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We find the dynamical matrix for the potential-induced breathing (PIB) model for ionic solids,
and calculate with no adjustable parameters the phonon-dispersion relations for the alkaline-earth
oxides in the B1 structure. Our approach is similar to that of Gordon and Kim, in which the crys-
talline charge densities are estimated by overlapping atomic charge densities, which are then con-
verted to energy by electron-gas approximations. It goes beyond the original Gordon-Kim model by
allowing for spherical breathing of the atoms in response to the long-range potential, and beyond
later refinements of the modified-electron-gas models by explicitly including the effects of PIB on
the self-energy and the overlap interactions. This allows us to treat general deformations and lattice
dynamics including the many-body PIB effects. PIB couples the long- and short-range forces in a
way that is not present in any other lattice-dynamical model, since the spherical charge relaxation is
coupled to the long-range electrostatic potential. PIB gives better agreement for the splitting of the
longitudinal- and transverse-optic mode frequencies than is found with rigid-ion models, as well as
much improved acoustic branches. PIB is a nonempirical model; no experimental data are used oth-
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er than the values of fundamental constants such as Planck’s constant and the atomic masses.

I. INTRODUCTION

In Gordon-Kim models,' the internal energy for a sys-
tem is calculated from the energy of overlapping atomic
charge densities using a local-density or electron-gas for-
malism. Gordon-Kim calculations are fast and inexpen-
sive, compared to elaborate electronic structure methods,
and give good estimates of physical properties of ionic
solids without resort to experimental data.> To apply this
model to oxides, the O*~ ion must be stabilized since O?~
is not stable in the free state. This is usually done with a
Watson sphere of positive charge.’ Paschalis and
Weiss*® suggested that the Watson-sphere radius should
be chosen to give the Madelung potential at the site in the
crystal, and this procedure is now followed in most appli-
cations of the Watson-sphere model to ionic crystals. The
model assumes that O®~ is stabilized in the crystal by the
long-range electrostatic potential at the oxygen site, which
leads to breathing of the charge density in response to the
Madelung site potential. We call this effect potential-
induced breathing (PIB). The coupling between the
charge density and the long-range potential should be
present regardless of the stability of the free ion, so we in-
clude Watson spheres and consider PIB for all cations and
anions. The inclusion of Watson spheres in atomic calcu-
lations should provide charge densities which better model
ions in crystals, in contrast to free atoms.

The PIB model differs from the requirement of self-
consistency between the Watson-sphere potential and the
electrostatic potential introduced in Ref. 2(b). In PIB the
total-energy expression explicitly includes the self-energy
and the coupling between the long-range and short-range
forces. The site-matching technique, on the other hand, is
a rigid-ion-type model for a charge density consistent with
the electrostatic potential. Later improvements of the
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modified-electron-gas (MEG) model*®**? include the
self-energy contribution to the pressure ex post facto.

PIB affects the calculated static and dynamic properties
of solids,*> and a marked improvement was found over
rigid-ion models for static equations of state and elastic
constants of the alkaline-earth oxides.’ The effective
many-body forces in PIB lead to the observed violations
of the Cauchy equality (e.g., C44=Cj;). In contrast,
rigid-ion models with central forces cannot violate the
Cauchy equality, and breathing-shell models do not give
the correct signs for the deviations.® The PIB model also
decreases the predicted LO-TO splitting, giving values
closer to experiment.* In Ref. 4 only some of the PIB
contributions to the dynamical matrix were considered;
the complete PIB dynamical matrix is derived here. The
dispersion relations for the alkaline-earth oxides are calcu-
lated and compared with experiment.

With the PIB model, we can rapidly calculate static and
vibrational properties of crystalline ionic solids, including
thermal equations of state, elasticity, instabilities, and
phase transitions. In general, elaborate methods for calcu-
lating electronic structure and total energy cannot yet be
used to calculate static properties for complex crystals or
lattice-dynamical properties of even simple solids for arbi-
trary wave vectors. Thus to calculate thermal properties,
simple models such as the PIB model are necessary.
While many empirical models are available,*—% they are
generally limited to the interpretation of existing experi-
mental results. On the other hand, nonempirical models
such as the PIB model do not contain adjusted parameters
and are therefore more powerful.

Simple nonempirical methods have been successful in
calculating thermal equations of state and instabilities.
For example, much progress has been made in under-
standing alkali halides and halide-based perovskites,’
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melting, melt structure,'® and ferroelectricity.”?’

In Sec. II we discuss the PIB model, in Sec. III the cal-
culational methods are shown, and in Sec. IV we give the
results for the alkaline-earth oxides MgQ, CaO, SrO, and
BaO in the Bl structure. The results are discussed and
compared with other models and experiments in Sec. V.
The laborious parts of the derivation of the dynamical
matrix are given in the Appendixes: In Appendix A, we
derive the dynamical matrix elements, in Appendix B, an
Ewald-type transformation for a lattice sum that arises in
A is derived, and in Appendix C the equation used for the
shift in the local potential is given.

II. THE PIB MODEL

A. Gordon-Kim models

Gordon and Kim! developed a powerful and simple
method for calculating properties of closed-shell systems.
The charge density is estimated by overlapping atomic
charge densities. This procedure has shown considerable
success since the ground-state properties of a system are
completely specified by its charge density.!! In a
Gordon-Kim model, the energy is a sum of three parts:
the electrostatic Madelung energy between the ions, the
overlap energy between ions, and the self-energy of each
ion. The importance of the latter contribution was
neglected for some time, but inclusion of this term is
necessary when a Watson sphere is included in the atomic
calculation.

B. The Watson-sphere model

Some ions are not stable in the free state but are present
in crystals. Watson®® introduced the idea of stabilizing
O?~ by including a sphere of charge in the atomic calcu-
lation. (He attributed the idea of Slater.) The sphere
corrects for the Coulomb repulsion of an electron at long
distances from the atom. The Watson sphere commonly
used in Gordon-Kim models is a sphere with charge equal
and opposite to that of the ion, and a radius chosen to
equal the Madelung site potential at the oxygen site in the
crystal.>®»3(¢) The primary justification for the model has
been its ability to produce excellent agreement with exper-
iment, in contrast with other oxygen charge densities.’'®’
The potential induced breathing implied by the Watson
sphere model is a zeroth-order form of charge relaxation
that has been left out of other lattice-dynamical models,
such as shell models.

The physics behind the stabilization of O*~ in a crystal
involves more than an electrostatic effect. It must to
some extent also depend on the type of neighbors, for ex-
ample Mg?* in MgO or Ca’?* in CaO. Nevertheless the
Madelung potential does play an important part in the
stabilization. Consider an F center, an oxygen vacancy
containing two electrons, in an oxide. An F center
represents a probe, in a sense, that measures the environ-
ment that an oxygen ion sees in a crystal. Recent band-
structure calculations for MgO and CaO using a muffin-
tin Green’s-function approach show that the F-center
charge density is approximately an s state centered around
the vacancy.!? Elaborate calculations for an F center as a

function of cell parameter have not yet been done, but as
the potential well deepens at an F center relative to the
surroundings of the vacancy the electrons are most prob-
ably more strongly localized. The F center charge density
will breathe in response to the electrostatic potential.

Each oxygen in a crystal responds to the potential from
the rest of the crystal. The same electrostatic forces that
stabilize an F center stabilize an O?~ in the crystal, and
the oxygen charge density will vary with changes in the
electrostatic potential relative to its surroundings.

By equating the Watson sphere potential to the
Madelung potential we are implicitly assuming that the
short-range interactions involved in the stabilization of
oxygen are essentially constant, and therefore can be ig-
nored in the dynamical treatment. One could equate the
Watson-sphere potential to the Madelung potential plus
some constant that is optimized to give the best charge
density relative to an electronic structure calculation; we
intend to study this in the future. On the other hand, ex-
perience has shown that quite reasonable results are ob-
tained without this added complication.

C. The dynamical matrix

The total potential energy in the PIB model is given
by*S
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where the first term is the Madelung energy, the second
term is the self-energy, and the third term is the overlap,
or short-range, energy. The overlap energy is a function
of the nuclear separation, and the overlap and self-
energies are functions of the Madelung site potential,
P(%). The indices / represent triplets of numbers indexing
each primitive cell, and the indices k label each crystallo-
graphic site, or basis vector. A prime in a sum means that
the interaction of an atom with itself is omitted.

The dynamical matrix is found by expanding the poten-
tial energy in a Taylor series to second order in displace-
ments around the equilibrium atomic positions. An atom-
ic displacement changes the site potentials at all the other
atoms in the crystal.

The dynamical matrix contribution from the derivatives
of the Madelung energy give the Coulomb contributions
to the dynamical matrix found by Kellerman.'>'* These
contribution are irregular at ¢ =0 due to the term propor-
tional to g,q5/g% which leads to a splitting of the LO
and TO modes at any small but finite wave vector q.

The derivatives of the dynamical matrix elements for
the overlap and self-energy terms are given in Appendix
A. In addition to the rigid-ion contributions,'> we find
terms that consist of sums of products of first derivatives
of the Madelung potential and second derivatives of the
short-range potentials and -self-energies, and terms that
consist of sums of products of second derivatives of the
Madelung potential and first derivatives of the short-
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range potentials and self-energies. The latter contribu-
tions to the dynamical matrix result in effective charges in
the Kellerman coefficients, which are lower in magnitude
than the ionic valences. They lead to a smaller LO-TO
splitting than is obtained in a rigid-ion model.*

The terms containing first derivatives of the Madelung
potential contain sums of the form (B1). This is the first
derivative of the Madelung potential at sublattice j with
respect to the amplitude of a displacement wave on sub-
lattice k. This sum, referred to here as the © sum, is only
slowly convergent. Appendix B gives a transformation
into two rapidly convergent sums in direct space, and re-
ciprocal space, respectively.

The PIB model considers absolute changes in the local
electrostatic potential, rather than relative changes. If one
does not correct for shifts in the local electrostatic zero,
the LO branch diverges at long wavelengths since the the-
ta sum diverges as 1/q as ¢—0. Furthermore, in struc-
tures more complex than rocksalt, translational invariance
is not satisfied as the acoustic modes do not go to zero
frequency as ¢g—0. The solutions to these problems are
discussed next.

D. The polarization shift

The atomic charge density should respond to changes in
the local electrostatic potential, but it should not breathe
in response to a uniform change in the local potential.
The necessity to consider the relative potential causes no
problem in static energy calculations. The Ewald tech-
nique fixes the average potential of the crystal and thus
defines an electrostatic zero to which the site potentials
are referred.!® If the crystal structure is deformed by a
longitudinal modulation, however, the local zero for the
electrostatic potential becomes poorly defined. A modula-
tion of the potential is superimposed on the rapid local
potential variations and an unambiguous local zero cannot
be defined for a longitudinal-optical phonon. However, as
we shall see, an average local zero can be defined to a
good approximation.

At long wavelengths this problem is related to the prob-
lem in defining an electrostatic zero in the first place. In
Ewald’s method, the average crystal potential is defined to
be zero by effectively including a compensating uniform
background charge density.!® If the average potential
were not fixed in this way, the Madelung potentials for
each sublattice would be infinite. For long wavelengths,
in fact, a nondivergent LO branch, and elastic constants
identical to those obtained by static deformations are
recovered if a uniform background is included in the ©
sum. In static calculations, the uniform backgrounds can-
cel because of charge neutrality of the crystal, whereas in
the © sum they do not.

We are not only interested in the long-wavelength limit,
but in arbitrary wave vectors. Since the polarization sets
up the potential wave, we find a local average polarization
and derive the potential shift caused by that average po-
larization. A Gaussian average has useful properties we
can exploit, so a Gaussian average of the polarization is
found and the corresponding derivative of the potential
shift is subtracted from the © sum (Appendix C). With
this correction for the local-potential zero, the elastic con-

stants derived from the lattice dynamics and from static
deformations agree with each other, and the LO branch
no longer diverges at g =0.

III. METHODS

The atomic charge densities can be obtained by any
method, and are typically obtained by Hatree-Fock calcu-
lations or density-functional methods. We obtain charge
densities using density-functional theory!” with the Liber-
man program.'® The atomic charge densities are calculat-
ed fully relativistically using an effective potential includ-
ing the Hedin-Lundqvist parametrization of the local
exchange-correlation potential,’ and averaged self-
interaction corrections.”® A Watson sphere of charge op-
posite to that of the ion is included in the calculation, and
charge densities are calculated for different sphere radii.

The short-range, overlap contributions to the interatom-
ic potentials are separated into five contributions. The
short-range corrections to the Madelung energy are
separated into electron-electron and electron-nuclear
parts. These contributions correct for the finite size of
the ions so that the electrostatic energy is calculated ex-
actly for the model crystal charge density. The kinetic,
exchange, and correlation energies are approximated as lo-
cal functionals of the charge density. The Thomas-Femi
kinetic energy functional (p°/?) is used,”! along with the
Hedin-Lundqvist exchange and correlation. The use of
the Thomas-Fermi functional is probably the largest error
in our potentials, and corrections to this approximation
are being studied. This simple approximation appears to
provide good estimates for all structures and properties
investigated so far.

We obtain nonempirical pair potentials in numerical
form for pairs of atoms as functions of nuclear separation
and Watson-sphere radii. The dynamical matrix elements
could be obtained directly from the numerical potentials,
but we find it convenient to express the numerical results
in terms of analytic functions. These analytic functions
reproduce the calculated potentials accurately.>®’

The self-energy is calculated using the same functionals
as for the overlap contributions, i.e., the Thomas-Fermi
kinetic energy and the Hedin-Lundqvist exchange-
correlation potential. Since the PIB effect causes charge
to move in and out of the overlap region, it is important
to use the same functionals for the atom and for the over-
lap. The use of different functionals would introduce a
systematic error.

The electrostatic Madelung energy and the site poten-
tials are calculated using the method of Ewald.'® The po-
tentials for the Watson spheres are taken as the Madelung
potential at the nucleus. Local corrections to the electro-
static potential are not included since they would intro-
duce a self-consistency requirement, and it would not then
be possible to directly obtain the overlap potentials simply
in terms of site potentials and nuclear separation.

Ref. 5(b) discusses the method in more detail. The only
difference in the potentials used here and in Ref. 5 is the
electron-nuclear part of the local correction to the electro-
static energy. In Ref. 5(b) a different analytic function
was used for each atom for this contribution to the poten-
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FIG. 1. Phonon dispersion relations for MgO. The solid
lines are calculated with the PIB model using no adjustable pa-
rameters. The squares are from neutron scattering data [Refs. 7
and 22(a)] and the solid circles are derived from an interpreta-
tion of second-order Raman data [Ref. 23(a)].

tial. Here we use a single analytic function for each atom
pair for this part, and thus treat the electron-nuclear and
electron-electron parts of the local electrostatic correction
in the same way.

1IV. RESULTS AND DISCUSSION

A. Dispersion curves

Calculated dispersion curves for the alkaline earth ox-
ides in the B1 structure are shown in Figs. 1—4. Neutron
scattering®?* and second-order Raman data®® are shown
for comparison. (The second-order Raman data are based
on neutron scattering data and/or comparisons among the
alkaline-earth oxides for peak assignments. Since the
spectra contain contributions from the entire Brillouin
zone, the normal-mode frequencies derived from the spec-
tra have relatively poor precision compared with neutron
scattering data. Nevertheless, agreement between the Ra-
man and neutron data are generally good.)
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FIG. 2. Phonon dispersion relations for CaO.
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FIG. 3. Phonon dispersion relations for SrO.

The PIB model gives excellent agreement with experi-
ment for the acoustic modes, except possibly in BaO. The
LO branch is consistently too high due to the neglect of
dipolar charge relaxation. The calculated dispersion of
the LO branch, however, agrees well with experiment, ex-
cept in BaO. However, second-order Raman
measurements®>® are consistent with the calculated
dispersion which suggests that some of the neutron
scattering data for BaO may be in error. Agreement for
the TO branch is excellent in MgO, and becomes poorer
for the oxides of the larger cations. However, note that
the frequency scale for the figures is expanded for the
heavier oxides, so that although the percentage error wor-
sens considerably, the absolute error in frequency does
not.

The worsening relative error for the oxides of the
heavier cations is probably due to the greater polarizabili-
ty of their atoms. Not only does the cation become more
polarizable as the number of electrons increases, but the
oxygen is also more polarizable since it is larger due to the
expanded structure. Thus neglect of nonspherical polari-
zation is a better approximation for the upper rows of the
periodic table than for crystals with larger atoms. At
high pressures, properties may be predicted more accu-
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FIG. 4. Phonon dispersion relations for BaO.
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rately due to the smaller atoms, which would be dynami-
cally less polarizable, but nonspherical deformation may
become increasingly important at extreme pressures.

B. LO-TO splitting

Long-range forces split the frequencies of longitudinal
and transverse vibrations for any finite wave vector. If
only short-range forces were present, the frequencies
would be degenerate in the neighborhood of the zone
center since the displacement patterns become identical at
g =0. Rigid-ion models predict too large an LO-TO
splitting. Spherical breathing, however, softens the LO
vibrations leading to an LO-TO splitting closer to experi-
ment.* In Ref. 4 the self-energy contribution to changes
in the LO-TO splitting was considered. There is, howev-
er, an overlap contribution as well, which is opposite in
sign to that of the self-energy. The overlap contribution
arises from sums of the first derivatives of the overlap en-
ergy with potentials (A7)—(A12). Table I shows the cal-
culated and observed LO-TO splitting expressed in terms
of an effective charge, Y, defined for the B1 structure by

2v72
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where p is the reduced mass and v is the primitive-cell
volume. The results for PIB remain better than Y =2 for
a rigid-ion model but the LO frequencies are still too
high. Agreement is better for the heavier oxides probably
because of the greater importance of higher-order polari-
zabilities, which leads to compensating errors for the LO-
TO splitting as well as a lack of agreement with the ob-
served trend from MgO to BaO. The PIB model gives a
zeroth-order effect on the LO-TO splitting, but nonspher-
ical charge relaxation is required to obtain better agree-
ment.

The effective charge products for PIB are given in
(A12) and (A41); the effective charges in PIB do not sum
to zero since the anion is more responsive to changes in
the Watson-sphere radius than the cation. In more com-
plex crystals, this leads to irregular frequencies at the zone
center, including, for example, splitting of nonpolar Ra-
man modes. The magnitude of the splitting depends sig-
nificantly on the form used for the kinetic energy part of
the self-energy; The Thomas-Fermi form gives large
anomalous splittings, whereas the Kohn-Sham kinetic en-
ergy gives small splittings. We are investigating whether
or not these additional splittings are genuine, or possibly
result from a deficiency in the PIB model. Since this is
not an issue for Bl-structured crystals, it will not be dis-
cussed further here.

TABLE I. Calculated and experimental effective charges for
LO-TO splitting.

a (A) Yeupt Yrin
MgO 4.30 1.15 1.67
CaO 4.82 1.26 1.62
SrO 5.13 1.40 1.64
BaO 5.51 1.43 1.50

C. Comparison with other models

Nonempirical models such as PIB contrast favorably
with empirical models. Much of the lattice-dynamics
literature centers on the shell model, which is a mechani-
cal model that describes atoms in crystals as “shells’’ and
“cores” connected by springs. The forces between the
various shells and cores are represented by different spring
constants, as well as by long-range Coulomb forces result-
ing from the charges on the shells and cores. The zero
Fourier component, or long-range part, of the force-
constant matrix is explicitly separated as a macroscopic
electric field. In the shell models, the number of parame-
ters proliferates rapidly. These parameters are generally
contained by empirically fitting observed crystal proper-
ties, sometimes including the dispersion relations which
are to be “modeled.” Even when the properties are well
fit by a set of parameters, the parameters may not
represent the forces to which they refer in the model. It
has been found, for example, that potentials that describe
the defect properties of rutile do not work well for vibra-
tional properties.?*

In contrast to the empirical approach, more fundamen-
tal methods obtain potentials without fitting any experi-
mental data. Elaborate methods have been used to calcu-
late phonon frequencies of, for example, GaAs (Ref. 25)
and NaCl (Ref. 26). Such calculations are orders of mag-
nitude more expensive than the simple model presented
here. Because of the time and expense involved in such
calculations, elaborate methods are restricted to simple
structures and frequencies can be obtained only along
high-symmetry directions. Results at many wave vectors
are required in order to obtain thermal properties such as
the equation of state or heat capacity.

Phonon frequencies can be obtained experimentally by
optical spectroscopy or inelastic neutron scattering. In or-
der to derive thermodynamic properties from these data,
however, it is necessary to interpolate and extrapolate
from the measured data, since optical spectroscopy gen-
erally measures only some zone-center frequencies and in-
elastic neutron scattering is generally performed only for
symmetry directions. Although neutron scattering data is
invaluable in elucidating the vibrational properties of
solids, it is very expensive and time consuming, and can
be applied only in a limited pressure-temperature environ-
ment. Large single crystals are required as well, so that it
would be impossible to measure phonon frequencies in
quenched high-pressure phases by neutron scattering, for
example.

V. CONCLUSIONS

Potential induced breathing is a simple approximation
to charge relaxation effects on the vibrational properties
of ionic crystals; it greatly improves agreement with ex-
periment for the alkaline-earth oxides over rigid-ion
models. The calculated acoustic and elastic properties are
quite accurate. The longitudinal-optical branch frequen-
cies are too high due to the neglect of dipolar charge re-
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laxation, but are better than rigid-ion frequencies. The
transverse-optical frequencies are quite good for MgO and
CaO, but become too high for the heavier oxides, since
higher-order charge relaxation becomes more important
for oxides of the larger cations.

PIB is a model with no adjustable parameters that can
provide predictions of properties under conditions that are
not experimentally accessible. It can also be used to better
understand the implications of experimental observations.
Discrepancies between calculated and observed properties
can point out important contributions not included in the
PIB model.

Possible improvements to the PIB model which would
make it more realistic include nonspherical charge relaxa-
tion, consideration of local potential differences rather
than absolute potentials, use of a better kinetic energy
functional, and/or local corrections to the static poten-
tials. Such improvements would probably lead to better
predictions but could destroy much of the simplicity of
the model. Improvements that retain the computational
simplicity of the model are being investigated.
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APPENDIX A: DERIVATION
OF THE DYNAMICAL MATRIX ELEMENTS

A. The short-range potential

In the PIB model, the short-range potential is

(AD
Ik

where | and [’ label primitive cells and k and k' label
atomic sites in the primitive cell. The short-range poten-
tlals ¢ are functions of the Madelung potentials at (%) and
k)as well as the distance r(kk Let r(l) ( )+u(k)
where 7 is the displaced position of atom (§), x is the
equilibrium position, and u is the displacement. The
chain rule is used to find the derivatives of USR with
respect to arbitrary displacements. The first derivative of

USR is
USR = QUSR Y ¢
a = ara(;ﬂ) 2 = ara(}n) const
I' k'
, aP(})
+ 9¢ = (A2)
% | OP(%) arq(7)
I' k'

The Madelung potential at (%) is given by
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and the first derivatives of the site potential are

222, QA
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e )L g T B, b=,
Ik x
(A4)
where E( ) is the electric field at (", x (L}") is the a

component of the vector between (%) and (7), and x is the
length of the vector. The atomic and cell indices for the
latter are the same as for x,, and are suppressed. All
derivatives are evaluated at the equilibrium positions.
Translational invariance is assumed throughout for all po-
tentials and derivatives.

The second derivative of the short-range energy is given
by

USR_ ﬂ_ U +U +U
B arg(Marg(%) o + Vet
+ UL+ U+ UL, (A5)
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The first term in (A2) and UL in (A6) are rigid-ion
contributions. The other terms are PIB contributions and
are many-body in nature. We now turn our attention to
these.

Uf;,g can be simplified from a double sum to a single
sum

*Pk)
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s szck[ar

— (A7)
«(TH0rg())




35 LATTICE DYNAMICS OF THE POTENTIAL-INDUCED . . . 5755

where tor (A10) leads to a replacement in the Kellerman formula
363 i') of ziz, by zy where
Ck= ,2’ aP(O) ] (A8) ZpZp +CrZy +Cr'Zy k:,&k'
Ik k i = (A12)

2 ,
.. . . .. Zi+2ckz —2 ¢, k=k
UZp is identical in form to the second derivative of the k kT %k %" k

Madelung energy given by
and the k =k’ value for z;; follows from translational in-

RI_ 1 3P() variance
Usk =72 n : (A9) " pr Pr . .
ary(7arg(j) NextPUaﬁ“ and U aBB are considered. Firstly, the double
An effective charge product is defined as sum Ugg' is split into two single sums
S =iz + Cizi (A10) v s %™ 3P (})
5=
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and Kellerman’s method!® is used to find the contribu- The other terms in U,g are zero. Using (A4), the first
tions to the dynamical matrix. The effective charge fac- sum in (A13) is
|
2 I m 2400 m
, aP(L) , P i) x (
¢ Ly — | |77 =24 [1_ EO—Eg(Dst D |, (A14)
ar, (" P(} arﬂ( ) Tk | 9ra((HaP(y)
where 8(} ) is one if (§)= ( '), and zero otherwise.
The dynamlcal matrix is glven by!®
. e —iq-x(jj") g
Daglif' =" im Ze ™ g (A15)

The prefactor will be omitted below until each equation is summarized. The contribution to the dynamical matrix from
(A14) is

2

k

0 1) x(31)
ara(Mapr(Q) S 180 1 —Ep(M8@QR [ | AL16)
dra(TIOP () 5 180 )] —Ep()8(k

z’e-—iq-x(m)

m

s eiaxD |,
1

where translational invariance has been used to separate the m and / sums. The m sum converges rapidly for the short-
range potential. The / sum, however, is only slowly convergent. Sums such as

(2 )
k_], 2 e—zq x(m) . (A17)

occur frequently here. A rapidly convergent Ewald-type transformation for this sum is discussed in Appendix B. Using
this symbolism the dynamical matrix contribution from the first sum in (A13) is given by

Pr 1 —tq x(jj")

D5 ——( YR S palkj)zyOp(kj') —Eg(j )81 (A18)
where
(PN | xa(7Y)
)= —iq-x(m) J a K]
Pakj)= E e 3x3P (K) (A19)

Next, consider the second sum in (A13):

5 5 eianm|_OTL | [3P()
<< Arg(TAP(T) | | drg(})

— z E e —iq-x(m)

k m

x i)
=50 —8(T 1 —Eg(8(r )

3¢ k)
Ara(NAP (D)

’

(A20)
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The dynamical matrix contribution is

Pra,Z e—iq-x(jj’) ..
= 1772 95al 270U ) —E(j)8);] ,

T MMy
where
=S a;(j?p xq(7%)
@ [ 9xaP() x

We continue with the sum

U (i ) 3P() Y Fb(7 i) 3P(})
BT Larg(0ard) | | ara |G [3ra(DaP (D) | | ora(h) |

The first sum in (A23) contributes

! 0
2 z'e—iq-x(m) 2¢

m Lk ar[,'( )aP( )
Let I'=m —1 so (A24) becomes

x( 7)
z x’;f [1-5(2}”)]—15,1(;)5(2;?’)].

2¢ 1 0
;e_iq-x(l) T TRJ Z'ea(k')_Ea(.)B il >
2|2 arg(Dap(y) | | (7 RSP
and we get
PrB,l 7zq x(jj") .
Dof ZWEPB kiz;0u(k)) —Ea 8]
J

where p is defined in (A19).

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

The last sum containing one first derivative of electrostatic potential with displacement is given by the second term in

(A23). The dynamical matrix contribution is

aZ(b Ol
drp(0 )aP< )]

7= B ()8R

2 e —iq-x(m) 2’
m Lk
which is similar to (A20) and gives
Prg2 g Tiaxlid )
Daﬁ :W ”g[ze jj) Ea(_])sj'j],

where d is defined inz(A22).
Next, consider U 5,;. The dynamical matrix contribution is

' xa(;c;‘n) 1 1 XB(;(JO’) .
23 |z 5 (=86 ] = Eal798( )] z,T—u— DI—Eg(8(; Py |e—iaxtm
m Lk
where
;[ 3%k
L= _—
=2 o
Letting m’'=m — 1, we have
xa(R ]
SS4lp [1— M—Ep(j8(; ] *‘qﬂ”zl .
ko1 x?

The !/ and m' sums are completely factored in (A31) and we find

—iq-x(jj")
¢ — D 4:2/04k;) — Eq(j)8;1[2;05(kj") — E (i )41 ,
(M;M;)' > %

where #; is defined in (A30).

p2
Dyp=

[1_ 2T —Eo (78R ™) le

(A27)

(A28)

(A29)

(A30)

(A31)

(A32)
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The final short-range sum to consider, U 52, contributes

%G xalk xglk ) A
. 180 MI—EL(M8G: ™ | |zp———[1-8 Eg(Ns(k —ia-x(m)
222 ap<k)ap(£)] L i Ik Mgl |e
(A33)
to the dynamical matrix. Let m’'=m —1 and find
%G xglk: ) : . . ,
23\ Splard | 17 ”x3’ [1—8(k D1—Eg(28(k 2) e =9 D[2,0,4(k;) — Eo(j)8;;] - (A34)
Lk I' k' k k'
Now, let /"' =1 —1" and get
3% X N
2,;0,(k;)—E o (j)8; e T [ Ok ) —Eg(j )8k ] » (A35)
%[1 j J k,]%l; P (" )0P (%) e [z;©p(k'j g8k ]
and finally
pp_ e faxlid , . . o .
= 7 > > 8(kk',q)[2;04(kj)—Eq(j)8 1[2j©p(k'j") —Eglj )8y ;] , (A36)
<

BT (MM <

where

(A37)

glkk',q)=3'

!

¢k i) e —iax(D
dP(} )P ({.) '
B. The self-energy

Now we must consider the self-energy contributions to
PIB lattice dynamics. The self-energy is given by

=35
Lk

The derivatives with respect to arbitrary displacements
are

(A38)

SE as() | [ ar(k)
e | QU 1 li L (A39)
arq(™ dP(;) | | ara(")
and
aZUSE
Uas= 3ra(Madrg(?)
_s ash) 32P(%)
% [3PG) | | ara(Marg(?)
sty | [ ard) | [arPc)
2 ; 5 . (A40)
Lk dP( k) ara(j) arﬁ(j:)

The first sum in (A40) is identical in form to (A7) and
gives an additional effective charge contribution,

=3 (i k) 3s (k)
E | ap®) P (k)
The second sum in (A40) leads to a dynamical matrix con-
tribution identical in form to (A32) with

, [ %R i)
=
% aP;

(A41)

32%S (k)
oP?

(A42)

APPENDIX B: A RAPIDLY CONVERGENT FORM
FOR THE 6 SUM

A rapidly convergent form for the lattice sum

( 7

P
k] q z e~rqx(m) (B1)

must be found. An Ewald-type method is used to write
the sum as rapidly convergent direct-space and
reciprocal-space lattice sums. The © sum, (Bl), is a
derivative of a general type of lattice sum discussed by
Tosi,'® and is

O,(kj,q) 2m'e_iq"('") ﬁlg x(‘,ﬁl}") H ) (B2)
Using the identity

|r1‘ =% [ e "ar, (B3)
we have

9
T axa k) o \/} 3 expl —tx ™

j ™ —iq-x(m)]dr .

(B4)

We split the integral into two parts, an integral from O to
€, and one from € to «, where € is a convergence parame-
ter, and use the theta transformation,'¢ given by

2
7= S exp[ — 22} T
m

)—iq-x(m)]

_ 2
=2 713—ex —J—%j—‘ﬂ—— Q-+q)x(kj)
Q

where v is the primitive cell volume and Q is a
reciprocal-lattice vector, in the first integral giving
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2T d . e The integral in (B6) is
T 2o, on | PITHQE @AY ‘ N
, [ e di=5-e/, (B7)
€ —
X f %exp —IQ#—L dt . (B6)
0 ¢ 4t so we have
J
exp _J_Q_tgﬁl
4mr 4e? , A o 1(Qatga) | - 2 .
a Q
(B8)
for the reciprocal lattice sum.
The second integral is
_ a ® 2 2.2 0'_" e _ —iq-x(m) 8 2 L ——tzxz((,g}")
. (0) fe —ﬁgexp[ tx(x ) —iq-x(m)]dt = %e ) | Ve fe e dt
; d
I —iq-x(m) 0m
e Ax o (k) x(i;")erfc[ex“”)]]
Om
_ iaxtm | 26 Xalk i) —ex¥Qm)
_%e q-x(m) _‘/—TT_——X—Z_—e kj
xa(3™)
+—’§+exfc[ex<2;")]} : (B9)
N

The behavior of (B8) and (B9) when k =j must be considered, since when this occurs, the m =0 term is omitted in the
O sum. One finds that the sum (B8) is unaffected, and one need only omit the m =0 term in (B9) if kK =;. Finally we

have
4r o 1(Qa+4qaq) Q+q/’
O, (kj;q)= exp | —i(Q+q)-x(kj)—
S AT
’ xa(o ) —e2x2(Qm xa(o"")
+ 3 e iaxim 2% xkzj (kj )+~*k3]WerfC[6X(2}")]] . (B10)

APPENDIX C: THE POLARIZATION SHIFT

A longitudinal polarization wave sets up a potential
wave that shifts the local electrostatic zero for the PIB ef-
fect. The induced potential is

VS =47V-P | (C1)

where &2 is the polarization. To define a local zero, we
must take a macroscopic average, relative to the atomic
size. A macroscopic average of a microscopic variable
can be written as?’

(FY= [ d*'f(x)F(x—x) . (C2)

A spherical average is used for simplicity, and the weight-
ing function f is taken as a Gaussian, since a Gaussian
distribution has useful properties,

F(x)=(mR?)~3/2 ~x*/R? (C3)

where R is the length scale. Now the macroscopic polari-
zation is given by

.@(x)=<2/¢n5<x-x,, )> . (c4)
In a complex crystal, we have

x,=x(}), (C5)
and

£ N =expl —iq-x(k D]Ak)j,q) (C6)

is the microscopic polarization at (;) relative to sublattice
Jj. A(kj,q) is the polarization amplitude. The macro-
scopic polarization from sublattice k£ on sublattice j is
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P (kj)= A(kj,q)
e —iq.X(kj)A(kj,q)(sz)_

We use the theta transformation (B5) and get

P (kj)=

2 exp

A(kj,q)—

fd x' (R 2)=3/2 —(x") 2/R? Zexp[——lq x( k; ]8(){

2p2
———&;—q—l-ﬁ——i(Q—kq)-x(kj)

N—x')

ia. . _ P2 2
3/22e—1qx(l)e |x—x()|“/R . (C7)

(C8)

Finally, we use (C1) and take the derivative with respect to the a Cartesian component of the polarization amplitude and

get

AP*
94,

{{Qa+9a) —[Q+q/[’R’

47
=3
Voo

The integration constant is zero, so that (C9) goes to zero
as the volume is expanded to infinity as in the defmmon
of the Ewald potential.

Equation (C9) is subtracted from the theta sum (B10) to
give physically meaningful results within the PIB model.
Equation (C9) is equal to the reciprocal-space sum in the
© sum (B10) for an € equal to 1/R. Thus the subtraction
of (C9) from (B10) is equivalent to evaluating only the
direct-space sum in (B10) for an e=1/R. There is no
correction to the PIB Kellerman-type coefficients, since

—i(Q+q)-x(kj)

(C9)

(3*D*/3A4,3A45)=0.

R is chosen so that a sphere of radius R has the volume
of the primitive unit cell. This choice for R minimizes
the effect of the local shift of the longitudinal mode fre-
quencies, and gives the same elastic constants as are found
by static deformations using PIB potentials. R does not
effect the frequencies at the zone center or zone boundary.
Varying R by 20—50% has negligible effect on the
dispersion curves.
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