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We present theoretical studies of vibrational excitations on the Si(001) surface. Three different
reconstructions based on the surface dimer model are considered. The theoretical model that we use

consists of a tight-binding theory for structural energies that we have extended to include explicit
electron-electron interactions in the form of an on-site repulsion term. Perturbation theory is ap-
plied to calculate the dynamical matrix of the system under study. The phonon spectrum of the
Si(001) 2X 1 surface is presented and analyzed: we observe a number of modes that are characteris-
tic of the dimer reconstruction. The analysis of the vibrational excitations of the surface provides a
microscopic explanation for the driving forces that lead to higher-order reconstructions, namely,

p(2)&2) and c(4X2) structures, and provides an insight into the question of the multiplicity of
periodicities that are observed on this surface, even at low temperatures. Using linear-response

theory, we calculate the dipole activity of surface phonons on the 2& 1, p(2X2), and c(4)&2) sur-

faces. The absorption spectra that we obtain can be used to characterize the periodicity of the sur-

face; effects of surface symmetry and surface polarizability on the spectra are also discussed.

I. INTRODUCTION
TIO OOI

The nature of the reconstruction of the Si(001) surface
has been studied over the last fifteen years and remains a
subject of current interest. This surface exhibits a com-
bination of strong short-range reconstruction and weak
long-range ordering. Recent experiments on Si(001), '

and on the closely related Ge(001), have explored this
question, renewing the interest on these systems. The
standard model of the reconstruction of the Si(001) sur-
face involves the formation of tilted surface dimers, as is
schematically shown in Fig. 1(b), compared with the
bulk-terminated surface of Fig. 1(a). The driving force of
this reconstruction is bond formation, reducing the num-
ber of dangling bonds at the surface. By forming a tilted
dimer the symmetry between the two surface atoms is
broken and a gap is opened in the electronic surface states,
creating a semiconducting surface, as is observed experi-
mentally. ' ' The value of the tilt, or even whether the
dimers are flat or tilted, is a question that is still dis-
cussed; it is an important question since the surface
charge density and the gap of the electronic surface states
strongly depend on this structural parameter. " However,
once one assumes that the basic building block of the
reconstruction of Si(001) is the tilted surface dimer, the
possibility exists for different ordering arrangements of
these dimers leading to different periodicities. For exarg. -

ple, an ordered arrangement where all the dimers are tilt-
ed in phase gives the 2 X 1 structure, while alternating di-
mers along the (110) direction (across the dimers) leads
to a surface reconstruction with p(2X2) periodicity; if
the dimers also alternate along the (110) direction the
reconstruction has c (4X 2) periodicity. The resulting
reconstructions are shown in Figs. 1(c) and 1(d), respec-
tively. Of course, one can have many other higher-order
periodicities.

There have been experimental and theoretical studies
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FIG. 1. Various reconstructions of the Si(001) surface based
on the surface-dimer model. (a) Ideal surface, top and side view;
the surface atoms (large circles) are unpaired, each having two
dangling bonds and two backbonds. The smaller circles
represent atoms in the first subsurface layer. (b) Pairs of neigh-
boring atoms along the (110)-direction bond forming tilted sur-
face dimers. Solid circles represent the surface atoms that are
displaced out of the surface. The surface dimers form rows
along the (110) direction. In this 2X1 reconstruction the sur-
face unit cell is doubled along the (110) direction. Different
ordered arrangements of the tilted surface dimers lead to further
reconstruction of the surface: (c) alternating dimers along the
(110) direction result in a surface with p(2X2) periodicity, and
(d) alternating dimers along both surface directions form a
c(4&&2) surface. In both of the last two reconstructions there
are two surface dimers (four atoms) per surface unit cell.
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that suggest that the equilibrium reconstruction of Si(001)
below room temperature has c(4X2) symmetry, but that
the surface dimers are randomly oriented with respect to
each other at room temperatures. Furthermore, even at
low temperatures the surface exhibits some disorder:
weaker signatures of other periodicities are seen superim-
posed on the c(4X2) periodicity. Kevan studied this
order-disorder phase transition combining low-energy
electron-diffraction (LEED) and high-resolution angle-
resolved photoemission techniques for the Ge(001) sur-
face; he found that this surface undergoes a two-stage
phase transition from the disordered phase to the c (4X2)
phase. This experiment was done with Ge rather than
with Si surfaces, but one can expect close similarities. We
will return to discuss this experiment in connection with
the results we obtain. Recently Sakai, Cardillo, and Ham-
man' reported He-scattering experiments analyzed with a
newly proposed modified atomic-charge superposition
method; they conclude that the tilted-surface-dimer model
with c(4X2) periodicity is the equilibrium reconstruction
of Si(001) at low temperatures. These add to a list of oth-
er studies, that include a variety of experimental tech-
niques, which show evidence for higher-order reconstruc-
tions on the Si(001) surface. The scanning tunneling mi-
croscope (STM) might provide a direct determination of
the structure of the surface, though one must be careful in
interpreting STM corrugations since these are determined
not only by atomic positions but also by the electronic
charge density at the surface. Recent experiments by Ha-
mers, Tromp, and Demuth confirm that the reconstruc-
tion of Si(001) is indeed based on surface dimers. With
respect to the periodicity of the surface, the images they
obtained show regions with p(2X2) and c(4X2) periodi-
cities, together with regions of apparently symmetric di-
mers. However, besides the difficulty in interpreting these
images mentioned above, one must consider that these ex-
periments were done at room temperature where the
equilibrium phase is expected to be disordered.

Theoretical efforts based on total-energy calculations
have been directed toward finding the equilibrium struc-
ture of the surface. Using a tight-binding theory for
structural energies, Chadi found that the dimers tend to
tilt and that the c (4X 2) reconstruction is lower in energy
than the 2& 1 surface. He included in his calculations the
Madelung energy, which further stabilizes alternating di-
mers across or parallel to the dimer direction. Yin and
Cohen ' studied the 2 && 1 reconstruction using first-
principles density-functional theories and concluded that
the asymmetric dimers are energetically favorable. How-
ever, further density-functional calculations by Pandey'
suggested that the flat dimer corresponds to the lowest-
energy configuration, although the tilted and untilted con-
figurations have very close energies. However, a metallic
surface state, implied by symmetric surface dimers, has
not been observed experimentally. ' ' Thus one must
conclude that the surface dimers cannot be symmetric
(unless strong correlation effects are present' ). Returning
to the tight-binding approach, Ihm et al. ' made a
theoretical study of this surface where a tight-binding
Hamiltonian is mapped onto a spin Hamiltonian that
represents the tilted dimers; they found that the low-

temperature equilibrium configuration of Si(001) corre-
sponds to a p(2X2) ordered arrangement of the tilted
surface dimers, and that the surface undergoes a second-
order phase transition to a disorder phase at about room
temperature. The two reconstructions c (4X 2) and
p(2X2) were found to have essentially the same energy,
so that the low-temperature phase can be either p (2 X 2)
or c (4X2), in agreement with the results of Chadi. In the
present study we use the tight-binding approach initially
proposed by Chadi, ' with the addition to the model of an
on-site electron-electron repulsion term, similar to the one
proposed by Harrison. ' This addition requires that the
electronic structure of the system under study be calculat-
ed self-consistently. We find that even in the presence of
moderately strong Coulomb repulsion the tilted dimers
are favored. With respect to the lattice dynamics and vi-
brational excitations, there have been very few attempts to
study semiconductor surfaces. Tiersten, Ying, and
Reinecke' used a Keating model to calculate phonon en-
ergies. Though this approach is convenient for calculat-
ing vibrational correlation functions it lacks any micro-
scopic information regarding the coupling of the surface-
electronic and structural degrees of freedom. We have
previously reported some results on the phonon spectrum
of this same surface' and its hydrogenated version,
without the presence of electron-electron repulsion in the
model. Here we expand the scope of these previous inves-
tigations.

In this paper we investigate the question of what is the
low-temperature equilibrium configuration of the Si(001)
surface within the tilted-surface-dimer model, and how it
might be probed by vibrational surface excitations. We
find that the two phases c(4X2) and p(2X2) are indeed
favored over the 2&&1 reconstruction. The main theme
that emerges from our studies is the importance of the cou
pling of surface electrons to surface phonons in prouiding a
microscopic understanding of the equilibrium structure of
this surface, and of reconstructed semiconductor surfaces
in general. We find that vibrational fluctuations on the
2 & 1 surface which strongly couple to the surface electron
states comprise the mechanism leading to the order-
disorder phase transition, providing an insight into the
formation of the reconstructions with higher-order
periodicity. A number of modes associated with the pres-
ence of surface dimers appear in the phonon spectrum and
are analyzed. The theoretical approach that we use also
allows us to calculate response functions that can be used
to characterize the 2)&1 and the higher-order reconstruc-
tions: We calculate the phonon-assisted contribution to
the surface conductivity and find a substantial difference
in the infrared-absorption spectrum of the c(4X2) and
p(2X2) reconstructions with respect to the 2X1 surface,
suggesting that in addition to diffraction one can use
spectroscopy to distinguish the different proposed periodi-
cities of the Si(001) surface. We understand this differ-
ence as a result of the symmetries of the reconstructions.
An interesting result of our studies is that a large part of
the charge fluctuations driven by vibrational excitations
occurs in subsurface bonds, contrary to what we found on
the Si(111) surface, ' where essentially all these charge os-
cillations occur at the surface. This is consistent with our



35 SURFACE RECONSTRUCTION AND VIBRATIONAL. . . 5535

understanding that the 2X l~c(4X2), p(2X2) recon-
struction is a result of local chemical effects, rather than a
true Fermi-surface instability, in agreement with the
speculations of Kevan.

The structure of this paper is as follows. In the next
section we briefly describe the theoretical model, with em-
phasis on the new addition of the electron-electron repul-
sion term in the calculations of total energies and vibra-
tional excitations. In Sec. III we present our results for
the structure and phonon spectrum of the Si(001) 2X1
surface. In Sec. IV we investigate the higher-order recon-
structions c(4X2) and p(2X2). The experimental impli-
cations of the different periodicities of the reconstructions
we are studying are analyzed in Sec. V. Here we present
our calculations of response functions, such as the surface
conductivity o(co), which suggests a way of spectroscopi-
cally differentiating between the 2&(1 and the higher-
order reconstructions. In Sec. VI we study the phase dia-
gram of the surface in the mean-field approximation us-
ing an effective spin Harniltonian that represents the sur-
face structural energy, and compare our results with those
of Ihm et al. ' Finally, we summarize our results.

II. FORMALISM

The starting point in our calculations is an expression
for structural energies where the valence electrons are
treated in the tight-binding (TB) approximation. ' We
have extended this theory to study vibrational excitations
of reconstructed Si surfaces and other complex Si struc-
tures, ' ' ' and we have now incorporated explicit
electron-electron interactions into the model in the form
of a Hubbard-like term. In this section the formalism for
calculating the lattice dynamics is presented, leaving for a
later section the derivation of surface conductivities as
response functions. The total energy of the system is ob-
tained from the Hamiltonian

l a=sp
Eaaiaaia+ g g ~iajp iaaj p

i,j a, p=s, p

+ U+ Velastic

where the operator n; is defined by

ng = ~ aiaaia
a=s,p

and n; is the expectation value n; = (n; ), which gives the
total valence charge at the atom i; n; is 4 for sp3 TB orbi-

where i,j label ions and a,P denote TB orbitals. We use a
set of nearest-neighbor sp3 parameters obtained by fitting
the electronic bands of Si in the diamond structure:
s, =0.00 eV, v~=6.54 eV, (sso )= —19.4 eV, (spo ) =1.75
eV, (ppo ) = —1.08 eV, and (ppm)=3. 05 eV, and we as-
sume that these parameters scale with interatomic separa-
tion d as 1/d .

In an effort to incorporate intra-atomic electron-
electron interactions, we have added a Hubbard-like term
to the model:

HU= —,
' Ug(n; n; )(n; —n; ), —

tais. Adding this term to H makes geometries with large
charge transfers unfavorable. Charge transfers are likely
to occur at reconstructed semiconductor surfaces, so the
addition of this term represents a significant improvement
on the model, as will be shown later when the Si(001) sur-
face is discussed. Also at that point we will discuss how
we determine the value of U. Notice that if we make a
mean-field approximation to the interaction energy from
HU, the resulting effective electronic Hamiltonian con-
tains only one-particle operators. However, the one-
particle equations must now be solved self-consistently.

The total energy of the system can then be expressed as
the following sum:

Et.t =Ebs —HU+ V.l..t. (3)

where Ess denotes the sum over the eigenvalues of the
filled one-particle states obtained from the self-consistent
one-body Harniltonian:

H i
——g g (s +U)a; a;

a=s,p

+X X h-,j~:j~
i,j a, p=s, p

(4a)

and U; is the effective on-site repulsion defined by HU.

U;=U(n; —n; ) . (4b)

The second term in Eq. (3) corrects for the double count-
ing of the electron-interaction energies defined by HU in
Ezs, and V,l„„,is an empirical elastic potential that part-
ly corrects for the double counting of the TB electron-
electron interactions in Ezs and also models the ion-ion
repulsion; we approximate this term with a nearest-
neighbor interaction of the form

2
V,i„„,——g Vixb+ V2xb,

b

(5)

where the sum is over bonds 6, and xb ——db/do —1 is the
fractional deviation of the bond length db from the bulk
equilibrium value do ——2.35 A. V& ———16.31 eV is chosen
so that in the diamond structure the total energy is a
minimum at db ——do, and V2 ——49.26 eV is a free parame-
ter that we use to fit the bulk optical phonon at I .

To study the lattice dynamics of a given system, its
equilibrium geometry must first be found. To do this we
impose the connectivity of the network that defines the
structure and equilibrate it by following the forces defined
by H, which include the Hellmann-Feynman forces:

F;p
——— ~ Ve]istic

clxip Bx)p

where the angular brackets denote the average over the
ground-state density. The index i labels the atomic and p
Cartesian coordinates. This equilibration procedure has
to be done self-consistently, since the electronic states
enter into the interaction energy through the expectation
values n;. Once the equilibrium configuration has been
found, we calculate the dynamical matrix given by the
second derivatives with respect to structural degrees of
freedom. Given that the structures that we study are
periodic and have finite-range interactions, we can im-



5536 O. L. ALERHAND AND E. J. MELE 35

mediately express the dynamical matrix in terms of
derivatives with respect to spatially modulated displace-
ments with wave vector q, written x;&(q), rather than first
calculate second-order forces in real space and then
Fourier-transform to obtain the dynamical matrix. Fol-
lowing the breakup of H in terms of a "noninteracting"
Hamiltonian Hp=H ]+V], and a repulsion Hamil-
tonian H~, we write the dynamical matrix D(q) as

D(q)=D'(q)+D (q) .

The first term of this equation can be itself naturally bro-
ken into two parts:

8'(H„) a'V„„„,
D„i (q)=, +

Bx;*„(q)Bxj(q) Bx;*„(q)Bxl (q)

The contribution from V,i„„,to D is straightforward to
evaluate, and the first term in the above equation is calcu-
lated to second order in perturbation theory:

a'(H„) a'H„ f„f„—BH, i BH,|
Bx;*„(q)Bx„(q) „Bx;*„(q)Bx.(q) „, „&„E„—)~x;*„(q) ~x,„(q)

(8)

where
i

n ) are the self-consistent electronic states (n la-
bels bands and Brillouin-zone wave vector) and f„are
Fermi factors. The first term in Eq. (8) comes from the
harmonic expansion of the electron-phonon interaction;
the second term results from linear electron-phonon in-
teraction taken to second order in perturbation theory,
and represents the electronic polarization contribution to
D. The polarization term is the only part of D that has
long-range character and therefore plays a fundamental
role in correctly describing the vibrational excitations in
semiconductors. In particular, the electron polarization
can describe electronically driven structural instabilities.

The contribution to the dynamical matrix from the
repulsion U screens the density fluctuations present in the
polarization sum of Eq. (8). It should be noted though
that some of the effects of U are already in D since the
electronic states that enter Eq. (8) are calculated self-
consistently. To evaluate D (q) we first calculate the
density fluctuation at the atom J', 5ni, in linear response to
the lattice fluctuations 5xj (q):

5n'. ' (q) =2 g (n
i
ni(q) i

n')
E E

aH„n' n
Bxj (q)

The actual calculation of this term is done in parallel with
the polarization sum in Eq. (8). Because of the interaction
U this density fluctuation generates an interacting poten-
tial U(q),

U( q) = U g 5n (q),

where P is the density-density correlation function:

XI,i(q)=2+ (n inl( —q)
~

n )„„,E„—E„

X (n'
I
ni'(q)

I

n

Finally, these fluctuations are combined to give D (q):

D;z ~,(q) = U5n;z' (q)[I —UP(q)] '5' '(q) . (12)

III. Si(001) 2)&1

We have tested this model by comparing results with
experiments and with results of other calculations.
Among the Si systems we have used for comparisons are
the diamond structure, the polytope BC8, the Siz mole-
cule, and the twin boundary Xq. In general, there is
good agreement between our results and those of experi-
ments and other more accurate calculations (like density-
functional theory), where these are available. The model
reproduces the long-range forces that are responsible for
the flat TA branch in the bulk phonons of Si; we men-
tioned that all the long-range behavior in our model is in
the electron polarization. These tests were done with no
repulsion U present; these results, however, have only a
weak dependence on the value of U. This is not surpris-
ing since in fourfold-coordinated structures there are no
appreciable charge oscillations, contrary to what happens
on surfaces where there are dangling bonds. This implies
that it is difficult to determine a value of the repulsion U
using some bulk property.

where the density fluctuations are themselves screened:

5n& (q) =5nj ' (q)+2 g (n
i ni(q)

~

n ')
„„,E„—E„

5n,.(q)=[I— XU(q)] ' 11,'5„n' (q), (10)

Solving this set of equations self-consistently [random-
phase approximation (RPA)], we obtain

A. Structure

We have reported studies of the structure and vibration-
al excitations of the Si(001) 2&& 1 surface without includ-
ing the intra-atomic repulsion U. ' We now present re-
sults of similar studies when on-site electron-electron
Coulomb interactions are incorporated into the model in
the form described in the preceding section. The conse-
quences of the repulsion U on the structure, surface
charge density, and phonon spectrum are analyzed in this
section.
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In the tilted dimer configuration charge is transferred
from the lower to the higher surface atom; without the
repulsion U this polar character of the surface dimer and
the gap of the electronic surface states are substantially
overestimated. The addition of the repulsion U to the
electronic Hamiltonian corrects for this deficiency. This
repulsion parameter U appearing in Eq. (1) represents an
effectiue intra-atomic electron-electron interaction in the
sense that with a single intra-atomic term it represents
both the intra-atomic Coulomb repulsion Up, or "bare"
interaction, and the Madelung energy of interatomic in-
teractions, I| p, which stabilizes charge transfers:

U= Up —Kp .

1.5 iyy~v

t 0 '-"--

0.5-
0

0.0-
1~

—0.5-

—).0-

~ ~ ~ ~ ~ L%

Harrison' calculated the value of the bare intra-atomic
repulsion and obtained Up ——7.64 eV. If one were to use
this value, one has then to calculate the Madelung-energy
contribution to the net electrostatic potential for each
atom. This represents a significant computational com-
plication for geometries with a large number of atoms per
unit cell. Alternatively, one can use an effective U.
Tomanek and Schliiter have studied Si clusters using a
model very similar to the one we are using here with an
effective value of U=2 eV; they found that their results
did not change noticeably if U is varied by + 1 eV. We
have performed our calculations for two values for the in-
teraction U: 7.6 and 1.9 eV. The first value represents
the limit of strong repulsion and the second is chosen to
approximately reproduce experimentally measured elec-
tronic excitations, as will be explained below. By studying
our results for these two values of U, and U=O, we can
study the general consequences of adding this term to the
electronic Hamiltonian, and observe trends as U is in-
creased.

The electronic surface bands obtained in our calculation
are shown in Fig. 2. The 2)&1 surface has one occupied
surface band and one unoccupied surface band. These
are, roughly speaking, the bonding and antibonding com-
binations of the surface dangling bonds. We show in Fig.
2 four bands for each value of U because we model the
surface with a slab geometry, which has two identical sur-
faces. For the present study we use a slab 10 layers thick.
The fact that the bands show no splitting throughout
most of the surface Brillouin zone (SBZ) indicates that
surface-surface coupling is negligible for the 10-layer slab.
A large splitting occurs only where surface states are cou-
pled through bulk states. Both the average and the
minimum gap between the occupied and the unoccupied
surface states decrease as U increases. The arrow in Fig.
2 indicates the minimum gap EG for U=7.6 eV. This
gap is from I to K for the three values of U that we con-
sider. In the absence of intra-atomic repulsion, we obtain
EG ——0 7 eV. In the other extreme, for U= 7 6 eV,
EG ——0.03 eV. The first value is an overestimate and the
second one is too small (metal-like states are not experi-
mentally observed ' ' ). With U= 1.9 eV we obtain
EG ——0 27 eV; this is a reasonable number according
to infrared and high-resolution electron-energy-loss
(HREELS) studies of the Si(001) surface.

Even though there is some experimental evidence that
the surface dimers are tilted, the question remains wheth-

J' K

WAVE VECTOR

FIG. 2. Surface electron bands of the Si(001) 2X1 surface
along a symmetry direction on the SBZ (shown in the inset).
Dashed areas correspond to bulk bands projected onto the SBZ.
The solid, dashed, and dotted lines correspond to U=7.6, 1.9,
and 0 eV, respectively. Four bands are shown in each case cor-
responding to the two identical surfaces present in our slab cal-
culation. Each surface has one empty and one occupied surface
band. The arrow indicates the minimum gap EG, which is in-
direct from I to E for the three values of repulsion U. Electron
energies are in eV.

er it is an artifact of the tight-binding model, without the
repulsion U, that the symmetry of these dimers is broken.
In this work we find that even with moderately strong
repulsion the surface dimers remain tilted. The charge
transfer 5e between the atoms forming a surface dimer,

5e =(5e~ —5e2)/2, (13)

where 5e& 2 is the change in charge at atom 1,2 from the
bulk value (4 for sp3 orbitals), and 1 and 2 denote the up
and down atoms of a surface dimer, strongly depends on
the value of U: 6e/e=0. 39, 0.23, and 0.08 for U=O, 1.9,
and 7.6 eV, respectively. However, even for small charge
transfers, as occurs in the strong-repulsion limit, the value
of the tilt zp remains fairly constant, whereas 6e and Ez

Reconstruction
U

(eV)
ZQ

0

(A) (eV) 5e /e

2X1 0.0
1.9
7.6

0.59
0.58
0.53

0.71
0.27
0.03

0.39
0.23
0.08

p(2X2) 0.0
1.9

0.63
0.64

0.83
0.61

0.36
0.15

~(4X2) 0.0
1.9

0.63
0.64

0.84
0.61

0.36
0.16

TABLE I. Electronic-surface-state minimum gap EG,
surface-dimer tilt zQ, and charge transfer 6e of equilibrium sur-
faces with different values of repulsion U. EG is indirect ( I to
K) for the 2X1 surface, and direct at I for both p(2X2) and
c (4X 2).

Si(001)
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decrease as U increases. These results are summarized in
Table I. Thus the on-site repulsion reduces the charge
transfer, but is relatively ineffective in reducing the tilt.

B. Phonons

The phonon spectrum of the Si(001) 2&&1 surface, cal-
culated for U=O, is shown in Fig. 3. Solid and dashed
lines correspond to surface phonons and surface reso-
nances, respectively. We have presented a detailed
analysis of some aspects of this spectrum before, ' so here
we will only review the main features, and we wi11 concen-
trate on the effects of the repulsion U on this phonon
spectrum. Besides the usual Rayleigh wave that splits off
the bottom of the acoustical continuum, the surface sup-
ports modes that are characteristic of the dimer recon-
struction. Among these we find in the optical region a
mode that has the form of stretching of the surface di-
mers at J ' and K and appears throughout the SBZ.
Along the zone edge J' to K it is a surface phonon, and a
strong resonance elsewhere. There is also a surface mode
off the top of the optical continuum that corresponds to a
subsurface mode related to the fivefold rings of the recon-
struction. A similar fivefold ring mode is observed in our
calculated phonon spectrum of the Si(111) 2X 1 surface. '

A particularly important vibrational mode is a rocking os-
cillation of the surface dimers, also observed at the zone
edge, where one of the dimer atoms moves out of the sur-
face and the other atom moves into the surface; we call
this the rocking mode. It is found at the lower edge of the
first energy gap along the zone edge at 25.0 meV, with al-
most no dispersion; near K it is a true surface mode, but it
is a resonance elsewhere. This is an important mode for
two reasons: First, this vibrational excitation modulates
the gap E& of the electronic surface states, symmetric di-
mers produce a metallic surface, and, as the asymmetry is

60-

50-

40-
E

30-
3

20-

broken by tilting the dimers, a gap is opened in the elec-
tron surface states; second, this mode clearly is related to
the formation of ordered arrangements of the tilted sur-
face dimers with larger periodicities than 2& 1. The ener-
gies of these modes, and their symmetry with respect to
the mirror plane perpendicular to the (110) direction (the
only symmetry of the surface), are listed in Table II.

We now compare these results with those obtained with
U=1.9 and 7.6 eV. There are two competing effects in
the lattice dynamics introduced by U: On one hand, since
the ionic character of the surface dimers is reduced by the
presence of electron interactions, the value of EG, and, in
general, the average gap, decrease. Therefore the electron-
ic polarization contribution to the restoring forces is
enhanced [note the energy denominators in Eq. (8)]. On
the other hand, the charge-density fluctuations in this po-
larization sum are self-consistently screened, which tends
to reduce the polarizability. In order to isolate and study
the latter effect, we have separately calculated the phonon
spectrum of the surface with and without the screening
term in the dynamical matrix [Eq. (12)], but with the
self-consistent electronic states obtained with U present.

The phonon spectra of the surface for U=1.9 and 7.6
eV are shown in Figs. 4 and 5, respectively. The top
panels in both figures show the spectra of D, and the
lower panels show the results with screening included
("complete" calculation). First, let us concentrate on the
general consequences of the addition of repulsion U to the
model with screening included. Comparing both Figs.
4(b) and 5(b) with the U=O, phonons, we see that most of
the surface features remain essentially unchanged: the
fivefold ring mode appears at the same energy in the three
cases; the stretching mode shows similar dispersion
across the SBZ for the three values of U, only shifting
down in energy by a few meV along the zone edge J ' to
K, where it drops below the energy gap but remains a
strong surface resonance. But contrary to these small
changes, the rocking mode seen for the U=O case disap-
pears from the lower edge of the energy gap along the
zone edge for both U= 1.9 and 7.6 eV, and we observe an
increase in the number of surface-localized modes near
the bottom of the acoustical continuum: the rocking
mode undergoes a negative shift in energy and mixes with
bulk modes and the Rayleigh wave. As suggested above,
it is not surprising that the vibrational excitation that is
most affected by the presence of the repulsion U is the
rocking mode, since it modulates the structural parame-

IO-

0
J r J' K

NAVE VECTOR

TABLE II. Energies (meV) of surface phonons and reso-
nances (R) at J' of the Si(001) 2X1 surface for three values of
the repulsion U. Symmetry is with respect to the mirror plane
perpendicular to the (110) direction: + is even, —is odd.

FICz. 3. Phonon spectrum of the Si(001) 2&(1 surface calcu-
lated with no repulsion, U, present. Dispersions are shown
along the symmetry directions of the SBZ indicated in the inset
in Fig. 1. The dashed areas correspond to bulk phonons project-
ed onto the SBZ. Solid lines represent surface phonons and
dashed lines surface resonances. Phonon energies are in meV.

Vibrational
character

Rayleigh (+ )

Rocking (+ )

Stretch ( + )

Fivefold ring ( —)

0.0

13.6
25.7
53.4
61.1

U (eV)
1.9

13.6
21.8 (R)
52.3 (R)
61.4

7.6

13.5
19.6 (R)
S0.9 (R)
61,4
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FICi. 4. Phonon spectrum of the Si(001) 2&(1 surface calcu-
lated with repulsion U=1.9 eV. The top panel corresponds to
phonons obtained without the effect of screening included in the
dynamical matrix [Eq. (10)], and the lower panel corresponds to
the screened phonons.

(o)
60-

r0-

$0-

E 30.
20.

10.

0.
i10-

J r

(b)
60-

50-

E
~ 40-

30-

20-

10-

0:
J 1

WAVE VECTOR

FIG. 5. Si(001) 2&1 phonon spectrum with U=7.6 eV. The
top and lower panels correspond to unscreened and screened
phonons, respectively. Notice the unstable mode (imaginary fre-
quency) along the zone edge K to J ' in the unscreened phonons.

ters that most strongly couple to Ez and the electronic
surface-state polarizability. The energies of the relevant
modes are listed in Table II; the results obtained with
U=1.9 eV can be considered our best predictions. The
energies listed for the rocking mode for the nonzero
values of U correspond to the mixed mode with the larg-
est rocking amplitude.

The unscreened phonons [Figs. 4(a) and 5(a)] show that,
similar to the screened phonons, most of the features do
not change considerably as U is turned on. The rocking
mode is an important exception: For U=1.9 eV we see
that a fairly flat mode splits off the bottom of the acousti-
cal continuum along the zone edge J' to K with energy
around 10 meV; this mode is a combination of the Ray-
leigh wave and the rocking mode. In the strong-repulsion
limit U=7.6 eV we see an unstable mode along the zone
edge: this is the rocking mode; the Rayleigh wave has re-
turned to its original position. So the general picture is
that as the repulsion U increases, the electron polarizabili-
ty drives the rocking mode towards lower frequencies, and
it passes through the bottom of the acoustical continuum
where it mixes with the Rayleigh wave, but as U is in-

creased further it recovers its rocking character and drops
in energy until it reaches a point of critical softening, in-

ducing an electronically driven structural instability (re-
call that we are leaving out screening at the moment).
The competing effects of enhanced polarizability versus
screening introduced by the repulsion U are quite strong
when taken separately, but for most of the phonon modes
they cancel and generate only small energy shifts. For the
rocking mode, however, this small shift is enough to com-
pletely change its character as a strong resonance.

Note that the rocking mode becomes unstable only at
the zone edge J ' to K, corresponding to the wave vector
of the minimum indirect gap EG. This mode is almost
dispersionless along the zone edge, having slightly lower
energy at K (same as the indirect electronic gap). At J '

and K the rocking mode has the symmetry of the p (2X 2)
and c(4X2) reconstruction, respectively, and along the
zone edge it corresponds to a modulated structure with a
higher-order periodicity along the (110) direction, per-
pendicular to the rows of surface dimers. This indicates
that the surface, through the surface electron polarizabili-
ty, has a strong tendency to form alternating surface di-
mers along the (110) direction (along a row of dimers)
and a somewhat weaker tendency to forming alternating
dimers along the (110) direction, parallel to the dimer
rows. We can confront these results with the experimen-
tal findings of Kevan on the Ge(001) surface. He found a
two-stage phase transition from a disordered phase at
high temperature to an ordered phase at low temperatures.
The first stage, at about 250 K, corresponds to the order-
ing of alternating surface dimers along the dimer rows;
the second stage, at about 220 K, corresponds to the shar-
pening of the c(4X2) spots in the low-energy electron
diffraction (LEED) pattern; that is, alternating dimers
along the direction perpendicular to the rows of surface
dimers. Clearly, the structural instabilities implicit in the
electron polarizability that we find are consistent with
Kevan's results. Contrary to this, Ihm et aI. found, using
a spin Hamiltonian to represent the surface, that there is a
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single-stage phase transition from the disordered phase to
either the p(2X2) or c(4X2) phase.

IV. HIGHER-ORDER RECONSTRUCTIONS:
e(4X2) and p(2X2)

As we mentioned in the Introduction, there have been a
number of experimental and theoretical studies that indi-
cate that at low temperatures the periodicity of the Si(001)
surface is c(4X2) or p(2X2), rather than 2X1. Both of
these two higher-order periodicities of the surface, within
the tilted-dimer model, correspond to zone-folding recon-
structions of the 2 X 1 surface: In the p (2 X 2) reconstruc-
tion the J' point at the zone edge folds back to I, and in
the c(4X2) reconstruction the zone corner IC folds back
to the zone center. In analogy with the Ising model, as
used by Ihm et al. ' to study this surface, the 2&1,
c (4X 2), and p(2X 2) reconstructions correspond, respec-
tively, to the ferromagnetic, antiferromagnetic, and
layered-antiferromagnetic phases of the Ising spins, where
the spin direction represents a tilted surface dimer. In
agreement with their calculations and those of Chadi,
both based on a similar TB approach as the one we are us-
ing here, we find that both the c(4X2) and p(2X2)
reconstructions are lower in energy than the 2X 1 surface.
The gains in energy are 0.15 and 0.13 eV per surface di-
mer, respectively. The value of U that we used in these
calculations, and that we will use for the rest of the paper,
is U= 1.9 eV; according to our discussion in the preceding
section this is our best estimate of the effective on-site
repulsion on the Si(001) surface. Without the repulsion U
we find that the energy differences are larger by approxi-
mately a factor of 2. It is fair to say that energies ob-
tained with the TB model are not reliable enough to deter-
mine stable configurations when energy differences are
small, as is the case here: we can only say that the
c(4X2) and p(2X2) reconstructions have essentially the
same energy. This is consistent with the experimental ob-
servation of superimposed periodicities of the surface at
low temperatures, and with the nearly flat dispersion of
the unscreened unstable rocking mode along the zone edgeJ' to K discussed in the preceding section. However, the
screened phonons in the 2)&1 structure do not show any
instability. We conclude that the driving force for the
formation of the higher-order reconstructions is not a true
Fermi-surface instability, but a relaxation of the entire
surface band. A similar conclusion was reached by
Kevan in his experimental studies of Ge surfaces. As is
evident in the dispersion of the electronic surface bands
(Fig. 2) (strong dispersion from I to J ' and weak from J '

to K), the interaction between dimers along the rows is
strong, whereas across the rows it is weak. Since the elec-
tronic surface-state polarizability is then large for wave
vectors corresponding to the SBZ edge, this suggests that
the tendency to have alternating dimers along the (110)
direction is strong, but along the {110) direction the driv-
ing force to form alternating dimers is not as strong.
That is, the strong driving force on the reconstruction of
the 2& 1 surface is to have alternating tilted dimers along
the rows of dimers, and there is a weaker tendency to
form alternating dimers also between the rows. This is

consistent with the fact that the energies of the c(4X2)
and p (2 X 2) reconstructions are very similar.

An important consequence of the zone-folding recon-
struction in both c(4X2) and p(2X2) is that the elec-
tronic gap FG, which is indirect for the 2& 1 surface from
I to the zone edge J' to E, is now direct at the zone
center. The minimum and the average direct gaps are
then lower for the two higher-order periodicity surfaces
than for the 2&1 surface. This is relevant for optical
transitions, and in the next section we will discuss the im-
portant effect this has on the infrared absorption of the
surface. However, the effect of the zone-folding recon-
struction on the direct gaps is somewhat reduced by the
fact that the states at the bottom of the empty surface
state bands and the states at the top of the valence bands,
both occurring now at I, can couple through a
reciprocal-lattice vector of the superlattice, and therefore
the gap widens: instead of having a direct gap of 0.27 eV
(the indirect gap of the 2X 1 surface), we obtain EG ——0.61
eV for both c (4X2) and p (2 X2). It is still true, howev-
er, that the minimum and average gaps are reduced (by
about 30%).

We have calculated the zone-center phonons (with
U= 1.9 eV) for the c (4 X 2) and p (2 X 2) surfaces. In the
first case we find that the zone-center phonons essentially
correspond to the I and E phonons of the 2&&1 surface,
following the zone-folding reconstruction. Thus, for ex-
ample, there are two stretching modes, one where the two
dimers of the umt cell move in phase (zone center in 2X 1)
and the other when they move out of phase (zone corner
in 2X 1); energy shifts with respect to the 2X 1 surface are
minimal. Similarly, the zone-center modes of the p (2X 1)
surface correspond to the I and J ' modes of the 2 & 1

surface. In the next section, where we use the vibrational
modes that we have calculated to obtain the one-phonon
absorption spectrum of the 2X1, c(4X2), and p(2X2)
surfaces, we will focus on a number of these modes.

V. DIPOLE ACTIVITY OF SURFACE PHONONS

One of the advantages of the theoretical model that we
use, with its explicit treatment of electron-phonon cou-
pling, is that one can calculate response functions that
probe the interactions between the electronic surface
charge density and vibrational excitations. Specifically, in
this section we study the phonon-assisted contribution to
the surface conductivity, or dipole activity of the surface
phonons, of the 2X1, c(4X1), and p(2X2) reconstruc-
tions of the Si(001) surface. These studies provide an in-
sight into the nature of the electronic states and bonding
at the surface, and their relation to structural degrees of
freedom. Also, the one-phonon absorption spectra that
we obtain can be used to characterize the periodicity of
the surface. We have previously presented similar studies
on the Si(111) 2X1 surface, ' where an explanation for
the anomalously large dipole-active surface phonon seen
in electron-energy-loss-spectroscopy (EELS) experiments
was proposed. ' At the end of this section we wi11

briefly comment on some of the similarities and differ-
ences between the Si(111) and Si(001) surfaces. Next we
briefly outline the procedure we use to calculate surface
conductivities, and then present and discuss the results.
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A. Formalism

H'(t)=h;e' '+h;+e (14a)

where h; =dH/r}x;, and x; is an ionic degree of freedom
(in contrast with the notation used in Sec. II, i here

To calculate the dipole activity of the surface, we start
by calculating the dynamic response of the current density
to a perturbation generated by a lattice fluctuation. Then
the current-current correlation function gives the surface
conductivity (Kubo's formula). The starting point is then
the perturbing potential:

H 1
( t ) h ( e

Idled

+e
—I col

) (14b)

Using time-dependent perturbation theory, we obtained
the following expression for the linearized response of the
current density (after a few straightforward manipula-
tions):

denotes both atom number and Cartesian coordinate). H
is the Hamiltonian defined in Eq. (1). Only optical transi-
tions are relevant in the surface conductivity, so that the
lattice fluctuation has no spatial modulation (q=0); this
implies that Hz is real:

J(n, n'}h;(n', n) J(n', n)h;(n, n')
J(t);= (f„f„)e' —'

E —E +co E„—En —m

J(n, n')h;(n', n) J(n', n}h;(n, n')

E —E —co En —En~+ CO

(15)

where the indices n, n denote the band index and Brillouin-zone vector of the electronic states, f„are Fermi factors, and
J(n, n'), h;(n, n'} are matrix elements of the current operator J and h;:

J(n, n')=(n
~
J~ n'&, h;(n, n')=(n

~
h;

~

n'& .

Since the driving frequency co corresponds to a phonon frequency, we can expand the energy denominators in terms of
the small parameter co/(E„E„). K—eeping this expansion to linear order, one obtains

( J(t) &; = g (f„f„) —[J(n,n')h;(n', n)+ J(n', n)h;(n, n')]
n, n' n n'

+ [J(n,n')h;(n', n) —J(n', n)h;(n, n')]2i co sin(cot)

(E E, )2
(16)

Notice that the time dependence of the first term in this
expression is in phase with the perturbing potential,
whereas the second term is out of phase. As long as the
driving frequency is slower than the fastest response of
the system, as it is since co &EG, the in-phase term ought
to vanish. Indeed, the Brillouin-zone integration in Eq.
(16), with time reversal, yields this result [if higher-order
terms in the co/(E„E„) expansio—n are kept, some in-
phase terms will not vanish after the k-space integration].

Writing the oscillating current density in terms of a di-
pole moment, it defines a dynamic charge e* through the
following equation:

( J(t) &; =e; x;(t) =e,*x; ice(e'"' e' '), —

or, using Eq. (16),

(17a)

i(f, f,)—
e,*=g [J(n,n')h;(n', n) —J(n', n)h;(n, n')] .

(E E, )2

(17b)

It is convenient to express the current density response in
terms of the dynamic charges e; because these can then
be used to obtain the dynamic charges associated with
each vibrational mode, as will be explained below. But be-
fore we do this, we have to calculate e,

* as given by Eq.
(17b). The current operator J is defined in TB theory
through the following commutator:

J= ie [r,H],—

where the position operator r is itself given by

g Ria, ~a, ~
j=atOm SIte a=S,P

+ g A,o(a~~, a ~ +c.c. )
P=x,g, z

The on-site s-p —polarization constant A.o we use is deter-
mined by the condition that in tetrahedrally coordinated
Si the matrix element of the dipole operator between sp3
hybrids is approximately half the bond length; that is, we
are assuming that the interatomic distance is determined
by the spatial extent of the electronic orbitals:

(h, ~z ~h, &=d /2,
where

~
h, & is an sp3 hybrid along the z direction:

~
h. & = —,

'
(

~

s & +~3
~ p. & ) .

This gives

ko=(s
~

z
~ p, & =do/~3 .

By using this condition to fit A.o, we are incorporating
some "solid-state" information into it, rather than obtain-
ing it from a free-atom calculation. In any case, the pre-
cise value of A,o is not very important: we have varied A,o
by as much as 15%, obtaining results that vary by not
more than a couple of percent.

Note that in an equivalent formulation where static per-
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e,*. = g [(n
I
[r,H]

I
n')h;(n', n)

(Q Q, )~

—(n'
I
[r,H]

I
n )h;(n, n')] . (19)

If these dynamic charges are now projected onto the nor-
malized displacement field Q

" of the nth phonon, one
obtains the dynamic charge e„* associated with that partic-
ular mode:

e„' =e e,*- (20)

The phonon-assisted contribution to the surface conduc-
tivity then follows:

Reo. (co)= g I
(e„*)„

I
[6(co—co„)+5(~+co„)],2M'

(21)

where the sum is over q=o phonon modes, M is the ionic
mass (28 atnu), and A is the surface unit-cell area. The
index p denotes Cartesian coordinate, so that we calculate
cr (co), o~(co), and o, (co). The directions of the x, y, z
axes with respect to the surface are defined below. The
superscript in o.

z indicates that this is the transverse con-
ductivity: transverse charge fluctuation are not screened.

turbation theory is used on the dipole moment e*r in-
duced by a lattice distortion, the relation

&n
I [r,H] In' &

E„—E„
is used to evaluate the dipole-moment matrix elements.
This brings us back to our present formulation.

Having made these remarks, we write e,
* as an expres-

sion that can be conveniently evaluated:

But the phonons and self-consistent electron wave func-
tions that enter into the calculation of o (co) are still ob-
tained with the repulsion U present (=1.9 eV). To calcu-
late the longitudinal conductivity o (co), where the charge
fluctuations are screened, we include the following screen-
ing correction in Eq. (19):

[r,H]~(I—UX) '[r, H] .

However, we found that the longitudinal and transverse
surface conductivities are nearly identical; the direct gaps
that enter into the calculation are large enough so that
screening has only a small effect. In the next section we
will report our results for o (in), but we will call it simply
o(co) understanding that the same results correspond to
the transverse and longitudinal conductivities.

B. Results

The surface conductivities cr(co) of the 2X 1, p(2X2),
and c(4)&2) reconstructions of Si(001) are shown in Fig.
6. For each reconstruction we show three spectra, corre-
sponding to the three Cartesian coordinates defined as fol-
lows: x~[110] (solid line), ye[110] (dashed line), and
z~[001] (dashed-dotted line). That is, the polarization
of o„(co) is along the rows of surface dimers, o~(co) is per-
pendicular to these rows, and cr, (cu) is normal to the sur-
face. We wi11 discuss first the results for the 2& 1 surface
and then compare them with those of the higher-order
reconstructions.

The analysis of the absorption spectra of the surface
phonons of the 2& 1 surface can be summarized in two
points: (1) At low frequencies (20—3S meV) there are a
series of peaks that correspond to modes whose vibration-
al character is a mixture of rocking of the surface dimers
and shear of these dimers with respect to the subsurface.
We mentioned previously that the I phonons of this sur-
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FIT+. 6. Surface conductivity o.(co) of the three reconstructions of the Si(001) surface: (a) 2&1, (b) p(2&&2), and (c) c(4X2). The
three polarizations of o.(co) are shown in each case: w, solid line; y, dashed line; z, dashed-dotted line. These directions correspond to
the (110), (110), and (001) crystallographic axes, respectively. The discrete absorption peaks associated with each vibrational
mode were convoluted with a gaussian with a full width at half maximum (FWHM) equal to 5 meV, comparable to present-day
high-resolution spectrometers, to obtain the continuum spectra shown in this figure. The horizontal axis corresponds to phonon ener-

gies (in meV).
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face include a number of modes with some rocking vibra-
tional character (in the same energy range as above), rath-
er than a unique rocking mode (recall that we are using
electronic states and phonons corresponding to U=1.9
eV). The polarization of the dipole activity generated by
these rock-shear modes is along the y and z axes. (2)
Centered around 55 meV there is a broad peak in both
cr~(co) and o, (co); this feature is generated not by true sur-
face phonons or resonances, but by bulk optical phonons
which become dipole active due to their reflection from
the surface potential that breaks the inversion symmetry
that forbids dipole excitations in bulk Si. This is a feature
that is independent of the particular reconstruction and
should appear on any Si surface. Indeed, on all the sur-
faces we have studied, including different reconstruction
models of the Si(111) 2X 1 surface, we obtain the same
broad absorption peak at 55 meV. In summary, the en-
velope of the three polarizations of o.(co) yields a spectrum
with two broad features of approximately the same in-
tegrated intensity, one centered at about 25 meV and the
second, somewhat sharper, centered at 55 meV. Notice
that o.„(co) is essentially zero compared with cr~(co) and
o, (co). That is, for the 2X 1 surface there is very little di-
pole absorption with polarization along the rows of sur-
face dimers. This will be an important point of compar-
ison with the c(4X2) and p(2X2) surfaces.

In Figs. 6(b) and 6(c) we show o(co) for the p(2X 2) and
c(4X2) surfaces, respectively. The first thing one ob-
serves is that the spectra of these two surfaces are very
similar. Considering the fact that the alternating ordering
of the surface dimers along the (110) direction is the
strong feature of the higher-order reconstructions [com-
mon to both p(2X2) and c(4X2)], compared to the
weaker tendency to also reconstruct along the ( 110)
direction, it is not surprising that we obtain essentially the
same results for both surfaces. There are two main
features in o(co) that differentiate the higher-order period-
icity surfaces from the 2)&1 surface: the first is the
overall intensity of absorption, and the second is the ap-
pearance of structure in cr„(co) for the higher-order sur-
faces. We will analyze each one of these points next.

(1) The overall intensity of the absorption spectra of the
c (4 X 2) and p (2 X 2) surfaces is larger than that for the
2)&1 surface by approximately a factor of 2. This in-
crease in the absorption intensity is a result of the zone-
folding reconstruction that takes the 2)&1 surface to ei-
ther c(4X2) or p(2X2): the indirect gap EG of the sur-
face electron states in the 2 & 1 reconstruction becomes
direct in the c(4X2) and p(2X2) surfaces, as we dis-
cussed earlier. Therefore the minimum and average direct
gaps in the higher-order reconstructions are smaller than
in the 2&1 surface, enhancing the polarization sum con-
tribution to the dynamic charges e* [Eq. (19)]. In fact,
the energy denominators that appear in Eq. (21), used to
evaluate cr(co), appear to the fourth power. Thus the ap-
proximately 30% reduction in the direct gap accounts for
the twofold increase in the intensity of cr(co).

Aside from this effect, a number of vibrational modes
of the 2& 1 surface that occur at J ' or at K, and therefore
do not contribute to the 2)&1 surface conductivity, be-
come zone-center modes of the p(2X1) and c(4X2) sur-

faces, respectively. This leads to a series of new absorp-
tion peaks that contribute, to a lesser degree, to the overall
increase of absorption intensity. Among these the most
prominent is the stretching mode of the surface dimers,
with energy 50 meV. As it is to be expected, the dynamic
charge carried by this mode ( =0.16e per surface dimer) is
polarized along the (110) direction, parallel to the sur-
face dimers.

(2) In the case of the 2X 1 surface, the conductivity po-
larized along the rows of surface dimers was found to be
essentially zero. Contrary to this, the strongest peak in the
absorption spectra for both the p(2X2) and c(4X2) sur-
faces is in the x polarization. This peak is located at 20.3
meV for the p(2X2) surface and at 19.5 meV for the
c(4X2) surface. In both surfaces this absorption peak is
generated by a vibrational mode, which has the same
form, in both cases, along the rows of surface dimers.
The only difference is that on the c(4X2) surface the
motion of the atoms is out of phase from row to row (i.e.,
along the (110) direction), whereas in the p(2X2) sur-
face the displacement of the atoms across the rows of sur-
face dimers is in phase. In Fig. 7 we schematically show
the displacement field of this phonon along one of the
rows of surface dimers. It is interesting to note that it has
a large amplitude on the subsurface layer, where the
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FIG. 7. Layer-averaged dynamic charges eL as a function of
penetration into the bulk. eL are normalized over the number of
atoms per layer. The dynamic charges that are averaged are
those defined in Eq. (19). The three polarizations, x, y, and z,
are represented by the solid, dashed, and dashed-dotted lines,
respectively. The top panel corresponds to the 2)& 1 surface and
the lower to the c (4 && 2) surface. The results for the p (2 )& 2)
surface are nearly identical to those for the c (4&(2) surface.
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atoms have no dangling bonds; nevertheless, it carries the
largest dynamic charge ( =0.26e per surface dimer) of all
the vibrational modes supported by the surface. We can
understand this by studying the layer-averaged dynamic
charges eL defined as

el —— g (e,*) (22)

where the sum is over the atoms in the I.th layer. We
show the results in Fig. 7. The top panel in this figure
shows the results for the 2&(1 surface: the x component
of eL is much smaller than the dynamic charges along the
other two Cartesian components. Notice also that eI de-
cays rather slowly as a function of penetration into the
bulk. In the lower panel we show the equivalent results
for the c(4X2) surface [for the p(2X2) surface, the re-
sults are almost identical]. The top and lower panels of
this figure are rather different; in the case of the c(4X2)
surface the x-polarized dynamic charges are large in the
top two layers, and they are even larger in the second
layer than at the surface. The vibrational mode shown in
Fig. 8 couples very efficiently to these x-polarized dynam-
ic charges, with large vibrational amplitudes in the sub-
surface layer. Within the dimer model of the reconstruc-
tion of the Si(001) surface there are no connected net-
works of surface atoms along the (110) direction (or any
other direction); one might suspect then that the charge
oscillations generated by the mode of Fig. 8 occur in the
subsurface. Indeed, we have calculated the charge oscilla-
tions that occur only along the surface backbonds, and
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FICx. 8. The vibrational mode shown in this figure (the ar-
rows are proportional to the mode eigenvector) is responsible for
the large absorption peak in cr„(co) at Ace=30 meV that appears
in both the p(2&2) and c(4)&2) surfaces. This mode appears
in both of these surfaces, and along one row of surface dimers it
has essentially the same form in both cases. The displacement
of the atoms in neighboring rows of dimers is in phase for the
p(2&(2) surface and out of phase for the c(4)&2) surface. (a)
Top view of the surface; only one row of surface dimers is
shown. (b) Side view. The subsurface atoms labeled 1 and 2 are
equivalent in the 2)&1 surface, but not in the c(4)&2) or
p (2 &(2) surfaces.

found that most of the dynamic charge associated with
the mode shown in Fig. 8 occurs along these backbonds;
these backbonds form the connected network of atoms
running along the (110) direction that is closest to the
surface. This subsurface charge oscillation is a rather in-
teresting feature, considering that the gap states are ex-
pected not to be located at the subsurface. Of course, this,
together with the slow decay of eL, suggest that the elec-
tronic surface states are not very well localized at the sur-
face, but leak into the bulk. Slow decay of dynamic
charges is observed also for the 2X1 surface [Fig. 7(a)],
and thus we can conclude that its surface states have the
same localization character as in the c(4X2) and p(2X2)
surfaces.

Why is it that this strong x-polarized absorption peak
does not occur in the 2&1 surface? The reason is that the
surface unit cells in the c(4X2) and p(2X2) reconstruc-
tions are twice as large as in the 2)& 1 reconstruction, and
this mode is found at the zone center only for the lower-
symmetry structures. The atoms labeled 1 and 2 in Fig. 8
are not equivalent in the higher-order reconstructions, as
they are in the 2&1 surface. This situation is analogous
to a diatomic linear chain where the optical phonon at I
is dipole active, compared to the monoatomic chain that
has no optical mode.

The two comparisons in o(co) between the 2 X 1 surface
and the p(2X2) and c (4X 2) surfaces that we have dis-
cussed above can be used to determine whether the period-
icity of the surface is 2& 1 or of higher order. This possi-
ble experimental determination involves spectroscopic
studies that would complement recent structural studies
(He scattering and STM). Current surface-preparation
techniques yield surfaces with a large density of defects,
where domains of different periodicities are present. Pan-
dey' has even suggested that defects, in the form of miss-
ing surface dimers, are an intrinsic property of the Si(001)
surface. In principle, however, one might expect that it is
possible to prepare high-quality surfaces that could be
studied at low temperatures. In particular, in order to
uniquely determine the x-polarization spectrum of the
surface, one needs single-domain surfaces, or surfaces
with terraces where the orientation of the surface dimers
is the same across the steps separating these terraces. In
some sense, the increase in the absorption intensity of the
c (4 X 2) and p (2 X 2 ) surfaces with respect to the 2 X 1

surface suggests an easier experiment to carry through.
The results we have obtained for o.(co) show very rich

structure, particularly for the higher-order periodicity sur-
faces. A number of the smallest peaks and shoulders in
the spectra are associated with modes that are characteris-
tic of the dimer model of the reconstruction of the sur-
face. We mentioned before the stretch mode; there is also,
for example, a wagging mode of the surface dimers, which
is responsible for the peak in a„(co) close to 55 meV that
appears for both c(4X2) and p(2X2). However, it is
clear that the use of these spectra to differentiate between
the p(2X2) and c(4X2) reconstructions is not feasible
with the experimental resolution currently available.

Finally, we briefly compare these results with those we
obtained for the m.-bonded chain model of the Si(111)2 X 1

surface. ' Contrary to the extended nature (with respect
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to penetration into the bulk) of the electronic surface
states on the Si(001) surface, the Si(111) 2X 1 surface has
states that are very well localized at the surface. Accord-
ingly, we found that the layer-averaged dynamic charges
on Si(ill) decay extremely fast into the bulk. Also, we
found that the phonon absorption spectrum of the surface
is dominated by one single mode corresponding to a
longitudinal-optical (LO) mode along the surface chains.
Unlike the Si(001) surface, on the m.-bonded chain model
of the Si(111) 2X 1 surface there is a connected network
of surface atoms, and the large charge oscillation associat-
ed with the surface-chain LO mode occurs along this net-
work. As we pointed out, there is no such network of sur-
face atoms on the Si(001) surface.

C(axe)

yWr D

( Px1)

P(2xP)

MEAN FIELD
T 0
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VI. PHASE COEXISTENCE

—D g SijSi+], j+ ] (23)

where a spin, with its two possible orientations, represents
a tilted surface dimer where one or the other of the sur-
face atoms forming a dimer is up. The spin interactions
are defined in the inset of Fig. 9. In this figure we also
show the phase diagram of the spin Hamiltonian, in the
MF approximation, on the V-H plane; the intersection
with the D axis is for D small and positive, a necessary
condition for the c (4X2) surface to be the stable phase.
In the calculations of Ihm et al. the interaction pararne-

The possibility that at low temperature the stable phase
of the Si(001) surface involves high-order reconstructions
[e.g. , c(4X2) or p(2X2)] has been previously considered
in the theoretical work of Ihm et al. Since the model
underlying our phonon calculations is very similar to that
employed in their work, it is useful to compare our results
with these previous investigations. An important predic-
tion of the calculations of Ihm et al. is that, at finite tem-
perature, transitions between ordered phases [2 X 1,
p(2X2), or c(4X2)] occur as second-order transitions
with a disordered paramagnetic phase separating the or-
dered phases. According to the structural energies we
have calculated, both the c(4X2) and p(2X2) recon-
structions have lower energy than the 2 X 1 surface.
Nevertheless, the harmonic fluctuations (phonons) about
the 2&1 surface do not show any instabilities. That is,
both the higher-order and 2X 1 phases are simultaneously
stable. This would imply first-order transitions with
phase-coexistence regions between the ordered phases.
The discrepancy between these two results can be attribut-
ed to the fact that the renormalization-group (RG) studies
of Ihm et al. on an effective spin Hamiltonian include
fluctuations on all length scales, which our phonon calcu-
lations (carried out in the spirit of a mean-field model in
which only equilibrium structures of maximum period of
four are considered) do not include.

In order to investigate this question in a consistent way
with our phonon calculations, we have studied, in the
mean-field (MF) approximation, the same spin Hamiltoni-
an used by Ihm et al. :

VQS jS;+i] j —H QSijSi j+]

FIG. 9. Low-temperature phase diagram of the spin Hamil-
tonian defined in Eq. (23), calculated in the MF approximation.
The V-H plane shown (interaction parameters defined in the in-
set) intersects the D axis at a positive and small value. The
point P denotes the paramagnetic phase.

ters that correspond to the Si(001) surface are H=10,
V= —26, and D=4 meV. This phase diagram is valid at
low temperatures. All the transition lines are first-order
transitions; the point where they meet is a paramagnetic
point which grows into a region of finite size with increas-
ing temperature.

An important point to be made is that the transition
lines are of first order, so regions of phase coexistence can
exist around these transition lines. For example, the 2X 1

and c(4X2) phases can coexist in a narrow band in pa-
rameter space around the line V = —H. The width of the
coexistence region is determined by D. Since (a) the ener-
gies of the c(4X2) and p(2X2) phases are very close,
and (b) our phonon calculations demonstrate the mutual
stability of the 2& 1 and higher-order phases, we conclude
that the appropriate parameters in the effective spin Ham-
iltonian that represent the Si(001) surface lie very close to
the 2X1-c(4X2) phase boundary, and perhaps very close
also to the paramagnetic point P. If this is the case, small
perturbations will take the system from one phase to the
other, and even a small density of defects may well result
in a multidomain surface with domains of different
periodicities.

We should stress that the MF calculations neglect
long-range fluctuations, which are accounted for in the
RG calculations and are responsible for the appearance of
the intermediate paramagnetic phase. However, the miss-
ing dimer defects, as well as steps, that are observed on
the surface limit the size of connected domains and irn-
pose a maximum size for the fluctuations. In this sense
one might say that the MF approach is more appropriate
for studying the short-range correlations on these finite
domains. One must be careful, though, in proposing that
the coexistence regimes found in the MF phase diagram
are responsible for the superimposed periodicities ob-
served on the surface; it might very well be that it is the
defects themselves that pin the different reconstructions.
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VII. SUMMARY

We have applied a TB theory for structural energies
that includes explicit electron-electron interactions in the
form of an on-site repulsion term to study vibrational ex-
citations on the Si(001) surface. Three reconstructions of
this surface, based on the surface dirner model, were con-
sidered: 2X1, p(2X2), and c(4X2). We found that
even in the presence of strong electron repulsion tilted sur-
face dirners are favored, in agreement with most experi-
ments. We present the phonon spectrutn of the Si(001)
2X 1 surface, and found that the surface supports a nurn-
ber of modes that are characteristic of the dimer-based
reconstructions. The study of the phonon spectrum also
provides an insight into the nature of the coupling of the
surface charge density and the surface structural degrees
of freedom, and offers a microscopic picture of the driv-

ing forces towards the formation of the higher-order
reconstructions, namely p(2X2) and c(4X2). Using
linear-response theory we have calculated the phonon-
assisted contribution to the surface conductivity of the

2X1, p(2X2), and c(4X2) surfaces. These results can
be used to characterize the periodicity of the surface; in
particular, we found a vibrational mode on the p (2X2)
and c(4X2) surfaces that carries a large (relative to this
particular surface) dynamic charge (=0.26e per surface
dimer) and that does not exist on the 2X1 surface. Our
phonon calculations suggest that it is to be expected that
multiple periodicities exist on the surface, even at low
temperatures. This is consistent with experimental obser-
vations. We have complemented these observations with a
mean-field study of an effective spin Hamiltonian that
represents the surface, finding that the surface maps into
a region of the spin-system phase diagram corresponding
to a region of coexistence of the three phases 2 &( 1,
p(2X2), and c(4X2).
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