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As a ground-state expectation value, the static dielectric response function can be obtained exactly
within the density-functional approach. This approach is developed in the present paper within the
local-density approximation. The ab initio pseudopotential method is used, extending the tech-

niques that give excellent structural properties to the calculation of dielectric response functions. In
particular, the full dielectric matrix is calculated, and so complete information about local fields is

obtained. In contrast to recently proposed direct methods for obtaining the dielectric response ma-

trices, the present approach is based on the usual perturbation formulation for the independent-

particle polarizability. The results agree well with results obtained with use of direct methods. The
advantage of the perturbative approach is that it allows calculation of the response matrices on a
systematic grid of points in the Brillouin zone without significant extra computation or loss of accu-
racy for points of low symmetry. The response matrices for such a grid are required to describe the
response to arbitrary perturbations, e.g. , a local change in the potential due to an impurity or defect.
The role of exchange and correlation is carefully developed and the relation of the response func-

tions calculated within the density-functional approach to the usual random-phase approximation is

illustrated. Results from first principles for the full static dielectric matrices are given for a series of
semiconductors and insulators: diamond, Si, Ge, and LiC1. Comparison is made to previous results

based on empirical potentials. The importance of local fields is illustrated for the macroscopic
dielectric function and by using the concept of the dielectric band structure. Sufficient details of the
method and results are included to serve as a reference for development of the dielectric matrix as a
tool to be used in other applications. In particular, the additional terms in the long-wavelength

dielectric matrix due to nonlocal terms in the ionic pseudopotential are presented.

I. INTRODUCTION

The linear-response approach to screening electro-
dynamical perturbations has been used widely in
condensed-matter applications. For the case of crystals, it
has long been recognized that the microscopic response of
the electrons can be substantially different than the aver-
age or macroscopic response. The density of electrons in
a crystal is, in general, inhomogeneous on the scale of the
bond lengths or interatomic spacings. It is therefore intui-
tively clear that the screening fields will also vary on this
scale. These are the so-called local fields.

The local fields are reflected in the dielectric response
function through its matrix form. In general, it has the
form E(r, r', co), depending explicitly both on the location
of the probe r and the perturbation r'. For a crystal, the
periodicity can be exploited to Fourier transform this to
reciprocal space, in which case a matrix in the discrete
reciprocal-lattice vectors results for each q in the first
Brlllouln zoIIe: Eoo ( q, co ). Fol a systeII1 wltll lllf1I11-

tesimal translation invariance (e.g. , the "jellium" model),
the dielectric matrix simplifies substantially, having the
form e(

I
r —r' I;co). In reciprocal space, the dielectric ma-

trix is then diagonal. It is the off-diagonal elements of the
dielectric matrix in reciprocal space that contain the in-
formation about the inhomogeneity of the microscopic
response of the electrons, the local fields.

Although the response function of simple metals can
often be approximated by that of jellium, it is well known
that local fields are essential in many applications. One
example is the dielectric matrix formulation of the pho-
non problem. '* Here, the acoustic sum rule requires that
the off-diagonal elements of the dielectric matrix be
nonzero for semiconductors and insulators. A second ex-
ample is the screening of impurity potentials in semicon-
ductors where models for the local fields have been em-
ployed. A third example is the screened Coulomb in-
teraction required in the calculation of the electron self-
energy operator. It has been shown that inclusion of local
fields in the screening is essential for predicting the
correct quasiparticle spectrum in semiconductors and in-
sulators. '

Despite the importance of local fields, calculations of
the full dielectric response matrix have been rare. This is
due in part to the complexity of the calculation required
for a real material. There are two aspects to this. Firstly,
techniques for band-structure calculations required as in-
put to the dielectric matrix had to be developed. These
have been well established for some years now. Secondly,
there has been uncertainty as to a reasonable approximate
Hamiltonian upon which to base the calculation. We will
argue that the density-functional approach using the
local-density approximation (LDA) provides a sound
basis for proceeding with the calculation of the dielectric
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matrix (at least for the static response). The other factor
that has hindered inclusion of local-field effects in studies
of various physical situations is the difficulty in modeling
the off-diagonal elements of the dielectric matrix.
Without the guide of first-principles calculations, models
have been scarce. The most successful model in applica-
tion has been the bond-charge model for calculation of the
phonon frequencies, which represents the effect of local
fields in this case directly instead of by approximating the
dielectric matrix itself. '

Earlier realistic calculations have been based on empiri-
cal potentials fitted to reproduce optical properties. This
is appealing given that the average gap is related to the
dielectric constant. However, use of empirical potentials
does not have any a priori justification. The full dielectric
matrix for q~0 was calculated as a function of frequen-
cy to obtain the local-field effect on the optical response
of semiconductors. These calculations were carried
through in the random-phase approximation"' (RPA) as
well as including the ladder bubble diagrams (exchange-
correlation effects) in the screening. ' ' For the static
response function, the calculation of eGG (q~O) has been
extensively developed. ' ' Recently, direct methods for
obtaining the static dielectric matrix have been proposed.
The RPA response function has been discussed' and the
dielectric matrix within the density-functional approach
can be obtained. ' As we will discuss in detail below, this
direct approach is based on a supercell calculation along
the lines of the frozen-phonon approach for lattice
dynamics. This restricts the calculation to the case of q
at points of reasonably high symmetry. Also, to date,
these calculations have been based on empirically derived
local pseudopotentials.

These comments illustrate the need for well-founded
dielectric matrices calculated from first principles. The
static dielectric response matrix is a ground-state expecta-
tion value. As such it can, in principle, be obtained
within the density- functional approach. We have
developed this approach using the perturbative technique
of Adler' and Wiser for the independent-particle polari-
zability and the local-density approximation to include the
exchange-correlation effects. Both the RPA response
function as well as the response function for a test charge
probe including exchange-correlation effects are con-
sidered. We emphasize that this procedure is well found-
ed theoretically. The only significant approximation is
the use of the LDA for the exchange-correlation part of
the functional. We use the ab initio (nonlocal) pseudopo-
tential to represent the electron-ion interaction. ' As the
pseudopotential is derived from atomic calculations car-
ried out with the LDA, this approach yields a calculated
response function consistently obtained within the
density-functional approach. The present formulation is
equivalent to the proposed direct approach' within the
linear-response regime, provided that the same pseudopo-
tential is used. Our approach has the added advantage
that the dielectric matrices can be readily calculated on a
regular grid of q through the first Brillouin zone as re-

quired in many applications. Recently, Baroni and Resta
have applied a similar approach to obtain the static dielec-

tric constant (q~O) of Si.
We have calculated eGG (q, co =0) on a regular grid of q

in the first Brillouin zone for the semiconductors dia-
mond, Si, and Ge as well as the ionic insulator LiC1. (For
LiCl, we obtain only the electronic contribution. The
phonon contribution is not considered here. ) These results
are based on well-converged band-structure calculations in
each case. Indeed, the present work is based on the same
calculational techniques that give excellent structural
properties. In addition, the calculated elements of the
dielectric matrix are well converged with respect to
Brillouin-zone summations and the sum over empty states
required in the Adler-Wiser formulation. The present
dielectric matrices have been used previously to obtain the
electron self-energy operator and the quasiparticle spec-
trum in these materials. The results for selected columns
of the dielectric matrices have also been compared to
direct calculations we have done along the lines previously
suggested. The agreement is excellent indicating that the
present dielectric matrices are numerically well converged.
The only number which can be directly compared to ex-
periment is the calculated macroscopic dielectric constant
e0. The result is about 10% too large for diamond, Si,
and LiC1 (in agreement with the Si result of Baroni and
Resta ). The discrepancy for Ge is larger. The results
depend significantly on the proper treatment of local
fields and explicit inclusion of exchange-correlation ef-
fects in the LDA. The discrepancy may be attributable to
the use of the LDA, a point which may be addressed in
the future.

In the present paper, our approach for calculating the
static dielectric matrices is given. In Sec. II, we outline
the density-functional approach for the dielectric matrix,
placing emphasis on clearly delineating the role of
exchange-correlation and the relation to the usual RPA
response function. The Adler-Wiser formulation is dis-
cussed and the direct approach briefly outlined. The sym-
metry properties of the dielectric matrix are summarized.
In Sec. III, sufficient details of the actual method of cal-
culation are given so that other workers can develop simi-
lar calculations. Some of the details are described in the
Appendixes. The perturbative and direct approaches are
shown to give the same results. The resulting dielectric
matrices are described in Sec. IV. For reference, the small
G, G portion of the dielectric matrices is tabulated for
selected q. The present dielectric matrices are compared
to previous results based on empirical potentials. The idea
of the dielectric band structure is exploited to give a
concise summary of the present results as well as a direct
indication of the effects of local fields. The explicit effect
of exchange-correlation on the response functions is illus-
trated as well as the role of local fields on the macroscopic
dielectric function eM(q+G, co=0). Concluding remarks
are given in Sec. V.

In a subsequent paper, we will illustrate the effect of lo-
cal fields in screening various external perturbations. In
particular, we will give the screening charge induced by a
point-charge perturbation. This can be done because the
dielectric matrices are now available on a fine grid of q.
Systematic trends will be illustrated.
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II. FORMULATION OF THE DIELECTRIC MATRIX

In this section, the formulation of the static dielectric
response function is reviewed. We outline these basic re-
sults to clearly establish definitions, give a coherent pre-
sentation, and firmly establish the density-functional ap-
proach in the perturbative form used here. Emphasis is
placed on the response function in the density-functional
approach, the role of exchange-correlation contributions
(including distinction of various response functions), and
the equivalence of direct and perturbative approaches in
the linear-response regime.

A. Cieneral framework

The polarizability of the electrons relates a small exter-
nal potential perturbation 5V,„,(r) to the resulting change
in the electron density

5p;„d(r) = f dr'X(r, r')5V, „,(r') . (1)

We adopt the polarizability 7 as the basic response func-
tion and use it to derive the dielectric function below.
Note that the perturbation is assumed to be local. The
perturbation caused by a phonon in the ab initio pseudo-
potential approach includes terms that are explicitly non-
local operators. This case requires an extension of the ap-
proach described here and will be discussed in a future
publication.

The density-functional approach provides the frame-
work for further discussion. Briefly, the total electronic
energy is a unique functional of the electron density with
the extremal property that the functional is minimized by
the correct density. For a given external potential
(electron-ion interaction)

5F
5 V,„,(r) = —fdr', 5p,„d(r'} . (6)

5p r)5p r'

With reference to the explicit form of the functional
F[p], we have

$2T
X '(r r') =- —Vc(r —r') —K„,(r, r'),5p(r)5p(r')

(7)

where the usual Coulomb interaction Vc enters and we
have defined K„,(r, r')=5 E„, /5p(r) 5p(r'). From Eq. (6),
it is clear that we obtain the inverse of the polarizability
defined by Eq. (1). These results show explicitly that the
polarizability is a functional (in general unknown) of the
electron density.

An alternative way to make the connection to the
density-functional approach clear parallels the direct for-
mulation of the dielectric matrix to be discussed below. A
self-consistent calculation of the electron density is done.
Then the external potential is varied by the addition of
5V„,. A second self-consistent calculation of the electron
density is done with the new (perturbed) external poten-
tial. Comparison of the two densities yields 7 directly by
reference to Eq. (1). This analysis demonstrates that the
polarizability can be obtained as the difference between
two ground-state calculations showing once again that the
density-functional approach is a formally well-founded
formulation for the dielectric matrix.

In the perturbative approach adopted here, one starts
by calculating the independent particle polarizability Xo.
This is defined as the response to the total perturbing po-
tential:

5p(r)= f dr'Xp(r, r')5V„,(r') .

E[p]=f drp(r)V, „,(r)+F[p] .

The functional F is written in the form
t

Ffp]=Tp[p]+ f dr f dr'p +E„,[p],

(2)

5 V„,(r) =5V,„,(r)+5V„,(r), (9a)
I

5V„,(r)=e fdr', + f dr'K„, (r, r')5p(r') .
r —r'

Here, the electrons respond to the total change in the ef-
fective potential in Eq. (4):

where To is the kinetic energy of noninteracting electrons
at the same density, the second term is the average elec-
trostatic (Hartree) energy, and the final term contains all
the contribution from exchange and correlation effects.
The extremal property leads to the Kohn-Sham equa-
tions:

2

+ V,„,+ VH+ V„, (();(r)=e;P;(r) .
2m

(4)

The occupation factor f; may only be fractional for
c.; =p, at the chemical potential.

Based directly on the extremal property of the function-
al in Eq. (2), the polarizability can be obtained. This has
been shown by Wendel and Martin as well as in Ref. 8.
The result is

The exchange-correlation potential is obtained as the
functional derivative V„,(r)=5E„,/5p(r). The effective
one-electron orbitals give the electron density as

p(r)=g f; ~P;(r) ~, 0&f; &1.

X = ( 1 —Xp Vc —&pKxc ) Xp . (10)

The same expression results from Eq. (7) when the
independent-particle polarizability is identified with the
functional derivative of To. Matrix notation has been
adopted here so that Eq. (10) requires a matrix inversion.
This and subsequent expressions are also valid in a
reciprocal-space basis to be used below, provided that fac-
tors of the crystal volume are properly taken into account.

Finally, we give the connection to the dielectric
response function. It is defined by 6 V„,=e '5 V„,.
However, care must be given to the portion of the screen-
ing potential included, depending on the nature of the
probe. Implicitly, we have assumed that the source of
the external potential was distinguishable from the elec-
trons. If the probe of the screening potential is a test par-
ticle, then it is only affected by the electrostatic term in

(9b)

Based on this analysis, the full polarizability 7 is related
to the independent-particle polarizability Xo by
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e, '=1+(Vc+K„,)X . (12)

One can also envision the response to an external charge
and distinguish the case of an electronic perturbation
from a test charge perturbation (instead of the generic
external potential used above). We do not pursue that fur-
ther here. The usual RPA response function is obtained
by setting to zero the exchange-correlation contribution to
X. The result is

eRpA 1+ ~c(1 +o~c) +0

which is equivalent to the more common form:
E'Rp~ = 1 —VgXp. The question of whether the RPA
response function so obtained would in principle be the
same as that derived from a standard many-body treat-
ment is subtle. It is the full response function 7 which is
provided exactly within the density-functional approach.
Derivation of Xp from that result depends on interpreting
V„, as a mean field. It further depends explicitly on the
approximation employed for E„,. Within that frame-
work, derivation of the RPA response function within the
density-functional approach is well defined, at least opera-
tionally.

For the crystalline case, we exploit the lattice transla-
tion symmetry to transform these expressions to a

Eq. (9b) and the resulting dielectric matrix is given by

&Tc= &+ Vc+ .
—1

This is the so-called test-particle —test-particle response
function. However, if the probe is the electrons them-
selves, then the whole screening potential in Eq. (9b) is ef-
fective and one has

reciprocal-space basis with the following convention used:

—1( ~) ~ i(q+G) r —1
( )

—i)q+G') r'
r, r — ~ e

q, G, G'
(14)

Here, 0 denotes the crystal volume. As mentioned in the
Introduction, the information about local fields is con-
tained in the off-diagonal elements of the matrix in G, G.'.
The average, or macroscopic, response to an applied field
is determined by the diagonal elements of e ', not by E.
Thus the definition of the macroscopic dielectric function
1S

eM(q+G) =1/ eco( q) . (15)

Application of first-order perturbation theory to the ef-
fective one-particle equations (4) yields the standard result

f;(1 f,)—
xo(r, r') =g [P,*. (r)PJ(r)PJ*(r')P;(r')+c. c.] .

Eg —Ej

Transforming to reciprocal space, the resulting expression
for gp 1$

In particular, the macroscopic dielectric constant is given
by eo ——limq oeM(q), (or e in the case of ionic materi-
als). Because it is derived from the inverse matrix, the
presence of nonzero off-diagonal elements of e changes
the macroscopic dielectric constant. As we will show ex-
plicitly, the local fields in semiconductors have an impor-
tant effect on the macroscopic screening (typically
10—20%%uo in eo).

B. Perturbative approach

Zoo(q)= —g ' ' ((n, k
~

e ''q+ "~ n', k+q)(n', k+q
~

e'q+ "
~

n, k)+c.c. ) .o 2 fn, k( 1 fn', k+q)

n, n', k En, k En', k+q
(17)

The one-particle states are labeled by Bloch wave vector k and band index n. The sum over spin has been taken into ac-
count explicitly yielding the factor of 2. Conservation of crystal momentum has also been used in the matrix elements.
This is just the usual Adler-Wiser formulation. ' ' For the present purposes, Eq. (17) can be further simplified for sys-
tems with a gap between empty and occupied states. For semiconductors and insulators, the result is

XGo (q) = —g4 (v, k
~

e 'q+ "~ c,k+q)(c, k+q
~

e' + "
~

v, k) (18)
Ev, k Ec,k+q

6 F.„,
6p(r)5p(r')

dV„
5(r —r') .

dp p(~)
(19)

The ordinary differentiation with respect to p of the local
density expression for V„ is required. As a result of the 5
function, the reciprocal-space expression for K„, is in-

Here, c (v) represents the index for the conduction
(valence) states. This is the basic expression required for
the calculations presented in this paper.

Once Xp has been calculated, the exchange-correlation
contribution must be included to get eTC. In the LDA
used here,

dependent of q:

Koo (q) =K„,(G—G') . (20)

This is an artifact of the LDA in particular, not of the
density-functional approach in general. From Eq. (20) we
see that the diagonal part of K„, is constant in the LDA.
This behavior is, generally speaking, incorrect, even in the
electron gas. However, one should note that K„, always
enters with Xo in a product, e.g. , in Eq. (10). Thus the q-
dependence of Pp damps the large-q contribution of the
combination XoK„„although more slowly than is expect-
ed for the correct K„,. This ameliorates the severity of
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—g Xoo-(q)&„,(G"—G') . (21)

The matrix 2 must be inverted numerically. Then

XoG (q) =g & oo-(q)Xo-o (q),0 (22)

and

—1 4~e 2

&GG (q) =5oo + Xoo (q) .
I
q+G

I

' (23)

This is the expression for the test-charge response func-
tion. Corresponding expressions can be derived for the
electron dielectric function as well as the RPA dielectric
matrix. The latter follows simply by eliminating K„,
from Eq. (21).

C. Direct approach

Recently, direct approaches for obtaining response
functions inspired by the success of frozen-phonon tech-
niques have been demonstrated. ' ' We briefly describe
this approach and the key features of its implementation
for comparison to the present perturbative technique. We
use the direct method below as a check on the more com-
plete results obtained perturbatively.

If q is a simple rational fraction of a reciprocal-lattice
vector, then a supercell can be found such that q is itself a
reciprocal-lattice vector for the new lattice. Then a mono-
chrome perturbation can be added to the electron-ion in-
teraction:

5 V,„,(r) = Voe (24)

(The notation is such that the wave vectors all refer to the
original lattice. ) The self-consistent calculation of the
charge density is repeated. The perturbation leads to a
change in the charge density for wave vectors q+ G. This
is computed by direct comparison to the self-consistent
charge density without the perturbation. From this a
whole column of the polarizability or dielectric matrix
can be obtained

5p(q+G) = VOXGo (q), (25a)

the LDA for I( „, in practice. It has not been possible to
go beyond the LDA in this regard in a nontrivial way in
actual calculations. The required functional derivatives
for K„ in, for instance, the weighted density approxima-
tion are significantly more complicated than the tractable
expressions for V„,. It has been shown that the weight-
ed density approximation yields generally better large-q
behavior for K„,. Progress in going beyond the LDA
may be possible using direct methods.

The explicit expressions for the dielectric matrix in re-
ciprocal space are straightforward to derive from the gen-
eral expressions given in Sec. II A. Using
Vc(q+G) =4~e /fl

~
q+G

~

and properly accounting
for factors of the crystal volume, the matrix which needs
to be inverted in Eq. (10) is

0 4~e 2

~Go (q) = 5oG —&oo (q)
I

q+G'
I

'

5 VH(q+ G) = Vo[eoo (q) —5GG, ] . (25b)

Exchange-correlation effects are automatically included.
By examining the change in the electrostatic (Hartree) po-
tential, the test-charge dielectric matrix is obtained. The
electron case can also be considered by including the
change in the exchange-correlation potential. For suffi-
ciently small perturbation V0, only the linear-response re-
gime is probed leading to the usual dielectric matrix. The
independent-particle polarizability 70 can similarly be ob-
tained. '

There are several advantages to the direct approach.
Exchange-correlation effects are included through the
usual self-consistent procedure in the density-functional
approach. Problems with the summation over
conduction-band states in the perturbative approach are
circumvented. This approach also has several drawbacks.
First, a self-consistent calculation is required for each in-
dependent column of the dielectric matrix. (Symmetry
properties described below limit the number of indepen-
dent elements of the matrix depending on q.) Second, the
size of the supercell required rapidly increases as the q of
interest departs from symmetry points or lines in the Bril-
louin zone. This is a very serious problem because the
size of the eigenvalue problem required in the self-
consistent calculations becomes prohibitively large. The
cost for the standard matrix diagonalization scales as the
cube of the size. Thus, one expects that cases where q has
low symmetry may not be treatable with the direct ap-
proach or only by sacrificing the accuracy of the calcula-
tion. In practice, the method has been demonstrated us-
ing the numerically simpler local pseudopotentials for the
I, X, and L points in the Brillouin zone and simple frac-
tional points in between, e.g., b, ( —, ) halfway between I
and X. However, applications where a single localized
perturbation (e.g. , a point charge) is screened require

EGo (q) for a regular grid of q through the Brillouin zone.
Finally, the macroscopic dielectric constant e0 is not
readily obtainable using the direct approach. The pertur-
bative approach applies straightforwardly. Other alterna-
tive methods for calculating e0 have been proposed. '

In the perturbative approach, Eq. (18) requires a sum
over all the virtual (conduction-band) states. Concerns
about convergence with respect to the number of
conduction-band states included and the perceived diffi-
culty with this have been a major factor inhibiting
widespread use of the perturbative approach for calculat-
ing the dielectric matrix. They are also a motivating fac-
tor in the development of direct techniques. Indeed, one
requires a large number of states in the summation. We
find typically the number to be of order twice the dimen-
sion of X0 being calculated for numerical convergence of
the elements of 70 corresponding to the largest Cx, G' in-
cluded. However, with modern computational facilities
available, this does not present an excessive burden. In
particular, this aspect of the calculation scales at worst as
roughly N, where N is the number of plane waves used
in the expansion of the wave functions. This is to be com-
pared with N scaling for the standard eigenvalue prob-
lem associated with self-consistent calculations required in
the direct methods. Moreover, the perturbative approach
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applies equally to all the points in a regular q grid with
no loss of numerical accuracy. As will be seen below, for
q of lower symmetry, the calculation is longer, but only
scales roughly linearly as the symmetry is reduced.

bative approach are checked against results from the
direct approach in Sec. III C.

A. Band calculations

D. Symmetry considerations

For completeness, and use below, we summarize the
symmetry properties of e '. In real space, the dielectric
matrix has the space-group symmetry of the crystal, as
applied to both arguments. The periodicity has already
been exploited:

e '(r, r')=e '(r+T, r'-+T), (26)

where T is a lattice translation vector. The point symme-
try also applies:

e '(r, r')=e '(Rr+rz, Rr'+. v~), (27)

where R is a rotation matrix and rz is the nonprimitive
translation vector which may be required for operations in
a nonsymmorphic group (e.g. , the group for the diamond
structure). Equation (27) defines the convention used in
this paper for the action of the symmetry operations.

As noted above, the lattice periodicity leads to the sim-
pli. fied reciprocal-space form of e '. In reciprocal space,
the point symmetry has the following consequence. De-
fine

q&
——Rq+6~, (28)

where both q and q &
are taken to be in the first Brillouin

zone so that an auxiliary reciprocal-lattice vector CxR is in
general required, depending on R. Then it is straightfor-
ward to show that Eq. (28) implies that

(29)

III. TECHNICAL DETAILS

In this section we give the details required to implement
the calculation of the dielectric matrix as described in the
preceding section. We briefly describe the parameters for
the underlying ab initio pseudopotential band-structure
calculations in Sec. IIIA. The details of the perturbative
calculations based on Eq. (18) are given in Sec. III B and
in Appendixes A and B. Finally, the results of the pertur-

Here, Cx&
——R '(G+Cxz), with the inverse of the rotation

matrix being required and the phase depending on the
nonprimitive translation associated with R. Equation (29)
has two consequences. First, given the dielectric matrix
for q, the corresponding dielectric matrix for any q& relat-
ed to q by symmetry can be easily obtained. Second, if
q~ ——q, then Eq. (29) provides a relation among different
elements of the same dielectric matrix. These constraints
can be used to reduce the number of elements of the
dielectric matrix which need actually be calculated. The
saving achieved by only computing those elements which
are independent can be substantial for q of high symme-
try, e.g., the I, X, or L points in the Brillouin zone for
the diamond structure. As noted above, this is also ex-
ploited in the direct approach.

The LDA eigenvalues and wave functions are obtained
from a self-consistent ab initio pseudopotential calcula-
tion carried out in the plane-wave basis. The correla-
tion data from the electron gas calculation of Ceperely
and Alder were used. The reference configurations for
generation of the norm-conserving pseudopotentials were
ionic and potentials for the s, p, and d wave were generat-
ed in all cases considered here. For Ge, scalar relativistic
effects were included. Transferability to configurations
nearby in energy including the atomic ground state was of
order 1 mRy for C, Si, Ge, and Cl and of order 5 mRy for
Li. The s-wave potentials were separated out as the local
part of the potential, leaving nonlocal p and d wells on
each site. It is important to note that the calculations
were done for the experimental lattice constant. For dia-
mond, Si, and Ge, the calculated lattice constant is within
1% of experiment so there is little difference. However,
for LiC1, the nonlinear core correction approach was not
used in the pseudopotential for Li, so the calculated lattice
constant is several percent smaller than the experimental
value, introducing a larger difference in this case. Cal-
culations for each material were carefully converged with
respect to the number of plane waves in the basis and the
number of special points used in the Brillouin-zone sum-
mation for the charge density. "' These data are summa-
rized in Table I. Scalar relativistic effects are included in
the Ge band structure through the pseudopotential. The
spin-orbit coupling is neglected here. We note that the
calculated macroscopic dielectric constant is particularly
sensitive to the convergence of the band structure. For Si
and LiC1, a larger energy cutoff has been employed for
that special case (17 and 30 Ry, respectively). The rest of
the dielectric matrix is less sensitive. However, because of
the large number of conduction-band states required in
the sum over bands in Eq. (18), one must still diagonalize
a large Hamiltonian to obtain these states.

B. Implementation of the perturbative approach

The difficult part of the calculation is in producing
XGG(tl) from Eq. (18). Subsequent construction of eRp~
or ezc is straightforward. The only exception is the case
of q~O where special care must be taken with the nonan-
alytic portion of the matrix. The forms for e ' given in
Eqs. (11)—(13) are well suited to careful treatment of the
q~O case. Further details for this case are given in Ap-
pendix B. In this section, we concentrate on details asso-
ciated with calculation of Po.

The symmetry properties of the dielectric matrix sum-
marized in Sec. II D apply to Po. In particular, +0 is gen-
erally Hermitian. For the materials considered explicitly
here, the inversion symmetry further leads to real sym-
metric matrices. Thus, only the lower triangle of XGG(q)
need be calculated. In addition, Eq. (29) can be exploited
to reduce the number of elements of the polarizability that
need be calculated. As an example, for the case of q=qz
in Si there are only 659 independent elements in the lower
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TABLE I. Atomic configurations and cutoff radii used to generate the ab initio pseudopotentials are
listed. The cubic lattice constant, the cutoff in plane-wave kinetic energy used in the self-consistent cal-
culations, the approximate corresponding number of plane waves, and the number of k points in the ir-
reducible part of the Brillouin are also given for each bulk case.

C
Si
Ge
Li
Cl

Configuration

2s 2p 3d
3$23p0.83d0. 2

4$4p 4d
0. 152 0.053d 0.05

3$ 23p 3.83d0. 2

r, (a.u. )

s p d

1.11,1.01,1.36
1.58, 1.93,1.93
1.54, 1.98,2.42
2.59,2.72,2.72
1.18,1.31,1.52

a
(a.u. )

6.742
10.260
10.686

9.700

Emax

(Ry)

50.0
14.0
20.0

25.0

450
320
460

k points

28
10
10

10

triangle for a 126)& 126 matrix. Of course, for q of 1ower
symmetry, the number of independent elements increases.

The most tedious aspect of calculating go is the
Brillouin-zone summation and the associated plane-wave
matrix elements which must be calculated for each k.
Matrix elements must be computed connecting to all the
large number of conduction-band states required in Eq.
(18}. In a usual band calculation, one only needs to con-
sider k in an irreducible wedge of the Brillouin zone.
That is because the charge density has the full symmetry
of the crystal. Here, the problem is somewhat more com-
plicated. From Eq. (29), it follows that +o(q) only has
the symmetry from the little group of q. Therefore the
degree of reduction achievable in the Brillouin-zone sum-
mation depends on q. Furthermore, care must be taken to
ensure that all phases are correctly accounted for in that
reduction. The detailed expressions are given in Appendix
A. The important result is that the number of separate k
that must be considered are those that fall in the wedge of
the Brillouin zone found by reducing according to the
symmetry operations in the little group of q, BZq. Most
of the computation time is devoted to obtaining the
plane-wave matrix elements required. Therefore, for a q
with any symmetry, this results in a significant saving in
computation time because the matrix elements need only
be calculated for those k in BZq. As an example, consider
q =~ in the Brillouin zone for the diamond structure.
Represent the sum over the usual irreducible wedge of the
Brillouin zone by a sum over the ten special k points. '

These correspond to 256 k points in the full Brillouin
zone. However, it turns out that there are only 20 k
points in BZq for q=q&.

Convergence of the elements of +o (q) with respect to
the Brillouin-zone summation and number of conduction
bands included must be addressed. We have found the
ten-k-point scheme to be adequate for all materials con-
sidered here. The actual number used depends on q.
The exception to this is the case of q~O. Here, the
Cx =Cx' =0 element (the "head" of the dielectric matrix)
requires many more k points to achieve convergence.
From the expressions in Appendix B, this comes from the
extra powers of the energy denominator that enter the ex-
pression for the head of the dielectric matrix. The con-
vergence properties of the head of the matrix for q~O
are illustrated in Table II. Evidently the number of k
points required varies depending essentially on the size of
the gap between the empty and occupied states. At least

TABLE II. Convergence of @00(q~O) in the RPA is illustrat-
ed for each of the crystals considered as a function of the num-
ber of k points used in the irreducible wedge of the Brillouin
zone.

10 points 28 points 60 points 110 points

Diamond
Si
Cxe

LiCl

6.06
14.57
28.30

3.40

6.06
13.71
23.14

3.40

13.61
21.88 21.56

60 k points are required for good numerical convergence
in the semiconductors with even more necessary for Cse.
For the insulators, ten k points seems to be quite ade-
quate. The case of Ge is more difficult because of the
very small gap in the LDA spectrum. The so-called
"wings" (Cx or Cx' equal to zero) of the q~O dielectric
matrix present intermediate convergence properties. We
found ten k points to be adequate. (The exception to this
was Ge where the low-Cx elements of the wings required
28 k points. } These results are consistent with previous
work i

The difficulty of convergence with respect to the num-
ber of conduction bands included is largely a problem for
the large G,G' elements of the polarizability. Thus the
number of bands required depends on the size of the
dielectric matrix of interest. We summarize the sizes con-
sidered here as well as the number of bands included in
Table III. A spherical cutoff is used to determine the size
of the dielectric matrices:

~

q+Cx
~
(G,„. With ma-

trices of dimension 130 to 230, we find that such proper-
ties as the macroscopic dielectric constant are well con-
verged with respect to the size of the matrix. We have
found these sizes to be quite adequate for screening local
perturbations in various applications. As discussed by
Baldereschi and Tosatti, ' the large Cx, Cx' components of
the dielectric matrix are dominated by matrix elements
connecting the valence bands to high conduction bands.
For this reason, we find that the number of conduction
bands included must be of order double the size of the
dielectric matrix to achieve numerical convergence of all
the elements of the matrix to within a few percent.
Representative data are shown for Si in Table IV to illus-
trate this point. For small G, Ci' it is evident that 70 con-
verges rapidly. However, for the largest momentum
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TABLE III. For each crystal considered, the reciprocal-space
cutoff used to determine the size of the dielectric matrices is
given along with the corresponding average size of the matrices
calculated and the number of bands included in the sum over
conduction-band states.

Diamond
Si
Ge
LiCl

Gmax

5.55
3.1

3.5
3.8

220
140
220
210

Number of bands

388
196
420
388

transfer, the convergence is still at the level of approxi-
mately 10%.

Finally, the case of q~O presents other special difficul-
ties. Csenerally, Xoo(q~O) depends on the direction of
q. Thus it has the symmetry associated with that direc-
tion in the Brillouin zone, not the full point symmetry
usually associated with q=O. " There are generally non-
analytic contributions to the elements of e '. This fol-
lows along the lines described by Pick, Cohen, and Mar-
tin. The macroscopic dielectric constant for cubic ma-
terials, such as those considered here, is a scalar indepen-
dent of the orientation of q. However, the wings of the
matrix depend explicitly on that orientation. In the cal-
culation for q~O, the matrix elements with G=O or
Cx'=0 must be carefully evaluated. We employ a k p-
type expansion of

~

c,k+q). Due to the nonlocal part of
the pseudopotential, extra terms enter. This is described
in more detail in Appendix B. Furthermore, in forming
the dielectric matrices, the nonanalyticities of the head
and wings must be carefully taken into account. Further
details are given in Appendix B with special attention
given to the case of ez~.

The q~O response function is required to obtain the
macroscopic dielectric constant. There are applications
where the q=O response function is of interest. This is
also well defined and has the full point symmetry of the
crystal. Charge conservation requires the wings to be zero
in this case. The comparison of these two cases is already
fully developed in previous work. ' Our interest is pri-
marily in the q~O case.

C. Comparison to direct calculations

In order to check the results of the perturbative calcula-
tion, the direct approach has been used to evaluate select-
ed columns of X and e~& at q=q~, q=q&(&izj, and

—1

q=qz. The latter two calculations require a supercell of
volume four and two times the usual cell volume, respec-
tively. The required self-consistent calculations were car-
ried out with the same ionic pseudopotentials as used in
the perturbative calculations. The cutoffs were scaled
back somewhat to accommodate the necessary matrices in
the supercell calculation. We present results here for the
case of Si with q=~. Plane waves of kinetic energy up
to 9 Ry were included. Perturbations of 2 and 4 mRy
were examined and the results found to be linear.

For simplicity, only the cosine part of the perturbation
was considered. As a result, it is easily seen that the
direct calculation yields

5 V(~+Cs)
=EGG) (q )+eoi(~-,

) o(q~) .
ext

(30)

The umklapp (002) brings qx to —qr in the Brillouin
zone. A similar result holds for P given by 6p/6V, „,.
The results for Si are compared to the perturbative calcu-
lation in Table V. The polarizability 7 and test-charge
dielectric matrix ezz are shown for the case of Cap=0.
The perturbative results include exchange-correlation ef-
fects in the LDA evaluated as indicated in Sec. II. It is
seen that the agreement is excellent. The convergence
with respect to number of conduction bands and size of
the dielectric matrix is evidently adequate.

IV. DIELECTRIC MATRICES FOR DIAMOND,
Si, Ge, AND LiCl

With a firm theoretical foundation in the density-
functional approach, we feel the present results will serve
as a useful reference for other groups developing the
dielectric matrix approach as a tool for other work. For

The dielectric matrices have been calculated on a regu-
lar grid of q points in the Brillouin zone for diamond, Si,
Ge, and LiC1, using the techniques described in Sec. III.
In this section we summarize and illustrate the results of
those calculations. Particular emphasis is placed here on
tabulating representative results for reference and illus-
trating the importance of the off-diagonal elements of the
dielectric matrix as well as exchange-correlation effects.
This is done by displaying selected elements of the dielec-
tric matrices (Sec. IV A), showing the eigenvalues of the
symmetric dielectric matrices (the dielectric band struc-
ture in Sec. IV B) and by showing the results for the mac-
roscopic dielectric function (Sec. IV C).

A. Representative results

TABLE IV. Convergence as a function of the number of conduction bands included is illustrated for
the case of Si for selected elements of P~ (q =qz ). Units for Po are electrons per cell per Ry.

68 bands 164 bands 196 bands

(1 1 1)
(1 1 1)
(222)
(222)
(004)

(002)
(1 1 1)
(222)
(222)
(004)

—0.003 66
—0.035 42
—0.007 71
—0.000 98
—0.001 95

—0.003 70
—0.035 61
—0.01199
—0.001 06
—0.005 78

—0.003 70
—0.035 61
—0.012 18
—0.001 06
—0.006 53
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TABLE V. Comparison of results from the direct and perturbative approaches for Si with q=qz
and for Cso ——0. As described in the text, response to a cosine perturbation is shown which in general in-

volves the sum of two components of the response function g for 5p and e ' for 5V„,. The units used
for

~
q+Cx

~

are a.u. ' and for the polarizability are electrons per cell per Ry.

I
q+&

I

' 6p(q+ G)/5V, „,
Pert. Dir.

5V„,(q+ G) /5 V,„,
Pert. Dir.

(000)
(11 1)
(22 2)
(004)

0.375
0.750
3.375
9.376

—0.0108
—0.0011

0.0012
—0.0003

—0.0107
—0.0011

0.0013
—0.0004

0.274
—0.037

0.009
—0.0008

0.281
—0.037

0.010
—0.0010

that reason, we tabulate some of the elements of the
dielectric matrix here.

Table VI gives the first few independent elements of
eGG(q~O) in Si. (The body of the matrix has the sym-
metry of q=O. ) The results presented are for the sym-
metric dielectric matrix defined by

~~(q) =(
I
q+&

I
~

I

q+&'
I
)~~(q) (31)

This has the advantage of eliminating the singularities as-
sociated with e and is readily compared to the empirical
pseudopotential results tabulated by Baldereschi and To-
satti. ' Results for the RPA response function as well as
the test-charge response function are shown. First com-
paring the RPA results to the results of Baldereschi and
Tosatti (also in the RPA), the Ca=Ex'=0 component is
substantially larger in the present calculation. This differ-
ence seems to be considerably less outside of the first Bril-
louin zone. Also, the off-diagonal elements are larger in
magnitude, indicating larger local fields in the present re-
sults. Inclusion of exchange-correlation effects (the test-
charge case) leads to more effective screening. Both the
diagonal and off-diagonal elements of the dielectric ma-
trix are enhanced. As will be seen more clearly in Sec.
IV B, the inclusion of exchange-correlation in fact leads to
larger local fields. The off-diagonal elements are larger
relative to the diagonal elements. This is in agreement
with observations in previous work.

The inverse matrices are considered in Table VII for
q~0 in Si. For this case, the entire matrix has the sym-
metry of the orientation of q as discussed in Appendix B.

Hence, more independent elements appear. Comparison
of the RPA to the test-charge response function yields
similar results to those noted above. The diagonal ele-
ments are substantially smaller in the test-charge case, in-
dicative of more effective screening. This is straightfor-
ward to understand with reference to Eqs. (21)—(23) in
Sec. II. The diagonal elements of Po are negative as is
K„,(Cx =0). Therefore, considering diagonal elements
only for the moment, the presence of K„reduces
which enhances X in Eq. (22). But diagonal elements of X
are negative and e ' comes about as the difference from
unity [Eq. (23)] so that an enhanced X leads to reduced di-
agonal elements of e ' corresponding to more effective
screening. Also the off-diagonal elements in general are
larger in the test-charge case so that it is apparent that
relative to the diagonal elements they are more important.

The full density-functional response function gives con-
siderably more effective screening for small momentum
transfer than does the response function based on the
empirical-pseudopotential-method (EPM) band structure.
This may appear to be obvious. The EPM band structure
reproduces the experimental gap in the spectrum, while
the gap in the LDA eigenvalues is well known to be too
small. The actual situation is subtler. First, simply open-
ing up the gap with a "scissor" type operation drastically
alters the Cx=Cx'=0 element of the dielectric matrix
yielding far too small a macroscopic dielectric constant.
This sensitivity may be traced to the third power of the
energy denominator in Eq. (B2). Second, the required ma-

TABLE VI. The present results for e(q~O) in Si calculated
in RPA and including exchange-correlation effects in the LDA
are compared to previous results based on the EPM band struc-
ture (q~O along [100]). Results are for the symmetric dielec-
tric matrix defined in the text. G' RPA

TC
(LDA)

RPA'
(EPM)

TABLE VII. The present results for e '(q~O) in Si calcu-
lated in RPA and including exchange-correlation effects in the
LDA are compared to previous results based on the EPM band
structure. Results are for the symmetric dielectric matrix de-
fined in the text.

(000)
(111)
(111)
(111)
(111)
(11 1)

(000)
(000)
(111)
(111)
(111)
(111)

RPA

13.610
—0.441

1.780
0.013
0.009

—0.186

TC
(LDA)

15.399
—0.659

2.139
0.033
0.047

—0.372

RPA'
(EPM)

11.305
—0.392

1.718
0.007
0.025

—0.156

(000)
(111)
(111)
(111)
(111)
(111)
(111)
(11 1)

(000)
(000)
(111)
(111)
(111)
(111)
(111)
(111)

0.082
0.019
0.595
0.007

—0.002
—0.002

0.008
0.049

0.077
0.022
0.522
0.011

—0.001
—0.006

0.007
0.066

0.098
0.021
0.610
0.009

—0.001
—0.008

0.001
0.044

'Reference 15. 'Reference 15.
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TABLE VIII. Results for e '(q=qz) are tabulated for the four materials studied here for the first
few independent elements of the matrix. Data are for the test-charge response function. Note that
q=qz ——(0,0, 1)(2m/a) here.

(000)
(002)
(111)
(111)
(111)
(11 1)

(000)
(000)
(000)
(111)
(11 1)
(111)

Diamond

0.3909
0.0

—0.0420
0.5422
0.0
0.0018

Si

0.2749
0.0

—0.0259
0.4138
0.0
0.0456

0.2822
0.0

—0.0305
0.4360
0.0
0.0330

LiCl

0.4886
0.1288

—0.0156
0.5727
0.0300
0.0713

trix elements in Eq. (18) play an equally important role in
determining the dielectric matrix. The wave functions
and hence matrix elements in the EPM calculation have
no particular foundation. Finally, the perturbative formu-
lation was shown to be equivalent to the direct approach
involving the difference between two ground-state calcula-
tions. Seen in this way, the matrix elements and energy
denominator together have meaning in the perturbative
approach while the energy denominator that appears has
no spectroscopic interpretation.

The results for e ' at q=~ and q=qL are summa-
rized in Tables VIII and IX. The first few independent
elements of the test-charge response function are shown
for diamond, Si, Ge, and LiC1. The results generally fol-
low the trend one would expect based on the macroscopic
dielectric constants of these materials. From least to most
effective screening one would rank these in the order LiC1,
diamond, Si and Ge. One would expect the ranking for
importance of the off-diagonal elements to be just the op-
posite with local fields being largest in LiCl. This is gen-
erally the case with one interesting exception. The diago-
nal elements of e ' for Ge are generally somewhat larger
than for Si, indicating slightly less effective screening. On
the other hand, the off-diagonal elements in Ge are fre-
quently larger, suggesting local fields at least as large in
Ge as in Si. This trend is also apparent in the results tab-
ulated by Baldereschi and Tosatti. '

B. Dielectric band structure

It can be quite difficult to elucidate the meaning of the
off-diagonal elements of the dielectric matrix in a simple,
quantitative fashion. No particular element can be sin-

gled out for meaningful discussion and the aggregate ef-
fect is only apparent in the local fields generated by a par-
ticular perturbation. This latter approach will be further
illustrated in the following paper. One solution to this
problem is provided by the concept of a dielectric band
structure introduced by Baldereschi and Tosatti. One
observes that e introduced in Eq. (31) is a Hermitian ma-
trix. It has a real eigenvalue spectrum. These eigen-
values, or at least the most important ones, then contain
the essential information in the dielectric matrix. We
adopt this approach here as a concise way of summarizing
our results for the dielectric matrix. We refer to Balderes-
chi and Tosatti for more detailed discussion and inter-
pretation of this approach.

Table X gives the largest eigenvalues of e(q~O) for Si
with q~O along (001). The RPA and test-charge
response functions are considered in comparison to the
EPM-based results of Baldereschi and Tosatti. The
eigenvalues are labeled according to the irreducible repre-
sentations of the full space group. However, the wings of
this matrix only display the symmetry of the orientation
of q. Thus the largest eigenvector does not precisely
transform according to I

&
but rather 6&. Furthermore,

the I ~5 eigenvalues are split into longitudinal (5, ) and
transverse (b,5) components. For comparison, the corre-
sponding diagonal elements of e are shown. The largest
1

&
eigenvalue corresponds to the (000,000) element of the

matrix while the other eigenvalues shown correspond to
the eight elements equivalent to the (111,111) entry. (One
should note that there is an eigenvalue of I ~2 symmetry
not shown that is slightly larger than the second I

&
value

shown in Table X. It is associated with the next star of

TABLE Ix. Results for e '(q =qL ) are tabulated for the four materials studied for the first few in-
dependent elements of the matrix. Results are for the test-charge response function. Note that

q =qL =(—,, —, , —, )2~~~ h«e.1 1 1

(000)
(1 1 1)
(1 11)
(1 11)
(1 11)
(111)
(200)
(200)

G'

(000)
(000)
(000)
(1 1 1)
(1 11)
(1 11)
(1 11)
(11 1)

Diamond

0.3894
—0.0505
—0.0523
—0.0050

0.6067
—0.0227
—0.0619
—0.0218

Si

0.2828
—0.0719
—0.0400
—0.0019

0.4822
0.0089

—0.0520
—0.0013

0.2870
—0.0620
—0.0433
—0.0029

0.5054
0.0091

—0.0504
—0.0058

LiCl

0.4763
—0.1746

0.0306
—0.0151

0.6488
0.0053
0.0666

—0.0423
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r,
(diag)

RPA

13.79
(13.60)

TC
(LDA)

15.75
(15.40)

RPA'
(EPM)

TABLE X. The dielectric band structure of e(q~O) is com-
pared for the RPA and including exchange-correlation effects in
the LDA for the case of Si. Here q~O along [001] so that the
I l5 eigenvalues are split into longitudinal L and transverse T
components. This is compared to results based on an empirical
pseudopotential band structure. For reference, the correspond-
ing diagonal element of the symmetric dielectric matrix is
shown.

Xi(X4)
(Xl)

X4(X5 )

X)(X4)
(X))

X,(X,')

Diamond

0.2668

0.4893
0.4791

0.6240

Si

0.2303

0.3113
0.3617

0.5095

0.2325

0.3501
0.3793

0.5369

LiC1

0.2908
0.3016
0.3687
0.5608
0.6217
0.6275

TABLE XI. The first few eigenvalues in the dielectric band
structure of e ' at the X and L points are compared for the
four materials studied here. The test-charge response function
is considered here. The symmetry designations in parenthesis
for the X point refer to LiC1. Note that the order of the eigen-
values at the L point is rather different for LiC1.

I p

I l5(T)
(L)

I"zs

r,
(Diag. )

'Reference 24.

2.46
2.04
1.95
1 ~ 84
1.66

(1.78)

3.51
2.59
2.39
2.12
1.93

(2.14)

1.98
1.95
1.82
1.75
1.64

Li
L2
Li
L3
L3
L2

0.2228
0.3226
0.3824
0.5493
0.5770
0.6412

0.1658
0.2944
0.3293
0.3843
0.4209
0.5225

0.1780
0.2869
0.3445
0.4208
0.4476
0.5439

0.2511
0.3052
0.5257
0.6486
0.3873
0.6381

diagonal elements. ) The order of the eigenvalues is identi-
cal to that reported in Ref. 24 as regards the symmetry.

Two points made in the preceding section are immedi-
ately apparent in Table X. First, the test-charge response
function gives more effective screening than the RPA
response function; the eigenvalues are all larger for the
test-charge case. Second, the density-functional response
functions give more effective screening than those based
on the EPM band structure. The other interesting aspe"t
of the dielectric band structure is the directly apparent
role of the off-diagonal elements of the dielectric matrix.
By analogy to usual electronic band structure, they open
"gaps" and induce shifts in the spectrum. This is ap-
parent upon comparison of the eigenvalues of e to the cor-
responding diagonal elements shown in Table X. The I

&

eigenvalue is larger than the (000,000) component of the
matrix. A perturbation corresponding to this eigenpoten-
tial is more effectively screened than the simple long-
wavelength plane wave. The eight equivalent diagonal
elements represented by the (111,111) element are split
into several components. The largest eigenvalue is some
30% larger than the diagonal element, indicating a signi-
ficant contribution from local fields. The splitting is also
substantial. Finally, the shifts are larger for the test-
charge case than for the RPA case. This is a direct indi-
cation that the off-diagonal elements are significantly
more important in the test-charge response function.

The smallest eigenvalues of the inverse test-charge
dielectric matrix are given for diamond, Si, Ge, and LiC1
at the X and L points in the Brillouin zone in Table XI.
Similar analysis applies to these data upon comparison to
the diagonal elements in Tables VIII and IX. The
enhanced screening of the eigenpotential over the simple
plane wave is clear in so far as the eigenvalues are smaller.
Here the trend across the four materials is also apparent.
The largest shift is seen for LiC1 and C with substantially
smaller fractional changes for Si and Cire. Screening for
these momentum transfers is also somewhat less effective
for Cze than for Si, although Ge exhibits larger shifts indi-

cative of larger local fields. These results give a concise
summary of local-field effects in these materials.

These points are illustrated further in Fig. 1. The
dielectric band structure for e ' is plotted alon~ two
symmetry directions for Si. The eigenvalues of e Tc were
obtained for q=qL, q=qj- and q=qz as well as points

3 —,', and —, of the way in between each. The results for
the lowest bands were connected smoothly by a Fourier fit
according to symmetry and are displayed in Fig. 1(b). For
comparison, the diagonal elements e &G(q) are plotted ac-
cording to Cx for the first few stars in Fig. 1(a). These re-
sults are evaluated for the same points indicated and have
been connected by a polynomial fit. This is the analogue
of a free-electron band structure. Note that the inverse
dielectric bands are bounded by unity and that those
bands near 1 are not shown. Comparison of the two fig-
ures illustrates how the local fields split and shift the
eigenvalues of e '. The off-diagonal elements are evi-
dently relatively strong. The potentials that are optimally
screened are rather different from a single plane wave
having several higher Cs components. Also, the eigen-
value of e ' is a considerably weaker function of q than
the corresponding diagonal element (or the macroscopic
dielectric function).

C. Macroscopic dielectric function

A macroscopic probe is sensitive to the whole dielectric
matrix, but only through its influence on the macroscopic
dielectric function defined by Eq. (15). In particular,
Eo —e~(q~'O) is the only experimental result to which the
present results can be directly compared. The macroscop-
ic dielectric constants as calculated here are compared to
experiment in Table XII. With reference to Table II, it
is seen that local fields decrease eo by about 10 to 15%.
The origin of the reduction is apparent from Eq. (B1 1).
Furthermore, inclusion of exchange-correlation effects in-
creases the dielectric constant by about 5%. Finally, in
comparison to experiment, the density-functional result in
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FIG. 1. The lowest bands in the dielectric band structure of Si are plotted along the symmetry directions A from L to I and 6
from I to X for e ' calculated including exchange-correlation effects. Part (a) corresponds to the diagonal elements only of e
Degeneracies are noted. Part (b) shows the results of diagonalizing the full inverse dielectric matrix. Symmetry designations are not-
ed.

the LDA is about 10%%uo too large for diamond, Si, and
LiC1. All these results are in close agreement with the re-
cent work of Baroni and Resta for Si. We also note that
it is consistent with the atomic calculations of Zangwell
and Soven where the calculated static polarizability of the
atom is too large in comparison to experiment. '

Our results for Ge are about 25%%uo too large. We sug-
gest that Ge is a particularly sensitive case. It has already
been shown that inclusion of scalar relativistic effects
dramatically reduces the calculated LDA gap. In the
present fully converged calculation, the direct gap in Ge
at the I point is of order 0.05 eV. The LDA conduction
and valence bands thus overlap upon inclusion of the
spin-orbit splitting. In this situation, even small errors as-
sociated with the LDA eigenvalues in comparison to the
exact density-functional eigenvalues will have a magnified
effect. This is a problem only for the head of the dielec-
tric matrix in the limit of small q. Outside a small region
around 1, the response function is relatively insensitive to
the smallest gaps. Previous calculations ' for Ge and
GaAs were not based on ab initio pseudopotentials and
further neglected scalar relativistic effects. As a result,
they should be considered less representative of the LDA

Diamond
Si
Cse

LiC1

'Reference 48.

RPA

5.62
12.2
19.2
2.90

TC
(LDA)

5.90
12.9
20.7
3.07

Expt. '

5.5
11.7
15.8
2.7

TABLE XII. The macroscopic dielectric constant as calculat-
ed in the RPA and including exchange-correlation effects in the
LDA are compared to experiment. Only the electronic part of
the dielectric constant (e ) is considered for the case of LiC1.

dielectric constant for these materials.
The role of local fields in e~ is further illustrated in

Fig. 2. Here eM(q+Cx) is plotted against
~
q+G

~
/qF

where qF is the Fermi wave vector taken for the average
density. For comparison, EGG(q) is also plotted. This
corresponds to neglecting the influence of local fields
through neglect of the necessary matrix inversion. The
test-charge response function is shown for diamond, Si,
Ge, and LiC1. The experimental value for eo is indicated
by the arrow in each case. This illustrates graphically
that the calculated dielectric constant is too large. It is
also clear that local fields are quantitatively quite impor-
tant, not only for the macroscopic dielectric constant in
the limit of q~O, but also for finite q. The effect of lo-
cal fields is discernible for q up to roughly the zone edge
(qF) and even beyond in the case of LiC1. For shorter-
wavelength perturbations, the screening is weak and the
generation of a response at other wavelengths is relatively
unimportant. The local fields are seen to be more impor-
tant for diamond and LiC1 than for Si and Ge, as one in-
tuitively expects. Another interesting feature of Fig. 2 is
the degree of scatter in the plotted points which are shown
for the sets of discrete q available (8 or 16 q in the irredu-
cible wedge of the Brillouin zone). The deviations from a
smooth curve for small wave vector reflect the degree of
directionality of the screening response. This can be of
order 15% for some of the data shown. The dependence
on orientation becomes negligible outside the first Bril-
louin zone.

The effect of exchange correlation on the macroscopic
dielectric function is shown in Fig. 3 for the four materi-
als considered here. The relative contribution of exchange
and correlation given by (ETc ERp~)/eTc is p'lot—ted as a
function of

~ q+ G
~
/qF. Exchange-correlation effects

are important for wave vectors up to of order 2qF, with
the largest contribution coming in the first Brillouin zone.
However, the peak in the relative contribution comes at an
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intermediate q. The magnitude of the exchange-
correlation effects is larger in Si and Ge than in diamond
and LiCl. This is consistent with the lower average densi-
ty in these materials and the fact that, in the LDA, K„ is
proportional to p

/ (exchange part). The scatter in the
plots is indicative of a directional dependence comparable
in magnitude to that found in eM(q+Cx) itself.

V. CONCLUDING REMARKS
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0.0

diamond

Sx

(a)

(b)

I

a — diamond (a)—
With Local Fields
No Local Fields

y 0
D o

og (I map~

We have shown that it is quite tractable to calculate ab
initio static dielectric matrices on a regular grid of q 0. 1
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FIG. 3. The exchange-correlation contribution is displayed
by plotting [cTc(q+Cs) ERpp(q+—Cx)]/ere(q+Cx) as a function
of

~
q+Cx /qF. The macroscopic dielectric function is used so

that local-field effects are included. Results are displayed for (a)
diamond, (b) Si, (c) Ge, and (d) LiC1.

10

LiCl

4(i

0
p@

~ +~~o

0
0.0 0.5 1.5 2.0

q+0 //q,

FIG. 2. The macroscopic dielectric function eM(q+G) is
plotted as a function of

~
q+Ci

~
/qF (solid symbols). For com-

parison, e~(q) is also shown (open symbols). Results are for
the TC response function in this case and are displayed for (a)
diamond, (b) Si, (c) Ge, and (d) LiC1. The experimental value of
eo is indicated by the arrow in each case.

points in the Brillouin zone for semiconductors and insu-
lators. The present approach is well founded from a
theoretical point of view using the density-functional
theory. Exchange-correlation effects are explicitly includ-
ed, with the only significant approximation being the use
of the LDA. Technically, use of the ab initio pseudopo-
tential band-structure technique allows quite accurate cal-
culations to be done. The present approach has the added
advantage over other approaches of not relying on empiri-
cal input.

The resulting dielectric matrices have been illustrated in
several ways. Local fields and exchange-correlation ef-
fects were shown to be quite important in the final dielec-
tric matrix and its screening properties. The calculated
macroscopic dielectric constant is found to be generally
about 10%%uo larger than experiment. This is indicative of
the sensitivity of eo to the approximations made, prirnari-
ly, we believe, the LDA. The role of local fields in the
screening of various perturbations will be further illustrat-
ed in the following paper.

We suggest that the comparison of the present results to
the EPM-based calculations in Sec. IVA and experiment
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APPENDIX A: REDUCTION OF BRILLOUIN-
ZONE SUMMATIONS

The sum on k in Eq. (18) includes the full Brillouin
zone. The degree to which it can be reduced depends on
the symmetry operations in the little group of q. These
are defined by

Rq=q+CrR. (A 1)

An umklapp may be required for some operations if q is
on the zone boundary. These operations can be used to

in Sec. IV C indicate that the LDA overestimates screen-
ing for small momentum transfer. Similar conclusions
follow upon comparing e~ to simple models fitted to
screening for larger q. However, as the discussion in Sec.
IV A indicates, care must be taken in making such com-
parisons. We also feel that this discrepancy is relatively
small and that for many applications, use of the LDA to
generate dielectric matrices from first principles is the
method of choice at this time.

The possibility of calculating the dielectric matrices for
a reasonable grid of q points has already proved crucial in
our recently presented theory of quasiparticle energies in
semiconductors and insulators. That application re-
quired extending the static results to finite frequency us-
ing a generalized plasmon pole model ~ Such a model may
be useful in other applications as well. We expect that
availability of well-founded static dielectric matrices will
be important in many other problems. The calculation of
phonon frequencies is one well-known application. Others
include investigating systematics of shallow impurity lev-
els in semiconductors and calculating electron-phonon in-
teractions.
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define an irreducible wedge of the Brillouin zone, BZq.
The idea is to break the sum on k into a sum on k in BZq
only and a complementary sum over a set of symmetry
operations from the little group which regenerate the star
of k in the full Brillouin zone. Thus we have, schemati-
cally,

g f(k)= g gf(R 'k) . (A2)
keBZ kCBZ R

Here, the operations are chosen such that R ' generates
the star of k for convenience below. Now, the energies in
the denominator in Eq. (18) also have the symmetry of q:

~v, R —&k
——Fv, k ~

c,R k+q c,R (k+q) —R G c k+q
(A3)

(A4)

The associated nonprimitive translation vector enters on
the right. Because we use operations satisfying Eq. (Al),
the same can be done for P z

Using the relations in Eq. (A4), the plane-wave matrix
elements required in Eq. (18) may be straightforwardly
manipulated to obtain the necessary phases that enter.
The final expression is

The wave functions P z &k are also required. In Eq. (18)
)

each wave function enters in a product with its complex
conjugate. Therefore, the overall phase of the wave func-
tion has no effect. Furthermore, all the states are
summed over, valence- and conduction-band states
separately. In particular, any degenerate complexes of
states are summed over. This is important because in gen-
erating wave functions for k related by symmetry, the ac-
tion of the symmetry operation in the space spanned by
the degenerate wave functions must in general be includ-
ed. However, since the representation matrices may be as-
sumed to be unitary, the states enter in complex conjugate
products and the states in the degenerate complex are
summed, the representation matrices drop out of the final
expression. For these reasons, we may take

4
EGG (q) = g g (E,k

—e,k+q)
c, v k&BZ

& (RG RG )'&g g & (q+RG+G~ ) ~ r ~ (q+RG'+Gz ) ~ I'
e (v, k e c,k+q)(c, k+q

~

e
~

v, k
R EGk

(A5)

Here, N is the number of points in the summation grid in
the full Brillouin zone and A, is the primitive cell
volume. The key point is that the plane-wave matrix ele-
ments need only be computed once for each k&BZq over
the Cx spanned by the size of Xo. The accumulation of the
sum over symmetry operations only requires including the
correct phase and mapping to the correct matrix element.

In Eq. (A5) wave functions for k outside the usual ir-

reducible wedge of the Brillouin zone are required. These
can be easily generated by symmetry using Eq. (A4) with
symmetry operations taken as needed from the full space
group. As discussed in the text, the calculation of the
necessary plane-wave matrix elements has dominated the
computer time required. One way to ameliorate that is to
observe that the important components of the valence-
band wave functions are the first few plane waves. The
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large number of plane waves included in the Hamiltonian
matrix is required to achieve a well-converged band struc-
ture and represent the necessary high conduction-band
states. Therefore, we have found that the valence-band
wave functions can effectively be truncated by a much
lower cutoff at the time the plane-wave matrix elements
are calculated. For example, in Si, the valence-band wave
functions were truncated with E,„of 7 Ry in compar-
ison to 14 Ry in the band calculation with essentially no
change in the resulting polarizability. This gives a factor
of 3 in the time required in the matrix element calcula-
tion. One could also exploit the fact that the high-
conduction-band states should only have a few plane-wave
components about a dominant wave vector. We have not
explored that further. Finally, it has been pointed out
that a fast Fourier-transform technique can be applied to
calculation of the plane-wave matrix elements.

APPENDIX B: SPECIAL CASE OF q~o

In this appendix, the special considerations required for
the calculation of e '(q~O) are outlined.

(u, k
l

e '~'
l
c,k+q)
(u, k

l

—2iq &,+[VNL, iq r]
l
c,k)

~ck ~uk
(B1)

to lowest order in q. The commutator of the nonlocal
part of the pseudopotential VNL with r enters explicitly.
Using this result, the polarizability can be conveniently
broken down into three types of terms corresponding to
the dependence on q. The "head" of the matrix is given,
through Eq. (18), by

In Eq. (18) for Xo, special care must be taken with the
matrix elements required when G or G' are zero. Other-
wise, q can be taken to be exactly zero. Using first-order
perturbation theory for q small, the wave functions for

l
c,k+q) can be obtained in terms of those for

l
n, k).

The nonlocal part of the ionic pseudopotential enters ex-
plicitly as it does not commute with local functions of r.
The result is

Zoo(q~O)= —g 3 ( kul 2iq V—,+[V. NL, iq r]
l
c,k)(c,k

l
2iq—V,+[VNL, iq r]

l
v, k) .p 4 1

Il
U, c, ~ (EU, ~ —&., ~)

The head of Xp goes to zero as q . The "wings" of the matrix are given by

(B2)

Xo&(q~O)= ——g (u k
l

2iq V—,+[VNL, iq r]
l
c, k. )(c k le' '

l
u k) .+

U, c, ~ (EU, k
—

&c,~)
(B3)

There is a complementary expression for Poo(q —+0). The
wings of 7p go to zero as q. Finally, the "body" of the
matrix is given straightforwardly from Eq. (18) as

Xoo (q~O)

ward to evaluate. For reference, we outline the part de-
pending on the nonlocal pseudopotential as it is more in-
volved. The simplest approach is to observe that the re-
quired matrix element between plane waves can be written
as

0 u, k

(v, kle ' 'lc, k)(c,kle' ' lv, k)
&u, k

—~c,k

(B4)

( K
l
[VNL, iq r]

l
K') =(q. .V~+q VK ) VNL(K, K'),

(B5)

where K=k+ Ci for brevity and

From Eq. (B4) it is apparent that the body of XD has the
symmetry of q =0 where as the wings and head have the
symmetry associated with the direction along which
q~0. Furthermore, the wings and head depend on that
direction, in general. For cubic symmetry, such as the
cases considered here, the head of the matrix is indepen-
dent of the orientation of q. The wings, however, do de-
pend on orientation. This simply expresses the depen-
dence of the microscopic screening of a constant electric
field on the direction of the applied field. The special
convergence properties of the head and wings of the ma-
trix have been discussed by Baldereschi and Tosatti, ' and
Baroni and Resta and are illustrated in Sec. III B.

In the present plane-wave basis, the first part of the
new matrix elements required in Eq. (B1) is straightfor-

VNL(K, K')=(K
l

VNL I
K ) . (B6)

The nonlocal part of the pseudopotential is written in the
form

(B7)

The vector R;++J locates atom j in cell i, I runs over the
angular momentum quantum number on a given site, and

PI projects out the l angular component around the site
indicated. The matrix elements indicated in Eq. (B6) are
exactly those required in the band-structure calculation.
When Eq. (B5) is worked out, the result is
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Pt'(K. K ')
(K~ [V ] ~K')= g ' — " .g K 1 — +K' 1—K' (K')' Vt (K,K')

t) V, (q, q')
+Pt(K K') av, (q, q')

+
KK. E Bq' K, K'

K'
(B8)

Here, P~ is the l Legendre polynomial and I'~' its first
derivative. The usual Fourier transform of VI is given by

Vt(q, q')=4'(2l+1) f dr r jt(qrj)t(q'r)Vt(
~

r
~
), (B9)

where jl are the spherical Bessel functions. The required
derivatives can be similarly formulated, although we have
found that a finite difference approach is adequate for a
reasonably fine grid in q, q'. The expression (B8) is sym-

metric as one would expect. Finally, we comment that
proper account of the nonlocal pseudopotential is essential

as it contributes of order 5—10% to the matrix element in

Eq. (Bl).
The final issue to be addressed is the proper account of

the nonanalyticity of e '. A complete general account is
given in Ref. 1. Here we indicate how to handle the
specific case of the test-charge response function through
Eq. (11) as explicitly written out in Eqs. (21)—(23).

Assume that q~O along some given direction. For
that case, the polarizability has the form

0 0
q &00 q+Ol

+0 gO gO (B10)
10 ll

X[1—Xii(Vii+Kii)] Lip . (B1 1)

The matrix operations are indicated in blocks according to
the scheme in Eq. (B10). In particular, Vii is the non-
singular part of the Coulomb kernel and is diagonal as
usual. When K"' is neglected, Eq. (Bl1) reverts to the
usual expression for the effect of local fields on the mac-
roscopic dielectric constant in the RPA. VAth the in-
clusion of exchange-correlation effects in the LDA, the
dielectric constant is shifted to larger values as shown in
Sec. IV.

Here the head, wings, and body of the matrix are indicat-
ed schematically. The matrix A defined by Eq. (21) must

be inverted according to the prescription given in Ref. 1.
Then when A is combined with 70 and the Coulomb in-

teraction in Eqs. (22) and (23), e ' has the correct analytic
properties. Here we focus on the resulting macroscopic
dielectric constant to show how exchange-correlation ef-

fects enter in the LDA. The result is that properly ac-
counting for the singularities at each stage yields

ep ——1 4ire Xpp——4ire Xpi( Vii +K ii )Tc 0 0 C xe
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