which appear if
electron-electron interactions are treated explicitly rather
than by using an electrostatic potential.

We let — FV(r) be a centrosymmetric electrostatic,
which is appropriate for an alkali halide due to their cubic
lattice structure and write

N - 14

E=a fu (r)r ar
where & is the spin-orbit parameter and u is the wave
function for an orbital solution to Eq. (2).

We make the approximation that integrals involving
basis functions on different atomic sites are negligible.
Kunz* has discussed this problem for the alkali halides.
He shows that for LiCl the integrals involving only one

(rd3r 9)
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site are much larger than the integrals involving different
sites. So we may write

——Ii-s; (10)

where the I are the ions of a solid and the i are the elec-
trons on the Ith ion.

We choose
Vin=— |Z 4" | (11)
r r
We write
g(r=3qr,

where g;(r) is the charge in each orbital within a radius r.
We note

gi(r)= fo’r%arr1 [ aQuX(rury) . (12)
We now consider the Darwin term. We observe
2 2
Hd::+(12—7T[Z~q(r)]8(r)+%%V2[q(r)]. (13)

The second term will be much smaller than the first term
and may be neglected. We also observe that since
g (0)=0, the Darwin term will become

2
Hdz—az’r Z8(r) . (14)
We can rewrite the spin-orbit Hamiltonian
H, = &§(Nlisi=X &lis; (15)
i i
where
1 dv

&= f ridrul(r)

r dr ui(r) .

We may evaluate the matrix elements of H, , between
the various unperturbed states. We use the intermediate
coupling approximation as discussed by Condon and
Shortley.!* We will make an approximation that we are
dealing with atomic states. We need deal only with open
shells, and we may write H, in terms of §;, where &; is
the spin-orbit parameter for the shell of angular momen-
tum /. We consider only those states that have total angu-
lar momentum J=1, which therefore are reached by an
electric dipole transition. We find that the crystal field is
weak enough in comparison to the field due to the central
ion that we may assume atomic selection rules hold. We
note that H, will mix states of different L and S, but
that H; and Hy;y will not mix such states.

METHODS

We solve the UHF equation using the Roothaan pro-
cedure.'* We have used a new projection exclusion
method recently developed by Kunz! to find excited states
of specific symmetries.

We use the linear combination of atomic orbitals
(LCAO?’s) technique. We set up clusters of atoms with the
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nuclei in known positions and used atomic basis sets on
each nucleus. For the alkali iodides, we used basis sets
specially developed for ionic states from Huzinaga.'
Basis functions have been added to describe the excited
states of the system, since the Huzinaga sets are only in-
tended to describe the ground state. The added basis
functions are variationally determined. Normally, we
vary the values of the exponents of these functions by
hand to minimize the energy of the triplet excited state.
We varied these functions in a charge array of Nal, KI,
Lil, and Rbl, and in the entire system for Csl.

Integrals between the Gaussian basis functions used to
expand the orbitals have been calculated using the POLYA-
TOM code. The UHF and MBPT codes developed by
Kunz and his co-workers'® have been used to find the
Hartree-Fock energy and perform the MBPT calculation.
Relativistic corrections were computed using the codes
SPINORB, MASSVEL, and DARWIN we developed for this
study.

The code SPINORB evaluates the term {(1/r)(dV /dr))
for selected orbitals. ¥ (r) is defined by

_Z_q
T r ro

Vi(r)

This is the same ¥ (r) we discussed above. We use g (r)
for all N electrons, not for N —1. We sum over all ions.
The code DARWIN evaluates

u*(0)u;(0)

and sums it for all s orbitals.
The code MASSVEL evaluates

f w*vtu dr

and sums it over all orbitals. All codes use Gaussian basis
functions. We first transform from the basis set using
real wave functions to a basis set using Y;”. We consider
only s, p, and d functions. The radial parts of the in-
tegrals are evaluated analytically. We approximate the
Darwin and mass-velocity terms by the terms computed
for the 5p*5d and 5p*6s states of atomic iodine.

We computed all spectra for the alkali halides using a
cluster of a halide ion surrounded by six alkali ions. This
is a severe approximation for Li or Nal where the
halogen-halogen overlap is high but reasonable for Rb or
KI due to weak halogen-halogen overlap. The alkali basis
sets were heavily contracted in free space.

The cluster was imbedded in a charge array. For crys-
tals with NaCl structure we used a 5X5X5 cube as the
charge array. The cluster we study is located at the
center. We represent the other ions as point charges.
Each ion has six ions of opposite charge as nearest neigh-
bors. The array is made charge neutral by adjusting the
charges of the outermost ions. For crystals with CsCl
structure, we use an array constructed by the program
VXNNBR developed by Keegstra.!” The array contains the
central ion and six shells of neighbors. We considered 113
sites in all. Each ion is surrounded by eight ions of oppo-
site charge. We adjusted the charge of the outermost ions
so the array is charge neutral.

The lattice parameter for Csl is from the data of Mor-
lin.'® We took the lattice parameters for Lil and Nal

from Kunz.® We found the lattice parameters for KI

(Ref. 19) and RbI (Ref. 19) by extrapolation from high-
temperature data using the coefficients of linear expansion
given by White.?°

We ran Hartree-Fock calculations for Lil, Nal, and KI
including all electrons in the cluster. We ran the
Hartree-Fock calculations for RbI and CsI replacing the
electrons of the alkali metal ions with pseudopotentials
developed by Bachelet, Hamman, and Schliiter*! and im-
plemented by Woodward.!® We were prevented by limita-
tions on the amount of computer time available from do-
ing all-electron MBPT calculations on any of the alkali
iodides. We have therefore developed a version of MBPT
which enables us to neglect core electrons. These states
will not change much when a valence electron is excited
and that differences in correlation energy will be small.
For the iodides, we neglected all electrons but the S5s and
5p shells of the iodide ion.

We compute relativistic corrections using the Hartree-
Fock wave functions. All operators are one electron
operators, although the spin-orbit operator includes a sum
over the charge density of all orbitals. The Darwin term
is computed only for s states, since only these states have
nonzero ¢¥*y at the origin. The term at the origin is the
largest term. The mass-velocity term is computed for all
orbitals. We found our correction terms by taking the
difference between ground- and excited-state values for
atomic iodine.

In the alkali halides we made corrections for the polari-
zation of the ions surrounding the central halide ion by
the multipole moment of the excited state. This is essen-
tially a long-range correlation correction. We carried out
the correction using the method of Mott and Littleton.??
Polarizabilities are taken from Tessman et al.?’ or from
Jaswal and Sharma.?*

We have taken into account the electrostatic splitting of
the 5p°5d exciton in the alkali iodides in the following
manner. We first observe that this multiplet will split
into F, D, and P states. However, our UHF wave func-
tions are not eigenstates of L2 for the p to d transition.
We consider the case where we have two possible transi-
tions p, to d,, or xyx and p, to d,, or xyz. If we decom-
pose the real basis functions into spherical harmonics, we
can show that

Exyx = %EF+ %ED + %Ep ’
NI (16)
ExyzZTEF+ TED .

Slater?® has shown that the splitting between the singlet
and triplet states and between the xyx and xyz states may
be expressed in terms of three numbers F,, G, and G,
which are related to the Coulomb and exchange integrals
found when computing (H). We can solve for these
numbers. Slater further shows that differences between
the singlet and triplet F, P, and D states may be expressed
in the same way. We may use the equations above, along
with our values of F,, G;, and G3, to solve for the ener-
gies of eigenstates of L? and S2.

In the electric field of the crystal the energy levels of
the d,, and dx2_y2 orbitals will be slightly different, since

the orbitals transform as different irreducible representa-
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tions of the cubic group. We compute the splitting of the
D state in the crystal field by finding the energy of the p,
to d,, transition and using the values of F,, G, and G;
which are known from the d,, transition. We use a mix-
ture of zz and s basis functions to represent a
2z2—x?—y? state since there is no other way to converge
that state.

We made all computations using a FPS164 scientific
computer with a VAX 750 host machine.

RESULTS

We have computed spin-orbit parameters for the
chloride, bromide, and iodide ions in free space and com-
pared them to the results in Kunz.* The parameters are
compared in Table I. We find that the parameters we
compute are smaller than those Kunz obtained. We have
used Gaussian basis functions rather than a numerical
basis set as Kunz did, which accounts for the difference.?®
We have computed Darwin and mass-velocity parameters
for several alkali metals. They are presented in Table II.
The numbers are less than would be expected by extrapo-
lation from the values in Herman and Skillman.® This is
to be expected as numerical basis functions give a better
picture of the charge distribution than Gaussians do, espe-
cially at the origin where relativistic corrections are
greatest. Our results for the alkali iodides are given in
Table I1I. Spin-orbit parameters are in Table IV.

In the alkali iodides we have studied excitons arising in
the 5p shell of the iodide ion. The data for Lil do not ex-
tend to low enough energies to enable us to observe the
low-lying doublet structure, so no conclusions can be
drawn from this spectrum. Lil is extremely hydroscopic
and the spectra can depend greatly on the water absorbed,
so no better data are available.

In Nal only a single pair of low-lying peaks is observed.
We calculate a spin-orbit parameter less than that ob-
served experimentally. We have neglected effects due to
the second-nearest-neighbor iodide ions in computing the
spin-orbit parameter. In Nal the outer shells of the iodide
ions are in contact, therefore, this is not a good approxi-
mation. If we take the parameter calculated by Kunz,*
we can predict 5p°6s states having the right separation
about 0.6 eV higher than the experimental peaks. There is
a broadening of the upper peak which could be due to
5 p55d states, which we predict to be at about the same en-
ergy as the 5p36s state. We calculated the energy for the
5p°6s states including second-nearest-neighbor ions for
Nal using pseudopotentials on all Na* ions and on all but
the central I™ ion but the lack of variational freedom on
the outer ions in the cluster prevented any improvement
in the calculated result. We believe the energy of this

TABLE 1. Spin-orbit parameters for free halide ions.

This work Kunz (Refs. 4 and 6)
Ion (hartrees) (hartrees)
Cl~ 3p 0.0027 0.0027
Br~ 4p 0.0102 0.0111
I~ Sp 0.0184 0.0232

TABLE II. Darwin and mass-velocity parameters for alkali
metal atoms [basis sets of Woodward (Refs. 4 and 16)].

Darwin term Mass-velocity term

Orbital (hartrees) (hartrees)
Li 1s 0.0016 —0.0019
Li 2s 0.00005 —0.00007
Na 1s 0.3481 —0.4314
Na 2s 0.0209 —0.0324
Na 2p —0.0032
Na 3s 0.0005 —0.0007
K Is 2.800 —3.547
K 2s 0.2396 —0.3973
K 2p —0.0546
K 3s 0.0257 —0.0443
K 3p —0.0060
K 4s 0.0010 —0.0017
Rb 1s 41.2876 —52.5161
Rb 2s 4.2618 —7.1989
Rb 2p —1.1641
Rb 3s 0.6986 —1.2438
Rb 3p —0.2402
Rb 3d —0.0435
Rb 4s 0.0800 —0.1442
Rb 4p —0.0225
Rb 5s 0.0034 —0.0061

state could be improved with a better basis set and by in-
clusion of second neighbor I~ ions.

In KI we predict a 5p°6s splitting less than that ob-
served experimentally. The experimental and predicted
values for the lower energy 5p°6s peak are within 0.1 eV
but the values for the higher-energy peak differ by 0.2 eV.
The energy predicted for the 5p°5d 3D peak is correct to
within 0.2 eV, but the splitting in the crystal field is larger
than predicted.

In RbI the predicted and experimental values of the
lowest peak are within 0.1 eV. The values predicted for
the three higher peaks agree best with experiment if the
5p°6s peak is lower in energy than the 5p°5d peaks, rath-
er than higher in energy, as guessed in the experimental
paper.

In CsI the predicted values are once again higher than
the experimental values. The 5p°6s splitting appears
correct. We predict the energy for one of the 5p°5d peaks
correctly relative to the 5p°6s, but the crystal-field split-
ting predicted is much too large. CsI is another system
where a better basis set could probably improve the ener-
gies. In the CsI case, we do not treat all electrons in the
cesium ions due to limitations on computer time, memory,
and disk space. This means we cannot account for effects
due to the overlap between cesium ion wave functions and
iodide ion wave functions. Thus we are in a similar limi-
tation as for Lil, Nal except here it is for Cs-I overlaps
rather than I-I overlaps.

For the same reasons of computational difficulty, we
are unable to include second-nearest-neighbor iodide ions
in our cluster. As we mentioned in the Introduction, the
small size of the sodium and lithium ions means that the
iodide ion wave functions will overlap. We therefore ex-
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TABLE III. Results for the lowest peaks of the alkali
iodides. [The first column uses the spin-orbit parameter from
Ref. 8. The second column uses the spin-orbit parameter from
Kunz (Ref. 4). The third column is the experimental data.]

Ref. 8 Kunz Expt. data
(eV) (eV) (eV?)

Lithium iodide
5p6s P 7.43 7.32 peak 1: 6.75°
5p36s 'P 8.24 8.48 peak 2: 7.1°
5p°5d Dy, 6.43 peak 3: 7.67
5p°5d °D,, 7.00

Sodium iodide
5p°6s P 6.28 6.19 peak 1: 5.6
5p6s 'P 7.07 7.27 peak 2: 6.7
5p°5d Dy, 7.36 peak 3: 7.4
5p35d *D,, 7.13

Potassium iodide
5p6s P 6.14 6.04 peak 1: 5.9
5p6s 'P 6.90 7.10 peak 2: 6.7
5p°5d *D,, 6.88 peak 3: 6.9
5p°5d *D,, 6.80 peak 4: 7.3

Rubidium iodide
5p36s P 5.71 5.63 peak 1: 5.7
5p36s 'P 6.50 6.67 peak 2: 6.5
5p°5d 3D, 6.61 peak 3: 6.7
5p°5d D, 6.98 peak 4: 7.0

Cesium iodide
5p°6s P 6.59 peak 1: 5.8
5p6s 'P 7.38 peak 2: 5.9
5p°5d 3Dy, 6.74 peak 3: 6.0
5p°5d *D,, 8.07 peak 4: 6.8

2Reference 6.

pect our results for Nal and Lil to be poorer than for KI
and Rbl. In fact, our results agree with our expectations,
and the enhanced splitting is not observed. In addition,
our energies are too high for Lil and Nal. The same
analysis applies to CsI due to the neglect of cesium and
iodide orbital overlap.

TABLE IV. Spin-orbit parameters for I~ ions (5p orbital).

Parameter

Material (hartree)
free 1~ 0.0232¢
Lil p—s 0.0208
Lil p—d 0.0208
Nal p—s 0.0204
Nal p—d 0.0208
KI p—s 0.0200
KI p—d 0.0206
Rbl p—s 0.0205
Rbl p—d 0.0206
Csl p—s 0.0203
Csl p—d 0.0209

2Reference 4.
CONCLUSIONS

The methods used here give good results predicting the
energy levels of alkali iodide crystals for excitations from
valence states. It appears that we can explain the lowest
excitations in the alkali iodide spectra satisfactorily using
a localized excitation model. We can also compute spin-
orbit parameters accurately for the cases where overlap
between the wave functions of ions of the same type is not
large. In Nal, where the overlap is large, we cannot ob-
tain the correct spin-orbit parameter, but we can still
compute the correct spin-orbit splitting if the correct
spin-orbit parameter is used. It is clear that we must in-
clude spin-orbit coupling to get any meaningful results on
the alkali iodides.

Our values for the Darwin term and the mass-velocity
term are not as accurate as those for the spin-orbit param-
eter because the Gaussian basis set does not well represent
the wave function at the origin.
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