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We prove that there are precisely three distinct icosahedrally symmetric lattices in three dimen-
sions that are integral linear combinations of six vectors. By lattice, we mean a set of vectors which
is closed under addition and subtraction. These three lattices can be represented as projections of
the six-dimensional simple, face-centered, and body-centered hypercubic lattices into three dirnen-
sions. We also show that there is only one distinct three-dimensional decagonal lattice that is in-

tegrally spanned by five vectors.

I. INTRODUCTION

Quasicrystals such as the icosahedral' and decagonal
phases of aluminum alloys cannot have the real-space
symmetry of a Bravais lattice of translations, because
their diffraction patterns have noncrystallographic point-
group symmetries. One therefore cannot directly apply
the conventional classification scheme for ordinary crys-
tals, in terms of the real-space Bravais lattices and the
further subclassification into space groups.

In Fourier space (k space), however, quasicrystals and
ordinary crystals are less dissimilar. If a quasicrystal dif-
fraction pattern contains spots corresponding to two wave
vectors, one in general finds spots corresponding to the
sum and difference of those wave vectors, unless such
spots are forbidden by symmetry in a manner analogous
to the vanishing of geometric structure factors in ordinary
crystals. Quasicrystals, like ordinary crystals, can thus be
indexed by a set of wave vectors that is closed under addi-
tion (sums and differences). For an ordinary crystal this
set is just the reciprocal lattice, the set of wave vectors of
plane waves with the periodicity of the direct lattice. For
a quasicrystal this set still forms a lattice (in the sense that
it is closed under addition), but unlike an ordinary re-
ciprocal lattice a quasicrystalline reciprocal lattice has no
minimum distance between points, and the corresponding
set of plane waves has no common real-space period. Al-
though quasicrystalline wave vectors form a dense set in k
space, a quasicrystalline diffraction pattern admits a
countable indexing, unlike the diffraction pattern of an
amorphous material.

The crystallographic classification of quasicrystals
must therefore take place in reciprocal space. The first
step is to determine the distinct reciprocal lattices
(equivalent to specifying the real-space Bravais lattices
when the point group is crystallographic). For each such
reciprocal lattice, the second step is to enumerate the pos-
sible families of phase factors that can be associated with
those wave vectors (equivalent in the crystallographic case
to determining the space groups belonging to a given
real-space Bravais lattice). In this paper we address the

first half of the problem: the cataloging of the allowable
icosahedral and decagonal reciprocal lattices. A second
paper will discuss in detail the quasicrystallographic space
groups.

Although the literature contains conflicting assertions
about the number of icosahedral lattices, particular atten-
tion has been paid to three of them. These are construct-
ed by viewing icosahedral lattices as projections of six-
dimensional cubic Bravais lattices into three-dimensional
space. The three reciprocal lattices then appear as pro-
jections of the six-dimensional simple, face-centered, and
body-centered cubic lattices.

We are unaware, however, of any argument that these
are the only possibilities. One of the major aims of this
paper is to provide the justification for this conclusion.
Our proof requires not only considerations of icosahedral
geometry, but also some basic number theoretic properties
of the golden mean.

We also give the proof that there are, in fact, only
three cubic Bravais lattices in six dimensions, to make
contact with the now conventional way of looking at
icosahedral reciprocal lattices as projections. We stress,
however, that our derivation of the three icosahedral re-
ciprocal lattices is independent of the projection method,
and entirely based in ordinary three-dimensional k space.
In the case of structures with decagonal symmetry we
show that there is only one possible reciprocal lattice.

Our paper is organized as follows. In Sec. II we give a
definition of reciprocal lattice which is broad enough to
include sets of wave vectors with noncrystallographic
symmetries and which reduces to the conventional one
when the point group is crystallographic. Several further
definitions are stated, and two useful lemmas are proved,
one geometric and relevant to any reciprocal lattice, and
the other number theoretic and only relevant to reciprocal
lattices in which the golden mean plays a prominent role.
In Secs. III and IV we use the results of Sec. II to deter-
mine the icosahedral and decagonal reciprocal lattices. In
Appendix A we show that there are three cubic reciprocal
lattices in three or more dimensions (except in four di-
mensions where there are just two). This discussion is not
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required for any of the earlier analysis, but is included to
link our results to the projection method. In Appendix 8
we show that there is just one pentagonal reciprocal lat-
tice, and note that it possesses an unusual symmetry.

Readers not interested in the details of our argument
should simply read the definition of a reciprocal lattice at
the beginning of Sec. II and note that the results of our
analysis are as follows. When the point group is the 120-
element icosahedral group with inversion, Yq (532/m),
there are just three distinct reciprocal lattices. The wave
vectors in each can be expressed as linear combinations
with integral coefficients of six "vertex vectors" of equal
length along the six fivefold axes of Y~. In the primitive
icosahedral lattice all vectors with integral coefficients ap-
pear, in the body-centered icosahedral lattice all coeffi-
cients of a given vector have the same parity (i.e., either
all even or all odd), and in the face-centered icosahedral
lattice the sum of the coefficients of a given vector is
even. Other possibilities that come to mind (e.g. , all in-
tegral linear combinations of six independent "edge vec-
tors" directed along six appropriately chosen twofold
axes, or "face vectors" directed along threefold axes) are
equivalent to one of these three. When the point group is
one of the decagonal groups C&ol, or D&oq (10/m or
10/mmm) there is only one distinct reciprocal lattice,
consisting of all integral linear combinations of a vector
along the tenfold axis and four vectors of equal length
spaced 72' apart, in the plane perpendicular to the tenfold
axis.

If one thinks of the wave vectors in k space as specify-
ing k-space translations, then the icosahedral and decago-
nal reciprocal lattices are subgroups of the full three-
dimensional Euclidean group. Yet one never encounters
them in enumerations of those subgroups. The reason is
that when there is a natural notion of continuity, the usual
algebraic definition of a group is often augmented to de-
fine a topological group, by requiring the limit of any se-
quence of group operations (here k-space translations) to
be also in the group. A noncrystallographic reciprocal
lattice lacks this property; for example, an icosahedral
such a lattice of wave-vectors forms a dense set in k
space, so that its topological closure is the entire three-
dimensional translation group.

The omission of these subgroups is in some ways pecu-
liar. Had one applied the same requirement to algebraic
studies of the real line, one would have ruled out the en-
tire subject of quadratic number fields. Nature has prov-
en quite unambiguous in distinguishing between the very
vivid quasicrystalline diffraction patterns based on dense
but countable sets in k space, and the continuous diffrac-
tion patterns produced by structures with no positional
symmetry whatever.

II. DEFINITIONS AND USEFUL GENERAL RESULTS

We call a set of vectors integrally independent if a linear
combination with integral coefficients vanishes only when
all the coefficients vanish. A given set S of vectors is sai.d
to be generated by vectors v"'v' ', v' ', . . . , v'"' if every
vector in S is an integral linear combination of the v'~'.

The rank' of S is the number of integrally independent
vectors in its generating set. Note that S need not neces-

sarily contain all integral linear combinations of the gen-
erating set; if it does, S is said to be primitively generated
by the generating set.

By a lattice, we mean a set of vectors closed under addi-
tion and subtraction (an additive group). For a given
point group, we define a reciprocal lattice in d dimensions
to be a set S of wave vectors such that (1) S is lattice, (2)
S is closed under all point group operations, and (3) the
rank of S is the smallest rank greater than or equal to d
compatible with the point-group symmetry. Two recipro-
cal lattices are equivalent if they differ only by a scale
transformation and/or rotation. Condition (1) implies
that the point group of a reciprocal lattice, the "Laue
group" of the diffraction pattern, always contains the in-
version operation.

The smallest rank referred to in (3) we call the indexing
dimension of the point group. A crystallographic point
group is one whose indexing dimension is equal to the
spatial dimension d. As noted below, the indexing dimen-
sion of the icosahedral Laue group YI, is six; for the
decagonal Laue groups C1O~ and D1O~ it is five.

Stipulation (3) is included to ensure that our definition
leads only to the fourteen three-dimensional Bravais lat-
tices when the point groups are crystallographic. Without
it an arbitrary set of vectors, when symmetrized under an
arbitrary point group, would yield an admissible recipro-
cal lattice. Note that the diffraction patterns of incom-
mensurate crystals with crystallographic point groups
violate condition (3), and therefore require a less restric-
tive definition of reciprocal lattice. This is the feature of
icosahedral and decagonal quasicrystals that distinguishes
them from other incommensurate structures.

We conclude this section with two elementary lemmas,
one geometric and one algebraic, that are important for
the analysis of both icosahedral and decagonal reciprocal
lattices.

A. A geometric lemma

Suppose S is a lattice generated by the D integrally in-
dependent vectors b'",b' ', . . . , b' ', so that any vector k
in S can be expressed as

D
k= g n, b"', (2.1)

D
(i)= ~ ~ b(j)c

j=1
(2.2)

where M is a matrix of integers. The c"are integrally in-
dependent, so g, ,r;c ' vanishes for rational numbers r;

with integral n; . Let c' ",c' ', . . . , c' ' be any other D in-
tegrally independent vectors in S. We show that S can be
rescaled so that it is generated by (the unrescaled)
c"',c' ', . . . , c' '. Thus any set of D integrally indepen
dent uectors contained in a lattice of rank D can be taken
as generating uectors for a scaled uersion of the lattice. "
(As with any generating set, the indexing need not neces-
sarily be primitive. )

This result follows directly form the definition of in-
tegral independence. Since the c" are in S they have the
form
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if and only if the r; are all zero. Because the b' ' are in-
tegrally independent, this condition implies that

,r;M~ va. nishes for all j only if the r; vanish, which
is precisely the condition that the matrix M have an in-
verse. We use this inverse to expand the b" in terms of
the c'J',

D
b(l ) g [M —1] c(1)

i=~
(2.3)

The elements of M ' are integers divided by the deter-
minant of M, so the vectors B"'=det(M)b" can be ex-
pressed as integral linear combinations of the c"'. If S is
scaled up by a factor of det(M), then any vector in the
rescaled S will be an integral linear combination of the
B", and therefore an integral linear combination of the
c(I )

An alternative way to state this result (without invoking
a rescaling) is that the vectors in a lattice of rank D can
all be written as rational linear combinations of any set of
D integrally independent vectors contained in the set. We
make use of this alternative formulation in Sec. IV.

B. An algebraic lemma

(r +sr) =r —sr =r +s —$1 (2.4)

and a norm N(r +sr) by

N(r+sr)=
~

(r+sr)(r+sr)*~ =
~

r +rs —s (2.5)

(Conjugation changes the sign of v 5, just as complex con-
jugation changes the sign of V' —1.) It follows immediate-
ly that (a) the conjugate of a product is the product of the
conjugates, so that the norm of a product is the product of
the norms, and (b) the norm of r +sr vanishes if and only
if r and s are both zero (since a vanishing norm would re-
quire r/s to be irrational).

Armed with these definitions we proceed as follows:

Our second lemma depends on certain number-theoretic
properties of the golden mean ~, which we take to be
—,
'

( 1+v'5 ) =2 cos(36 ') = 1.61803. . . . We introduce the
following additional nomenclature:

A golden integer is a real number of the form n +m~,
where n and m are integers. We will denote golden in-
tegers by Greek letters; the term "integer" will be reserved
for integers in the usual sense. Because v 5 is irrational,
every golden integer is given by a unique n and m. Note
that since r '=r —1 and r =1+r, the set of golden in-

tegers is (1) closed under multiplication, and (2) invariant
under a scaling by ~; i.e., multiplying the set of golden in-
tegers by ~ yields the golden integers.

The following lemma is of central importance for deter-
mining the icosahedral lattices: Given a subset T of the
golden integers which is (a) closed under addition, and (b)
closed under multiplication by w, there is a particular gol-
den integer p such that T consists of all points of the
form (n +mr)P, where n and m run through all ordinary
integers; i.e., T is merely a scaled version of the golden in-
tegers. '

To establish this result, we first define a conjugate for
r+s~, r and s rational, by

Let P be an element of T with minimum nonzero norm.
Such a p exists since the norm of any nonzero golden in-
teger is a positive integer (though it is not unique, since
the norm of any integral power of r is unity). Since T is
closed under addition and multiplication by ~, it is closed
under multiplication by arbitrary golden integers. In par-
ticular, since T contains P, it therefore contains all golden
integral multiples of p. We now show that T contains
nothing else: If a is in T, then a/p must be a golden in-
teger.

Consider a/P, rewritten as aP*/(PP ). The numera-
tor is a golden integer while the denominator is an (ordi-
nary) integer, so a/p can be written as r +sr for r, s ra-
tional. Let y=n+m~ be a golden integral approximant
to a/p, with n and m the integers closest to r and s,
respectively. Then since

~

r —n
~

and
~

s —m
~

do not
exceed one half, we have

——y =
~

(r —n) +(r —n)(s —m) —(s —m)

and therefore

(2.6)

N(a —Py)=N(P)N ——y &N(P) . (2.7)

Since all golden integral multiples of p are in T, so is
a —py. Since by assumption p has the smallest nonzero
norm of any member of T, a —Py must vanish, and thus
a is a golden integral multiple of P.

III. ICOSAHEDRAL RECIPROCAL LATTICES

We first note that the indexing dimension of the
icosahedral group is six. Take an arbitrary vector in an
icosahedral lattice, S, and find a fivefold axis which is not
orthogonal to it. Adding up the images of this vector
under five successive fivefold rotations about the chosen
axis yields a nonzero vector in S along this five-fold direc-
tion, and icosahedral symmetry requires vectors of the
same length along the other fivefold axes. These six vec-
tors are integrally independent, and the set of all integral
linear combinations of them is an explicitly icosahedrally
symmetric lattice. Thus the indexing dimension is six.

We choose a convenient coordinate system' by inscrib-
ing the icosahedron in a cube as shown in Fig. 1, orienting
three orthogonal icosahedral twofold axes along the
Cartesian axes x, y, and z. We then show that one can
choose an overall scale factor for an icosahedral reciprocal
lattice such that (A) along the icosahedral twofold axes S
contains precisely those vectors which are even golden in-
teger multiples of the unit vectors along these axes (a gol-
den integer is said to be even if it is twice a golden in-
teger), and (B) a general vector in S can have only golden
integral Cartesian coordinates. Finally, we show that vec-
tors in S not on the Cartesian axes are further restricted
by icosahedral symmetry, leading to just three distinct re-
ciprocal lattices.

Consider a vector w in S. If R is an icosahedral two-
fold rotation, then Rw is in S, and closure under addition
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FIG. 1. An icosahedron with edges of length 2 inscribed in a
cube, with the cubic axes x, y, and z along mutually orthogonal
twofold axes of Yq. One easily verifies that the condition
BF=AF requires that the cube edge length is 2r= 1+v S. The
points P, Q, and R have coordinates —,(1+r, r, 1),
—,(1, 1+~, r), and 2 (~, 1, 1+~), respectively. The coordinates

of 3, E, and F are (~,0, 1), ( l, w, 0), and (0, 1,~), respectively.

requires that w+Rw is also in S. This is simply the vec-
tor along the twofold direction whose length is twice the
projection of w onto that axis. Thus twice the projection
of any vector in S along a twofold axis is also contained
in S.

Consider now a vector w in S along the twofold z axis.
An icosahedral fivefold rotation about F (Fig. 1) takes w
into —,

~

w
~

(1, r —1, r), which must therefore be in the
lattice, along with twice its projection onto the z axis, rw.
By icosahedral symmetry, the sets of vectors lying along
each of the fifteen twofold axes are identical in form, so
the sets of vectors along each ttvofold axis are closed under
multiplication by ~.

We first choose the scale of S so that it contains unit
vectors along the twofold axes. S then contains not only
x, y, and z, but also ~ times these three vectors. Since the
indexing dimension of the icosahedral group is six, the
geometric lemma of Sec. II tells us that the reciprocal lat-
tice S can be rescaled so it is generated (not necessarily

(I +l'r)x+(m +m'r)y+(n +n' )zr. (3.1)

with l, l', m, m', n, and n' integers.
Since S is icosahedrally symmetric, the image of a gen-

eral point (3.1) under a fivefold rotation about F (Fig. 1)
yields

primitively) by the six integrally independent vectors x, y,
z, ~x, ~, and wz.

The set L of lattice vectors lying along the twofold axis
z is then generated by z and ~z, so it contains only vec-
tors of the form az, with a a golden integer. We have
shown that L is closed under multiplication by ~; more-
over, since S is closed under addition, so is L. It then fol-
lows from the algebraic lemma of Sec. II that there exists
a golden integer p such that I. consists precisely of all
vectors of the form p) z, where y runs through all golden
integers.

Icosahedral symmetry requires the same structure along
each of the icosahedral twofold axes, with the same scale
factor p. It is convenient, as we shall see below, to choose
a final scale for S so that P=2. Given this choice, the
only vectors in S which lie along twofold axes are even
golden integral multiples of unit vectors in these 15 two-
fold directions. This is result (A).

Closure under addition implies that all sums and differ-
ences of the vectors along twofold axes must also be
present in S. The sublattice of S consisting of just these
vectors we call SF (F for "face centered, " as explained
below). This set is explicitly icosahedrally symmetric, and
is the first of the three icosahedral reciprocal lattices. We
have just shown that SF is contained as a sublattice in any
icosahedral lattice. Note that SF is invariant under multi-
plication by ~, a consequence of the invariance of the gol-
den integers themselves under such a scale change.

We now consider whether an icosahedral reciprocal lat-
tice S can contain additional vectors which are not in the
sublattice SF. For any vector w in S, recall that twice the
projection of w along the twofold axes x, y, and z must
be in S. However, we have picked the scale of S so that
vectors along the twofold axes are even golden integral
multiples of the unit vectors along the axes. Consequently
the Cartesian coordinates of w itself must be golden in-
tegers. This is result (B): Any vector in S can be written
as

—,( —1+n +l' —m')x+ —,(m n+l'+—n')y+ —,( —l —m +m'+n')z

+ , r(1 —m —m'+n—')x+ ,
' r(l +n +i'+m')—y+ , r(m +n —1'+n')z, (3—.2)

which must be in S and, by (B), must have golden integral
coordinates. Substituting l'=m +mo, m'=n +no, and
n'=1+lo into (3.2), one finds that the components of the
rotated vector differ from golden integers by —,

' (lo+mo),
—,'(mo+no), and —,'(no+le), so that lo, mo, and no must
have the same parity, i.e., l —n', m —l', and n —m' must
all have the same parity. '

Note that since S must contain SF, and S is closed

under addition, the presence (or absence) of any vector
(3.1) requires the presence (or absence) of all SF translates
of that vector. We call two vectors equivalent if they
differ by an SF lattice vector. It is then a consequence of
the parity restriction that the only allowed vectors in S
are those which are either in Sf [i.e., equivalent to (0,0,0)]
or equivalent to one of the three vectors
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(1,1, 1), (~,r, r), or (2,+,+)=(I,I, I)+(~,~, ~) .

(0,0,0}, (1+~, r, 1),

(1, 1+~, r), and (r, 1, 1+~),
(3.4)

are already in SF, reducing the 16 to 12. These 12 are
easily enumerated and found to be either the three vectors
(3.3), or equivalent to one of these three through the SF
translation vectors (3.4).

To consider exhaustively all possible icosahedral lat-
tices, we need therefore only consider all ways of append-
ing to SF its translations through some or all of the three
vectors (3.3). (Constructing the other icosahedral lattices
in this way is analogous to constructing a body-centered
cubic lattice out of interpenetrating simple cubic lat-
tices. '

)

If any two of the three vectors (3.3) are present in the
lattice, their sums produce a vector equivalent to the
third. Consequently, if any are present at all, it will be ei-
ther all three or just a single one.

When scaled by 7, (1,1,1) becomes (r, r, r); (r, r, r) be-
comes (r,v, r ); and (H, r,H) becomes (r, r, ~ ), which
is equivalent to (1,1,1), since ~ = I+2r differs from 1 by
an even golden integer. As we have noted, the set SF is
invariant under scaling by ~. Consequently, the three
ways of appending to SF its translations through a single
one of the three vectors (3.3) yield three lattices which
differ from one another only by scale factors. We call this
type of lattice S~ (for "primitive").

Sp is icosahedrally symmetric, since the twenty
icosahedral images of (1,1,1) are all equivalent to (1,1,1).
It is invariant under scaling by ~, since SF is invariant
under scaling by r, and each of the three vectors (3.3) is
equivalent to itself after multiplication by ~ . Sp is not
invariant under scaling by r, and is therefore distinct from
SF, which is.

The only remaining case consists of appending to SF its
translations through all three vectors (3.3). We call this
lattice Sz (for "body centered"). S~ is invariant under
scaling by ~, but it is distinct from SF, since SF contains
only vectors which are integral linear combinations of lat-
tice vectors along twofold axes, while Sz contains vectors
which are not of this form.

Our nomenclature for these three structures is based on
viewing them as projections into three dimensions of the

(3.3)

To see this, note that any vector of the form (3.1) is
equivalent to one of the 64 vectors of this form with l, l',
m, m', n, and n' equal to 0 or 1, since SF contains all
even golden integral multiples of x, y, and z. For given l
m, and n the parity restriction allows only two choices for
l', m', and n', reducing the 64 vectors to 16. Of these 16,
four of them (the origin and the SF vectors along the two-
fold axes, P, g, and R in Fig. 1),

simple (primitive), face-centered, and body-centered six-
dimension'al cubic Bravais lattices (see Appendix A). To
make this identification, note that the projected lattices
are given as linear combinations of six vectors V" of
equal length along the six fivefold axes with indexing that
is primitive (arbitrary six integers), face centered (six in-
tegers with an even sum), and body centered (six integers
of the same parity). The resulting structures are indepen-
dent of the sign given these six vectors, but for compar-
ison with the structures we have just found, it is con-
venient to pick them symmetrically arranged about the
(111)direction (Fig. 1):

V' ) =(7., 0, 1), V("=(7., 0, —1),
V")=(1,~,0), V'"=( —I,r, O),

V"'=(O, l, r), V'"=(O, —I,~) .

Since

(2~,0,0)=V' '+V"', (0,0,2)=V' ' —V'",
(0,2~,0)=V' '+ V' ', (2,0,0}=V' ' —V' ',
(0,0, 27.) =V' '+ V' ), (0,2,0) =V( ' —V' ',

(3.5)

(3.6)

the vectors with even golden integral Cartesian coordi-
nates are just the points of the form

5

i =0
V(')

l (3.7)

with no+n&, n2+n3, and n4+n5 all even. To get S~ we
add to this set of vectors its translations through the three
additional nonzero vectors in (3.4),

(1+i, ~, 1)=V")+V"',
(1, 1+v, ~) =V" +V"',
(i, 1, 1+~)=V")+V'" .

(3.8)

This reduces the constraints on the n; to the single con-
straint that the sum of all six must be even. Thus SF is
generated by the vectors (3.5) with face-centered indexing.

We can obtain Sp by adjoining to SF its translation by
the vector

(1,1, 1)+(r,r, r) =V("+V("+V"' . (3.9)

This introduces all the n; whose sum is odd and shows
that Sp is generated by the vectors (3.5) with primitive in-
dexing.

We can get S~ from Sp by adjoining to Sp its transla-
tion through the vector

5

(r, ~,~)=-,' g v'", (3.10)
i=0

which introduces half integral as well as integral coordi-
nates. Thus Sz, when scaled by a factor 2, is generated by
the vectors (3.5) with body-centered indexing.

The three lattices can be primitively generated by the
following vectors:

S V' ' V'" V' ' V' ' V'"' and V' ''
V(o) V( ) V( ) V( ) V( ) and (V o +V( )+V( )+V( )+V( )+V )) .

SF. (V' '+V'"), (V' '+V' '), (V' )+V' '), (V' '+V' '), and (V' ' —V' ') .

(3.1 1)
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IV. DECAGONAL RECIPROCAL LATTICES

T-phase structures have diffraction patterns with one
of the two decagonal Laue groups C&os or D, of, ( 10/m or
10/mmm). The diffraction patterns also indicate real-
space periodicity along the tenfold axis.

We first reduce the classification problem to that of
classifying the two-dimensiona1 reciprocal lattices with
the decagonal symmetry groups C~o or D&o (10 or
10/mm). Because the T phases are periodic along z,
there are vectors in any three-dimensional decagonal re-
ciprocal lattice with minimum nonzero z component. In
terms of our definition of reciprocal lattices, if there were
no minimum nonzero z component, then either the struc-
ture would be two-dimensional (all z components zero) or
it would have to be quasiperiodic in the z direction. Ei-
ther would violate provision (3) of our definition of a re-
ciprocal lattice and, more importantly, would be incon-
sistent with observed T-phase diffraction patterns. We set
the scale of the z axis so that the shortest nonzero z com-
ponent of any vector in the lattice is unity.

Let w be any vector in the reciprocal lattice with unit z
component, let M be a mirroring in the x-y plane, and let
R be a 72' rotation about the z axis. The lattice must
contain w —Mw which is just 2z, it must contain
(1+R +R +R +R )w which is just 5z, and therefore it
must contain Sz —2z —2z which is z itself. The three-
dimensional structure must therefore be a simple stacking
of identical two-dimensional structures directly above
each other.

We now show that there is just one planar reciprocal
lattice S with decagonal C&o symmetry. Since the two-
dimensional decagonal group D~o contains C&o, this is the
unique planar decagonal lattice.

Let b' ' be any vector in a planar decagonal lattice and
let 1'"' be its rotations through 2~n/5 about the tenfold
axis (Fig. 2). Any four of these are integrally indepen-
dent, and the set of all integral linear combinations of
them is explicitly decagonally symmetric. Thus the in-
dexing dimension of the two-dimensional decagonal group
C&0 is four and the indexing dimension of the three-
dimensional decagonal groups is five.

4
w= g w, a") . (4.1)

Because the reciproca1 lattice S contains a"', . . . , a' ',
it contains all their integral linear combinations. We now
show that S contains only these integral linear combina-
tions: If w is any vector in S, we can use closure under
addition and the presence of all integral linear combina-
tions of the a" to find another lattice vector

4
u= g u, a"', (4.2)

where the u; differ from the corresponding m; by integers,
and with each of the

~
u;

~

&1. For each nonintegral tc;
there will be two possible choices for each u; in the inter-
val —1 & u; & 1. We choose those u; that yield the small-
est possible value for the quantity

D =max(O, u), . . . , u4) —min(O, u, , . . . , ug), (4.3)

so that the u; and zero are contained in the smallest possi-
ble interval. Note hat if a, b, c, and d are the intervals
between these five points when the u; are arranged in as-
cending order (Fig. 3), then this choice insures that

By the geometric lemma of Sec. II we can rescale any
planar decagonal reciprocal lattice S so that any vector w
in S is an integral linear combination of these four vectors
1"', . . . , b' '. Choosing the overall scale so that the b'"'
are unit vectors, we then find that w. w is a golden in-
teger, since b'") bI" +"=—,(r—1) and b').bI" + '= ——,'r.
We call X(w w) the golden norm of the vector w, using
the norm (2.5) defined in Sec. II." Note that the golden
norm of w vanishes only if w w (and hence w itself) van-
ishes.

Because every nonzero vector in S has a positive integer
for its golden norm, there must be nonzero vectors in S of
minimal golden norm. Choose one, call it a' ', and let a'"
be its images under rotations by 2~n /5. Because
a'", . . . , a' ' are integrally independent, it follows from
the geometric lemma of Sec. II (alternative formulation)
that any vector w in S can be written (without a rescaling)
as a rational linear combination of the a":

0(a, b, c,d(1 —(a+b+c+d) . (4.4)

(If this inequality were not satisfied, we could make a dif-
ferent choice of the u; to replace one of the intervals
a, b, c,d with the interval [I—(a +b +c +d)], thereby di-
minishing D. )

We now show that with this choice for the u;, the vec-
tor u has a golden norm less than the golden norm of a' '.

0

b c d

0

FIG. 2. Five pentagonal vectors in two dimensions.

FIG. 3. The rational numbers uo (=0), u„. . . , u4 and the
distances a, b, c, and d. For any assignment of the five u; to
the five points, the sums r and t [Eqs. (4.6) and (4.7)] are bound-
ed by D,„[Eq.(4.10)].
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Since a' ' has the smallest nonzero golden norm any vec-
tor in S can have, u will then have to be zero, requiring w
to be an integra/ linear combination of the a".

To evaluate the golden norm of u, note that D,„=x +2xy+2y —(ad +bc) . (4.1 1)

b, c, and d satisfying (4.4). Setting x =a +d and

y =b +c, we write (4.10) as

u u=(r+sr)a( 'a' ',(O) (0)

with

r =
2 [ u ) +( u( —u 2 ) + ( u 2 u 3 )

2 2

+(u3 —u4) +u4]

and

(4.5)

(4.6)

Since ad+bc is non-negative we get an upper bound to
D „by discarding this term. With the aid of the in-

equality (4.4), however, we easily show that x +2xy+2y
is less than unity:

From (4.4) we see that a, b, c, and d are bounded
above by 1 —x —y; hence x and y are bounded above by
2 —2x —2y. Consequently x and y are subject to the con-
straints

s=t —r,
t = —,[u2+(u2 —u4) +(u4 —u))2 2 2

+(u( u3)'+u3]

(4.7)

Since the norm of a product is the product of the norms,

0 & x & —,(1—y) and 0 &y & —', (1—x) . (4.12)

For given x the quantity x +2xy+2y is an increasing
function of y for positive y, and is therefore bounded
above by its value at the maximum y allowed by (4.12).
This gives

N(u. u) =N(r +sr)N(a' '.a' '), (4.8) D,„&—,(5x —4x+8) . (4.13)

and since a' ' has minimal golden vector norm, to show
that u must vanish it is enough to show that N(r
+ sr) & 1. We first separately bound r and t by unity, and
then show that this yields the required bound on
N(r +sr).

Define uo to be zero, and define D(;~) to be square of
the distance between points u; and u~, for 0 &i,j & 4.
Equations (4.6) and (4.7) assert that

1r = —,[D(01) +D(12) +D(23) +D(34) +D(40) ]
1

2 [D(02) +D(24) +D(41) +D(13) +D(30) ] (4.9)

+(a +b +c +d)'] (4.10)

(see Fig. 3). One establishes that this D,„exceeds any of
the others by explicitly enumerating the other 11 circuits
and noting that in each case the resulting sum is trivially
less than D „,as a consequence of the non-negativity of
a, b, c, and d. Since r and t correspond to particular
round trips, we have established that, for a given set of
u s (i.e., a given set of intervals a, b, c, and d), r and t
are both bounded by D

We next show that D,„ is bounded by unity for any a,

Thus r is computed by making a round trip visit to each
of the five points uo, . . . , uz in the order 0,1,2,3,4,0 and
adding up half the squares of the lengths of each step; the
visit yielding t is in the order 0,2,4, 1,3,0. We show that r
and t are both less than unity by showing that half the
sum of the squares of the steps is less than unity for any
such round trip visit.

Any round trip can be taken to start on the extreme
left. There are then —,4t=12 distinct sums, since travers-
ing the same circuit in opposite senses yields the same
sum. It is easy to show that the circuit giving the max-
imum sum of D's is the one that starts at the left, goes
three steps to the right, back one, back another one, three
more to the right, and four to the left. The sum of D's
for this circuit is

D,„=—,
' [(a +b +c)'+c'+b'+(b +c +d)'

But (4.12) confines x to the interval 0&x & —, , within
which the polynomial (4.13) is bounded by —,. Hence

0&r t&D „«—, 1. (4.14)
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APPENDIX A. CUBIC LATTICES
IN d DIMENSIONS

In three dimensions there are just three cubic Bravais
lattices: simple cubic (all integral Cartesian coordinates),
face-centered cubic (all integral coordinates whose sum is
even), and body-centered cubic (all integral coordinates of
the same parity). In five or more dimensions there are
also three cubic Bravais lattices, specified by precisely the
same restrictions on the coordinates. In two dimensions
there is only one, and in four dimensions only two. In
view of the close connection between icosahedral recipro-
cal lattices and cubic Bravais lattices in six dimensions it

Note, finally, that in terms of r and t the norm
N(r +sr) can be written as

~

r +rs —s
~

=
~

3rt —r
—t

~

. Since 0& r, t & 1, this is easily seen to be less than
unity.

We have therefore established that the vector u must be
zero. Since any lattice vector w differs from u by an in-
tegral linear combinations of the a"s, we have shown
that any planar decagonal reciprocal lattice can be written
as the set of all integral linear combinations of

(1) (4) 16
) ~ ~ ~ p ~
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seems worth deriving this here.
The argument is similar to, but considerably simpler

than that we have given in the icosahedral case. Cubic
symmetry requires that if (x), . . . , xd) is in T, then so
are the vectors with any permutation of these coordinates,
as well as the vectors (+x), . . . , +xd). Consequently if
x; is any coordinate of any vector in S, then there are vec-
tors along the axes with coordinates 2x;. If we pick the
scale so that the shortest nonzero vectors along the axes
have length 2, then the general vector must have integral
coordinates, and we are left with the question of how to
decorate the simple cubic unit cell 0&x; &2 with vectors
whose components are all 0 or 1.

Permutation symmetry requires that if any vector with
a given number of 1's is in the set then so are all the oth-
ers of that type. We first note that the minimum number
of 1's any nonzero vector in the decoration can have is ei-
ther 2 or d (a single 1 is not allowed, since the shortest
vector along any axis has length 2). If the minimum
number were greater than 2 and less than d then we could
reach a contradiction: The decoration would contain a
vector with the minimum number of 1's whose first four
components were ( 1, 1, 1,0, . . . ). Permutation symmetry
would then require vectors with first four components
(0, 1, 1, 1, . . . ) and (1,0, 1, 1, . . . ) (the remaining com-
ponents, if any, being the same for all three). The sum of
these three vectors modulo 2, however, must also be in the
decoration. But, this sum is just (0,0, 1,0, . . . ), again with
the same unspecified components, which would have two
fewer 1's than the minimum number.

The d-dimensional simple cubic lattice results if the
decoration is the trivial (0,0, . . . , 0). If the minimum
number of 1's is d, then the decoration consists entirely of
(0,0, . . . , 0) and (1,1, . . . , 1), and we have the d-
dimensional body-centered cubic lattice. If the minimum
number of 1's is two, the decoration must contain all vec-
tors with even numbers of 1's, since these can all be con-
structed from sums of (1,1,0, . . . , 0) with its permuta-
tions. No vectors with an odd number of 1's can be
present, since we would then be able to get down to a sin-
gle 1 by linear combinations modulo 2. Consequently, the
decoration is unique, the lattice consists of all vectors the
sum of whose coordinates is even, and we have the d-
dimensional face-centered cubic lattice.

In five or more dimensions it is easy to show that these
three cases give distinct lattices by making a table of the
numbers of nearest neighbors, next-nearest neighbors, etc. ,
of the origin, and noting that the tables are distinct. This
argument fails to distinguish the four-dimensional lattices
with face-centered and body-centered indexing, and they
are, in fact, easily shown to be the same:

The following four vectors,

e'"—:(1,1,0,0), e' ':—(1,—1,0,0),
e' '—= (0,0, 1, 1), e' '—= (0,0, 1, —1),

(A 1)

primitively generate a simple cubic lattice, since
e "e' ' =25;~. That lattice consists of all vectors
(I,m, l', m') with 1 +m and 1'+m' both even. A body-
centered cubic lattice is formed by appending to this
structure its translation through

-'("'"+""'+-"'+-'4')=(1 o 1 0)

The translated set contains all vectors with I+m and
I'+ m' both odd, and therefore the fu11 body-centered cu-
bic structure consists of all vectors with l +m +l'+ m '

even. However, this is just a face-centered cubic lattice.
Finally, for completeness, we note a simple way to see

the connection between the three six-dimensional cubic
Bravais lattices and the three icosahedral lattices. Let
v ( ' be a unit vector along an icosahedral fivefold axis (F
in Fig. 1), and let v (", . . . , v' ' be the five unit vectors
along the other fivefold axes (A, B, C, D, and E in Fig. 1)
with positive projections on v' '. Consider the following
six six-dimensional vectors:

(~(p) ~(p)) 2 (r, ()) r ()))

(~(2) ~(3)) (~(3) ~(5))2"'"'2
(

(4) (2)) 2
(

(5) (4))2"'"'2
(A2)

Since v".v' '= —v "v'J+", where i and j are 1, . . . , 5
(we identify v' ' with v"'), it follows that the vectors
(A2) are an orthonormal basis in six dimensions. The
three-dimensional projection consisting of keeping only
the first three components gives the six icosahedral vertex
vectors.

The golden norm of an icosahedral reciprocal lattice
vector k has an important relation to such projections.
Let k& be the orthogonal projection of the six-vector that
projects to k. The magnitude of kj is related to the inten-
sity of the Bragg peak at the reciprocal lattice vector k.
Cahn et al. ' have given a simple expression for this
quantity, which assumes a very natural form when ex-
pressed in terms of the golden norm:

k2 (k2)* N(k')
k2

(A3)

APPENDIX B:
PENTAGONAL RECIPROCAL LATTICES

We show here that there is just one distinct reciprocal
lattice with pentagonal (but not decagonal) symmetry.
The pentagonal reciprocal lattice is closely related to the
decagonal, as rhombohedral is to hexagonal. It lacks a
mirror plane normal to the fivefold axis (since such a
symmetry in combination with the inversion would re-
quire the axis to be tenfold). Although no currently
known quasicrystal has pentagonal symmetry, we note its
properties here because they emerge as a corollary of the
analysis in Sec. IV.

As in the decagonal case, we first note that there are
vectors with minimum nonzero component (which we
take to have unit length) along the fivefold axis z. Be-
cause, however, the pentagonal lattice S lacks a mirror
plane perpendicular to z, we can only conclude that S
contains 5z.

Note next that the set So of vectors in S with vanishing
z component is a two-dimensional reciprocal lattice with
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fivefold symmetry to which the analysis of Sec. IV direct-
ly applies: To within an overall scale factor So is just the
set of all integral linear combinations of four unit vectors
b"', . . . , b' ' spaced 72' apart (Fig. 2).

Because S is a lattice, successive layers —i.e., the sets of
vectors with z components 1,2, . . .—must be simply dis-
placements of So by successive integral multiples of a vec-
tor z+a, where a is a vector in the x-y plane. The vector
a cannot be in So (or successive layers would be identical,
and we would have mirror symmetry) but Sa must be in

So (since Sz is in S). The vector a is therefore a linear
combination of b"', . . . , b' ' with one-fifth integral coef-
ficients. Because a is only determined up to a vector in So
we can take those coefficients to be 0, + —,', or + —', .

One easily verifies that the requirement that each layer
be invariant under a fivefold rotation about z further re-
stricts the possible choices of those coefficients to the fol-
lowing two (always to within an additive vector in So):

a= —,( —b'" —2b' '+2b' '+b' ')

or
&

( 2b(1)+b(2) b(3)+2b(4))
5

or their negatives. The negatives give structures that
differ only by a rotation by 36', so there might appear to
be two distinct stackings of So. A simple computation
shows, however, that a'= ~a to within an additive vector
in So. Since So itself is invariant under a rescaling by '7, s
and a' determine structures that differ only by a horizon-
tal rescaling. There is therefore just a single pentagonal
reciprocal lattice, determined by the vector a.

Note that if one scales a by r the resulting vector turns
out to be equivalent to —a, so a horizontal rescaling of S
by r is equivalent to a 36 rotation. Thus the product of
a rotation which is not in the point group of S with a hor-
izontal rescaling by r leaves S invariant. This is a novel
symmetry, not found in crystallographic lattices. It
resembles glide and screw operations (which, of course,
are never symmetries of lattices), except that the rotation
is here combined with a rescaling rather than a transla-
tion.

A pentagonal reciprocal lattice can be primitively
generated by the symmetric set of vectors z+c", i
=0, . . . , 4, where the five c"' are spaced 72' apart in the
x-y plane.
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