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We present a formulation of the mixed-basis expansion for electronic structure calculations,
which allows calculations on systems in which there is a strongly localized component of the valence
charge density. As in the conventional mixed-basis expansion, a small plane-wave basis is augment-
ed with a set of auxiliary functions to describe the localized component of the wave functions. Un-
like the conventional mixed-basis scheme, however, a fixed set of optimized nonoverlapping auxili-
ary functions are employed, so that matrix elements involving this set are calculable by very fast and
accurate one-dimensional k-independent quadrature. The method is applied to study the electronic
structure and bulk structural properties of Cu. The electronic structure, based on the pseudopoten-
tial of Bachelet, Hamann, and Schliiter, compares well with that obtained from other self-consistent
state-of-the-art all-electron methods. The total energies for Cu in the fcc and bee crystal structures
are calculated and compared. We find that the fcc structure is favored at all densities, although the
bee exhibits an unusually stable high-density structure. A number of technical points relating to the
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use of these optimized local basis functions in band-structure calculations are discussed.

I. INTRODUCTION

Over the last several years pseudopotential theory has
been shown to provide a powerful approach for studying
the structural properties of solids.! Calculations based on
the local-density approximation for the exchange and
correlation energies of an interacting electron gas,>~* em-
ploying a class of “first-principles” pseudopotentials,’
have correctly identified the stable high-symmetry crystal
structures of a number of elements,’ and in some cases
have been used to predict the critical pressure®’ or tem-
perature® of phase transitions between ordered high-
symmetry phases.

It has been recognized for some time that the applica-
tion of the pseudopotential method to either light ele-
ments or transition metals must be undertaken with some
care. In both classes of systems the valence pseudopoten-
tial is quite strong in at least one angular momentum
channel, so that a conventional plane-wave expansion in
the solid state is of limited usefulness. Various computa-
tional schemes have been developed to circumvent this
difficulty. For example, an expansion of the valence wave
functions in Gaussian orbitals’~!! has been used to study
the electronic structure of carbon (which has a strong p
pseudopotential) and of several transition elements, in
which the d potential is very strong.

Alternatively, a method for studying the electronic
structure of transition-metal systems, in which a plane-
wave expansion for the sp electrons is augmented with a
Gaussian basis set to describe the relatively more localized
d shell (the mixed-basis pseudopotential method) has been
formulated.'? It is worth noting that the mixed-basis pro-
cedure, as presently formulated, requires a momentum-
space representation of the Gaussian basis function for the
calculation of various matrix elements coupling these
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functions through the single-particle Hamiltonian. The
application of this procedure to transition elements in the
3d series requires a prohibitively large plane-wave expan-
sion to describe these Gaussian basis functions accurately,
since the d states are particularly strongly localized in the
core region in this series. For example, in the case of Cu
in the fcc crystal structure, with which we will be con-
cerned in this paper, the peak of the d-state charge densi-
ty is at 0.16 of the Wigner-Seitz cell radius, so that an ac-
curate description of an appropriate Gaussian function
which could represent the d shell would require an expan-
sion in nearly 10* plane waves.

In this paper we present a reformulation of the mixed-
basis method that is particularly suitable for studying the
electronic structure of elements in the 3d-transition series,
in which the unscreened 3d pseudopotential is particularly
strong. However, we note that the methods outlined here
are also useful for studying the electronic structure of the
heavier transition metals, where the d pseudopotential is
substantially weaker;!*!* in this latter case the principal
advantage of our method is the efficiency with which the
localized basis functions in the expansion set are treated.

Our approach to the mixed-basis expansion makes use
of a real-space representation of the localized basis func-
tions. As described in detail below, we derive an optim-
ized set of basis functions with d symmetry, which are
designed to provide a description of the full valence d
wave function with the fewest number of auxiliary plane
waves. An important aspect of the choice of localized
basis function is that they vanish outside a critical radius
chosen so that the functions are nonoverlapping in the
solid state. This simplifies the calculation of many matrix
elements involving the localized basis functions tremen-
dously. Techniques for computation of matrix elements
and the construction of an output charge density which
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we have found particularly useful for this application will
be presented below.

As an example we have applied the method to study the
electronic and structural properties of the cubic phases of
elemental Cu. Structural energy calculations employing
the mixed-basis pseudopotential scheme have recently
been carried out for the two heavier noble metals, Ag and
Au."® For Cu we find that the fcc structure is slightly en-
ergetically favored over the bcc structure, in agreement
with the experimental stability of fcc Cu. For the fcc
structure we find an equilibrium density and bulk
modulus in good agreement with experiment. For the bcc
structure, we find that compression of the crystal gives
rise to an interesting symmetry-breaking relaxation of the
filled d shell, which is apparently not possible in the
close-packed fcc structure. In our studies the total energy
of the fcc phase is lower than the total energy of the bee
phase at all densities considered. However, we find that
the bce structure can attain an anomalously stable “high-
density” form whose free energy may be competitive with
the fcc structure at finite temperature.

The plan of this paper is as follows. In Sec. II the lo-
calization of the valence d orbitals in Cu is considered,
and a method for representing the valence d function in
the solid state is presented. In Sec. III the self-consistent
valence-band structure is presented for Cu in the fcc
structure and compared with the results of present state-
of-the-art calculations. The band structure of the hy-
pothetical bcce structure will also be presented. in Sec. IV
the total energies of the two crystal structures are calcu-
lated and compared. In Sec. V the self-consistent charge
densities and their variation upon compression of the two
crystal structures are calculated and compared. Finally, a
number of technical points relating to the use of our real-
space optimized mixed-basis function in a band-structure
code will be presented in the Appendixes, which will be
helpful to readers who will wish to make use of these
functions in numerical calculations.

II. OPTIMIZED LOCAL BASIS FUNCTIONS

In this section we discuss the procedure for construct-
ing the “optimized” local basis functions which are used
in our formulation of the mixed-basis method. These
basis functions are required (1) properly account for the
behavior of the valence electrons near the core region of
the pseudoatom, and (2) to not overlap nearest-neighbor
local basis functions. The nonoverlapping feature of the
basis functions provides many computational advantages.
For example, many of the matrix elements simplify to
single-term, one-dimensional integrations and/or are
wave-vector independent.

Though there are many ways to derive a numerical fit-
ting scheme, the procedure outlined below is presented in
a way that highlights the physical motivation. The
nomenclature “optimized” derives from the numerical ad-
vantages of the localized basis functions and from the
maximal use of the variational freedom provided by the
atomic-function—plane-wave basis set.

We start with a set of radial atomic (pseudo) wave func-
tions, fA'°™(r), that are obtained as numerical solutions

of the pseudopotential radial Schrodinger equation. We
use the Cu pseudopotential of Bachelet et al.’> which is
shown in Fig. 1(a). The depth of the d pseudopotential
and its shape near the core is typical of d pseudopotentials
for transition metals in the 3d series and makes Gaussian
or plane-wave equations of the potential matrix elements
impractical. This has been a contributing factor to the
lack of pseudopotential electronic structure calculations
for these elements.!> 16

By construction, the numerically obtained radial func-
tions will accurately represent the behavior of the d elec-
trons in the core region of the pseudoatom. It is impor-
tant to reproduce this ‘“near-core” behavior in the crystal
to determine accurately the position of the d states rela-
tive to the sp states. These atomic functions are peaked
close to the nucleus [Fig. 1(b)] and thus have many high
Fourier components. However, these functions have long
exponential tails and are inconvenient to use as part of the
mixed basis in the crystal calculations because they spa-
tially overlap, thereby enormously complicating the
evaluation of matrix elements. In fact in the opposite lim-
it, basis functions that are short ranged such that there is
no overlap between functions centered at nearest-neighbor
sites are very effective computationally. Bloch function
matrix elements of the kinetic energy and the short-
ranged, nonlocal potential reduce to atomic calculations
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FIG. 1. (a) Unscreened ion potential, and /=0,2 valence ion
pseudopotentials for Cu, following Bachelet-Hamann and
Schliter (Ref. 5). (b) Radial part of valence pseudo-wave-
function for /=2 state in Cu; the shaded region indicates the tail
function which is well described by an expansion with a few
long-wavelength plane waves. rcp is the Wigner-Seitz cell
boundary, and r, is the cutoff radius described in the text.
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that are independent of the crystal structure and wave
vector. The details of the matrix-element evaluations are
contained in Appendix A.

The computational simplicity provided by localized
(nonoverlapping) functions motivates our attempt to re-
move the “exponential” tails without damaging the near-
core behavior of the radial functions. This is accom-
plished by subtracting a smooth “tail” function from the
atomic function:

fopt :fatomic __ftail , (1)

where, ideally, the tail function is identical to the atomic
wave function beyond a “cutoff” radius, 7., and smoothly
approaches zero at the origin. For each type of atom in
the unit cell, a sphere radius is chosen so that the spheres
(centered at the atomic positions) do not overlap. To
achieve the numerical benefits described above, the cutoff
radius should fit inside the Wigner-Seitz sphere about the
atom of interest. To allow for changes in the lattice con-
stant in the present work, r, was taken about 10% smaller
than the largest nonoverlapping sphere radius.

The basis set we use for the expansion of the crystalline
wave functions is a mixture of plane waves and Bloch
sums containing these optimized functions for the d orbi-
tals of Cu. It is known from previous work!” that atomic
Bloch functions augmented by plane waves provide a sa-
tisfactory basis set for accurate charge densities for sys-
tems with various types of bonding, e.g., metallic, co-
valent, ionic, etc. In order that our “optimized” basis set
has the same variational flexibility as the atomic-
function—plane-wave basis set, we require that the tail
functions, ', have no spatial Fourier components out-
side the range of the plane-wave part of the basis set.
Thus we construct £ from a set of slowly-varying plane
waves.

In general, the radial part, f(r), of a function of angu-
lar momentum / and maximal wave vector Q.. can be
represented by its Bessel transform (radial part of Fourier
transform):

Qmax
fin= [ "FQ)j(erQidQ . 2)

We construct a tail function by fitting it to the atomic ra-
dial function in a region between r, and r,,,,, where 7, is
chosen somewhat inside the Wigner-Seitz radius and r,,
in practice extends to second- or third-nearest neighbors.
Our strategy, then, is to adjust the transform coefficients,
F@{Q), to obtain a best least-squares fit of the atomic

function, £2°™(r), in a region from r, to rp,,. We ap-
proximate the integral in (2) so that
: Qmax :
reln= [ FelQ)i(oned
N
~ 3 F®Q))ji(Q;r)Q}AQ; . 3)

i=1

The least-squares minimization condition

9
aFtail( Qj )

leads to a set of linear equations:

f "max [f‘a“(r fatomiC(r)]Zerr =0 (4)

% F®(Q,)By;=D; (5

to be solved for F'¥!(Q,), where

By= [, ™" il Qunin@;rr

and

r
max
Dj — f fatomw(r
e

2dr Q2AQ, (6)

[(Qr)ridr . @)

Because of the restricted range (r.,”.x) Over which the
integrations are performed, the j;(Q;r) for a discrete set of
Q; form a nearly-linearly-dependent set. This makes the
matrix By, difficult to invert. To remove this difficulty,
we transform to an orthogonal expansion set formed from
the normalized eigenvectors of the matrix By, which have
the form

No
h#(r)z 2 ij.]l(er) . (8)
j=1
The irrelevant degrees of freedom are removed by discard-
ing eigenvectors of Bj whose eigenvalues are smaller than
a cutoff value, say 10 3. From the theory of orthogonal
functions on an interval, it can be shown that the best n-
parameter approximation to a well-behaved function is
obtained by the Fourier series expansion of the function,
terminated at the nth term. Thus Eq. (3) is replaced by

feltrn =3 C,h,(r), 9)
p=1
where
Cu= [ Frome b, (rirtdr . (10)

Since the h,, are composed of low-frequency Bessel func-
tions, the analytlc continuation of £ outside the interval
(Fe,7max) 1s guaranteed to approach zero smoothly towards
the origin and decay rapidly toward zero beyond r,.
After constructing f°P' from Egs. (1), (9), and (10), we im-
pose the normalization

fo | FOPr) | 2r2dr =1 . (11

The tail function for Cu d orbitals constructed from the
procedure just described is shown as the shaded region in
Fig. 1(b).

This procedure, in which we extract a set of localized
basis function which are nonoverlapping in real space
bears some resemblance to the ‘“quasiatomic” orbitals de-
rived by Bendt and Zunger.'® In that application the
quasiatomic orbitals are self-consistent solutions to an
atom which is confined within a Wigner-Seitz sphere. In
our case the localized functions are obtained from the
self-consistent solution to the full pseudoatom (with no
boundaries, but with the long-wavelength plane-wave part
removed). Although one might expect the residual com-
ponent of Bloch function to be more rapidly convergent
following our scheme, the philosophy underlying the two
models is very similar. Details concerning matrix-element
evaluation, and schemes for accumulating the charge den-
sity which we have found particularly useful are tabulated
in the Appendix.
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III. TEST ON BAND STRUCTURE OF COPPER

We chose copper as a test material for our new formal-
ism. As mentioned earlier, copper is a 3d transition metal
and the corresponding d pseudopotential is very strong,
which makes both a plane-wave expansion or an ordinary
mixed-basis calculation difficult due to the high localiza-
tion of the d-electron wave function. Therefore, it is not
very surprising that there have been no rigorous plane-
wave-based pseudopotential calculations for copper.!>16
We have obtained several interesting results in this study
which confirm the accuracy of the method, and find one
unexpected aspect in the structural behavior of Cu.

There are several parameters to be chosen before the
main calculation. In the calculation discussed below we
employed around 60 to 80 plane waves (cutoff energy
E,=|k+G|2.=15 Ry) for the plane-wave part of the
basis function set, around 3K reciprocal-lattice vectors
(E,= |G| 2 =169 Ry) to expand the relatively smooth
local potential in the band calculation, around 12K
reciprocal-lattice vectors (E;= | G| 2,,=430 Ry) to ex-
pand the charge density, and 512 k’s in the Brillouin zone
[equal to 29 k’s in irreducible BZ (IBZ) of fcc structure]
to construct the charge density with the Gaussian weight-
ing scheme that is very efficient to accelerate the conver-
gence of the total energy with respect to the number of k
points.

In the mixed-basis approaches the number of plane-
wave basis functions is the most important parameter be-
cause the completeness of the basis set should be required
before expanding any function with a basis set. Using the
three different cutoff energies (E;,=10 Ry: around 50
plane waves; E;=15 Ry: around 70 plane waves; and
E,.,=17 Ry: around 90 plane wave), we have calculated
the eigenvalues and the total energies of fcc copper at the
reference unit-cell volume to test the convergence with
respect to the number of plane-wave basis functions in the
set. The differences in the eigenvalue I',I";5 and the total
energy between E,, and E;, are 0.013, 0.090, and 10.2
mRy, respectively; and for E,, and E,., 0.005, 0.002, and
4.1 mRy, respectively. As far as we are concerned with
eigenvalues, we can conclude that we have already reached
a very good convergence at the cutoff energy E,=15
Ry.!>™ For the total energy, although it is too small to
be compared to the cohesive energy of copper (equal to
256 mRy), the difference of 4.1 mRy is not so satisfacto-
ry. However, we have found that this total-energy shift
between the different cutoff energies is nearly constant
when we calculate the total energy as a function of the
unit-cell volume.!> As a result, the ground-state bulk
properties are very stable to the change of cutoff energy
E, (the relative changes in the equilibrium lattice length
are within 0.3%, and for the bulk modulus, within 3.2%).
Therefore, we chose the cutoff energy £; =15 Ry.

The number of the reciprocal-lattice vectors determined
by the cutoff energy E; is also a parameter of importance,
especially in dealing with 3d transition metals, because of
the strongly localized d electron density. The total charge
density is expanded by these plane waves in G space and
they are directly related to the size of the uniform mesh in
R space as shown in Appendix C. When we increase the
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number of plane waves from 7.5 K (E; =315 Ry) to 10 K
(E3=390 Ry), the total energy is lowered by 1.50 mRy;
from 10 to 12 K (E;=430 Ry), by 0.48 mRy; and from
12 to 14 K (E; =470 Ry), by 0.13 mRy. The final differ-
ence is likely to be in the category of acceptable conver-
gence in the current calculation, and so we used the cutoff
energy E3;=430 Ry to calculate the charge density in G
space and the total energy.

In Fig. 2 we show the band structure along the symme-
try lines L-T'-X at the equilibrium lattice constant. A
separate table of eigenvalues of each high-symmetry k
points, for more quantitative comparison to other theoret-
ical results and experimental data, is given in Table I.
The present results are comparable to earlier calculations
that were also based on local-density-approximation
(LDA).'>2° Tt is interesting to note that the entire disper-
sion of the d bands which occurs in this model is provided
by the mixing of our nonoverlapping d functions with a
relatively small set of plane waves which penetrate the
cores and couple the d-like degrees of freedom on each
atomic site. In accord with other calculations, the present
results show the general trend that the LDA vyields d
bands that are too high and too dispersive relative to the
data obtained by photoemission experiments.?! Some au-
thors explain these differences between LDA results and
experiment by including self-interaction and metallic
screening effects and reported some improved results.?%?2

In Fig. 3 we show the analogous band structure for bcc
copper along the symmetry line N-I'-H at the same
volume per atom to the experimental fcc one. The result
is relevant to the discussion in Sec. V; it shows that even
in the bce structure, the d bands remain completely occu-
pied.

IV. COMPUTED PROPERTIES OF COPPER

Since the band structure compares favorably with the
results of other state-of-the-art methods, we would like to

50

E-Ef (eV)

_IOO 1 1 1
L A r A X

FIG. 2. Band structure for Cu in the fcc structure (a=6.822
a.u.) along high-symmetry directions in the Brillouin zone.
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TABLE 1. Band energy comparison for fcc copper (eV). Re-
sults of three self-consistent LDA calculations and one angle-
resolved photoemission experiment. Band positions are given
relative to the Fermi energy (€' =E;—e).

KKR® LAPW® Present® Expt.¢

Ty 2.41 2.40 2.45 2.85
s 3.24 3.20 3.27 3.65
r, 9.42 9.47 9.88

X5 1.62 1.64 1.70 2.05
X, 1.82 1.89

X3 4.68 4.69 4.50
X, 5.27 5.07 5.18 5.20
Ly 1.14 0.98 0.90
L, 1.78 1.80 1.86 2.25
Ly 3.29 3.32 3.65
L, 5.25 5.23 5.41

-Ts 0.83 0.80 0.82 0.80
Xs-X, 3.65 3.43 3.48 3.15
Li-L, 3.47 3.43 3.55

2Korringa-Kohn-Rostoker calculation with LDA (Ref. 19).
*Linear augmented-plane-wave calculation with LDA (Ref. 20).
°This result was obtained at the lattice constant a,=6.822 a.u.
dReference 21.

extend the method to study the zero-temperature-state
structural properties of bulk copper such as crystal struc-
ture, equilibrium lattice constant, cohesive energy, bulk
modulus, etc. The bcc structure is not observed for
copper, implying that the total energy of the fcc structure
is less than that of the bcc. Accordingly, it is interesting
to make and compare theoretical predictions for the ener-
gy of the two structures. To make this comparison we
must evaluate the total energy as a function of unit-cell

5.0

OOp———--=--- e
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E-Ef (eV)
=z
T

-100

N 2 T A H

FIG. 3. Band structure for Cu in the bcc structure (a=5.420
a.u.) along high-symmetry directions in the Brillouin zone.

volume for each structure and then choose the lower-
energy structure as the ground state of the system. For
self-consistency, an accuracy of 0.01 Ry in eigenvalues is
sufficient for calculating the band structures. However,
the total-energy variation around the equilibrium volume
is so small that the energy fluctuation between successive
iterations should be less than that energy difference in or-
der to yield a reasonably smooth energy curve. The re-
quired accuracy in the current calculation is of the order
of 0.1 mRy. The total energy of the crystal is calculated
using the momentum-space formalism given by Ihm,
Zunger, and Cohen.??

A. fcc copper

We evaluated the total energies of fcc copper at various
lattice constants ranging over a +49% expansion and
compression of the lattice constant. The results are
shown in Fig. 4. Some static ground-state properties of
bulk can be obtained directly from this total-energy curve.
Table II contains the calculated and experimental equili-
brium lattice constant, cohesive energy, and bulk
modulus.

The agreement of our results with experiment is quite
good. The other theoretical data in Table II were all
based on all-electron LDA calculations.!®?* Our results
indicate that the pseudopotential formalism remains accu-
rate even for transition metals with a localized valence d
shell, and that use of cutoff localized basis functions is
practical and effective. To calibrate the efficiency of this
scheme, the calculation requires approximately 10 CPU
seconds per k point per iteration to obtain these results on
an IBM-3081. The energy value is stable within 0.01
mRy, which yields a very smooth total-energy curve. In
other words, we can deal with a very small energy differ-
ence between any two energetically similar systems. This
led us to try to compare the structural energy difference
between the fcc structure in nature and a hypothetical bce
crystal structure for copper.

99.98

99.99

[T T T T T TTT T

E (Ry )

-100.00

\fcc

TTTTTTT7TY

-10001 b b b b,
0.8 0.9 1.0 1.1 1.2

V/ Vo

FIG. 4. Total energy for Cu as a function of reduced volume
for the fcc and bee crystal structures. ¥y is the volume of the
primitive cell corresponding to the experimentally observed bulk
density of fcc Cu.
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TABLE II. Bulk property comparison for fcc copper. Equilibrium lattice constants, cohesive ener-
gies, and bulk moduli obtained from several calculations and experiments are compared.

KKR* ASW® Present Expt.©
Lattice constant (a.u.) 6.76 6.81 6.85 6.81
Cohesive energy (Ry/atom) 0.301 0.298 0.246 0.257
Bulk modulus (Mbar) 1.55 1.29 1.50 1.42

#Reference 19.
®Augmented-spherical-wave calculation (Ref. 24).
“Reference 25.

B. bcc copper

A phase transformation of copper from fcc to bec is
not observed experimentally. Nonetheless, it is interesting
to compute the energy difference between the two phases.
In this respect, a calculation of this type can explore
behavior outside the range of present experiment.

We need to evaluate the total energy of bce copper us-
ing a basis comparable to that employed for fcc calcula-
tions in order to compare the energy difference between
the two phases in a meaningful way. We used the same
plane-wave cutoffs for the wave functions, potential, and
charge density, and a total of 512 k points in Brillouin
zone (30 in irreducible sector). We take a reference struc-
ture with a®¢=a % /2!/3 5o that the atomic densities of
each reference structure are the same. The results are
given in Fig. 4. The total-energy curve in the bcc phase
shows an unexpected double minima, one at a 7% volume
expansion and the other at a 6% volume compression.
We verified the shape of this total-energy curve by mak-
ing calculations for 12 intermediate densities; the results
yield a smooth curve without any significant scatter. As
we compress the system, it reaches the shallow first
minimum. Upon further compression the system sudden-
ly goes down to the deep second minimum and reaches its
“stable” bee structure. We checked the convergence of
these results with respect to the number of plane waves in
the basis set by expanding the cutoff energy E; to 20 Ry
(approximately 140 plane waves). The results showed an
increase in the cohesive energy by approximately 5 mRy,
but a very similar bimodal shape for the structural energy
curve was obtained. This is consistent with our estimates
of the convergence of the results with respect to the
basis-set size noted in Sec. III. In the next section we will
give a microscopic description of this phenomenon in bee
copper. However, before doing so we emphasize that the
present calculation shows that fcc copper is slightly more
stable than the bcc structure. The energy difference be-
tween the absolute minima of the two structures is 3 mRy,
and at the volume where bce structure has its absolute
minimum, the energy difference between fcc and bec is
about 0.6 mRy. Because the minimum part of the bcc en-
ergy curve never intersects with the fcc curve, we do not
expect a pressure-induced phase transition to the bcc
structure at zero temperature.

V. VALENCE CHARGE DENSITIES

The unusual behavior of the total energy of Cu in the
bce structure shown in Fig. 4 can be traced to specific

features in the valence charge density. In this section we
will examine and compare the self-consistent charge den-
sities obtained in the fcc and bec crystal structures.

In Fig. 5 we present the total valence charge density for
Cu in the fcc crystal structure at the equilibrium density.
The lines are contours of constant density in the (111)
plane. The accompanying linear plot gives the values of
the charge density on a cut through the [110] direction.
There are two features to notice on these graphs. First,
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FIG. 5. Total valence charge density for Cu in the fcc struc-
ture with =6.822 a.u. (top) Contours of constant charge densi-
ty in the (111) plane; (bottom) linear plot along the [110] direc-
tion in the (111) plane.
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there is a large peak in p at 0.3 a.u. away from the Cu nu-
cleus arising from the peak of the localized d contribution
to the charge density. Secondly, the nearly-free sp elec-
trons make a much smaller smooth contribution to p
which can be seen most clearly in the interstitial regions.
The d bands in the crystal are completely occupied, and
as a consequence the d density is nearly spherical, as can
be seen in the contour plots of Fig. 5(a).

A similar situation is found for the total valence charge
density in the bce structure at the same atomic density, as
shown in Fig. 6. The upper plot is a contour map in the
(110) plane of the bec crystal, the lower linear plot pro-
vides quantitative data on a cut along the [001] direction.
Again we see the characteristic sharp d peak in the core
region, and a smooth free-electron contribution in the in-
terstitial region. The d bands are completely occupied in
this structure (see the band structure in Sec. III), and the

(a)%

W

~

(b)
100

(0] -

FIG. 6. Total valence charge density for Cu in the bcc struc-
ture with @=5.420 a.u. (a) Contours of constant charge density
in the (110) plane; (b) linear plot along the [001] direction in the
(110) plane.

net d contribution to the charge density is nearly spheri-
cal.

We are interested in examining relatively subtle changes
in the valence charge distribution as these two crystal
structures are expanded and compressed. A strategy for
doing this is to examine the behavior of a difference
charge density, in which we normalize out the simple ef-
fect of changing the volume of the unit cell. Specifically,
we examine a local charge difference function:

%[Pl(rijk ) —pa(rip)Qs] , (12)
where N is the number of grid points on a real-space mesh
used to represent the valence charge density, r;; is a di-
mensionless grid point within the unit cell, the indices 1
and 2 represent two densities between which the charge
densities are to be compared, and the ; are the unit-cell
volumes of the two structures. The quantity calculated in
Eq. (12) represents the charge density at the ijkth mesh
point in the unit cell, and allows us to focus on the rela-
tive distribution of charge in the cell for two crystals with
different densities. By construction, 8¢ is a quantity
which integrates to zero.

We first consider the effects of compression of the fcc
structure. Figures 7(a) and 7(b) present contours of con-
stant 8q [again in the (111) plane] in the fcc structure.
The upper figure demonstrates the effect of compression
from an expanded lattice constant (a=7.095 a.u.) to the
equilibrium lattice constant (a=6.822 a.u.). The dashed
contours are negative values of 8¢, the solid contours are
positive. Our point here is that there is no distortion of
the shape of the charge density contours on compression,
indicating that the d contribution is spherical at both den-
sities. (The apparent shift of charge within the core re-
gion is misleading, in that a perfectly rigid core, examined
in this way at two different crystal densities would also
show a similar shift of charge from the inner to outer re-
gions.) A similar behavior is illustrated in Fig. 7(b) where
the change in valence density upon 2% contraction of the
lattice constant, relative to the equilibrium volume, is ex-
amined (a=6.685 a.u. in the compressed structure). The
most substantial changes are again found in the core re-
gion, and reflect a rigid movement of the d-charge density
towards the boundaries of the Wigner-Seitz cell. In sum-
mary, the charge difference plots exhibit nearly spherical-
ly symmetric behavior in the core region, as would be ex-
pected if the d bands remain fully occupied at all the crys-
tal densities studied.

Similar calculations for the bcc structure reveal a rather
different systematic behavior. Figures 8(a) and 8(b)
presents the analogous contour plots of constant differ-
ence density. In Fig. 8(a) we compared the charge density
in the bcc structure that has the same density as the fcc
equilibrium structure with the charge density found for a
4% expansion of the cell volume. For weak compression,
we again observe a systematic migration of the d-band
density towards the boundaries of the Wigner-Seitz cell.
However, even for weak compression we see that this ex-
pansion is not spherically symmetric, but is oriented pre-
ferentially towards the interstitial regions along the [001]
directions. This behavior is demonstrated much more

5‘11—2(’ijk)=
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FIG. 7. Difference charge densities illustrating the effect of compression on the total charge density in the (111) plane for Cu in
the fcc structure. (a) The charge density for a 4% expansion of the lattice constant is subtracted from the charge density at equilibri-
um. (b) The charge density at equilibrium is subtracted from the charge density for a 2% contraction.

dramatically, if we consider the effects of a 2% compres-
sion of the lattice constant from a reference density in
which the bcc structure has the same density as the fcc
structure, shown in Fig. 8(b). Here we see two well-
defined lobes oriented along the [001] direction, showing
that the d shell is being driven out of spherical symmetry
by the uniform compression.

An important consequence of this symmetry breaking is
that the projection of the d-charge density onto the
nearest-neighbor [111] directions is reduced in the
compressed bcc structures. This allows the crystal to at-
tain a slightly higher density, with a corresponding in-
crease of the cohesive energy, as illustrated in Fig. 4. The
secondary minimum develops as the tails of the d shells
overlap and the distortion of the density becomes more
pronounced. This asymmetry is unexpected since the d
shell remains fully occupied in all of the crystal volumes
considered. However, it is well known that there is sub-
stantial hybridization between the 3d shell and the nearly
free sp band in the solid state; we believe this behavior is

due to the resonant mixing of d character into the
higher-lying unoccupied free-electron band as the crystal
is compressed. We know of no previous observation of
similar behavior in the heavier noble metals, Ag and Au,
although the systematics of this kind of behavior in the
heavier systems would be interesting to examine. This
behavior is not observed in compression of the noble met-
als in the fcc structure; we believe that the fcc close-
packed structure offers less “interstitial volume” for this
asymmetric compression, and thus the 3d-valence shell
remains nearly spherical upon compression of the fcc
structure.

VI. SUMMARY

We have developed a real-space reformulation of the
mixed-basis pseudopotential method. The method is espe-
cially convenient for systems in which there is relatively
strong localization of a component of the valence charge
density, so that a conventional plane-wave expansion is
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:

(b)

FIG. 8. Difference charge densities illustrating the effect of compression on the total charge density in the (110) plane for Cu in
the bec structure. (a) The charge density for a 4% expansion of the lattice constant is subtracted from the charge density at
V/Vy=1. (b) The charge density for ¥ /V,=1 is subtracted from the charge density for a 2% contraction of the lattice constant.

not practical. This method augments a small plane-wave
expansion with a small number of nonoverlapping real-
space basis functions, from which matrix elements can be
calculated by k-independent one-dimensional quadrature
in most cases. The method is essential for accurately
dealing with the strong !/ =2 potential in the 3d transition
series, and may provide a more efficient scheme for
describing the heavier transition elements, some of which
have already been studied with the “conventional” Gauss-
ian mixed-basis method.

We have tested the scheme by calculating the electronic
structure and bulk structural properties of elemental Cu.
We find that the results are of comparable quality to other
state-of-the-art methods. We find that Cu is stable in the
fce crystal structure, the lattice constant is recovered to
0.6% accuracy, while the error in the bulk modulus is
6%. The fcc structure is slightly energetically favored
over a bcc structure at an equivalent density. Compres-
sion of the bcce structure produces an anomalously stable
high-density form of bcc Cu in which the valence d shell
develops a nonspherical distortion.

The modified mixed-basis method is quite efficient, and
offers the possibility of high-quality calculations on the
structural properties of more-complicated cells to study
surface and defect structure. Generalization of the
scheme to study high-symmetry phonon frequencies in
bulk Cu are in progress.

ACKNOWLEDGMENTS

We would like to thank K. Ho, D. Vanderbilt, and A.
Williams for several very helpful discussions. This work
was supported by the National Science Foundation
through the Materials Research Laboratories Program
under Grant No. DMR 84-14640. E.J.M. acknowledges
additional support by the Alfred P. Sloan Foundation.

APPENDIX A: HAMILTONIAN AND OVERLAP
MATRIX ELEMENTS

1. Hamiltonian

The many-electron Schrodinger equation is reduced to a
one-particle equation by use of effective potentials that
are derived from the local approximation to the exchange
and correlation energy density functionals.> We solve the
one-electron equation in a mixed (nonorthogonal) basis of
plane waves and linear combination of atomic orbital
(LCAO) functions. This is essentially the method of
Louie, Ho, and Cohen.'? The key feature of our approach
is the use of nonoverlapping localized basis functions that
represent the tightly bound d electrons without complicat-
ing the evaluation of matrix elements. The nonoverlap-
ping character of the localized functions leads to the sim-
plification of the local-local matrix elements described in
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Ref. 12 without the approximation used there. For this
reason, we will review the mixed-basis technique of Louie,
Ho, and Cohen and point out the differences where ap-
propriate.

The one-electron Hamiltonian can be written as

H=T+V2' + V>, (A1)
where T is the kinetic energy operator, V" is the ionic
pseudopotential describing the valence-electron—ion at-
traction, and V¥ and V*° are the Hartree and exchange-
correlation parts of the electron-electron interaction. The
ionic pseudopotential can be divided into local and nonlo-
cal (angular-momentum-dependent) parts:

V:Josn — Uloc+ Un] ,

where the nonlocal part is a sum of radial functions times
angular momentum projectors:

(e ot ey =22 sy (UYL
¥ L'

The ionic pseudopotential for bulk Cu is a lattice sum of
atomic Cu pseudopotentials. We use an analytic Fourier
transform of the Cu pseudopotential parametrized by
Bachelet, Hamann, and Schliiter.’ The s and d pseudopo-
tentials are shown in Fig. 1(a).

The Hartree potential V' is related to the pseudo-
valence-charge-density:

V2V H(r)= —4me’p(r) . (A2)

The exchange-correlation operator is represented by a lo-
cal potential ¥**. We make use of the results of Ceperley
and Alder® in the parametrized form given by Perdew and
Zunger.* This operator is evaluated using a real-space
representation of the charge density.

We begin the self-consistent procedure using a superpo-
sition of the atomic charge densities to represent the
charge density in the solid. Then the matrix elements are
evaluated and we solve for the wave functions ¥,,, where
n is the band index. A new charge density is obtained by
summing over the filled states

occupied
p= 2
n,k
of approximately 30 wave vectors in an irreducible sector
(ssth) of the Brillouin zone. To identify the filled states,
the Fermi level is found by estimating the density of states
from the computed eigenvalues. A Gaussian weighting
scheme is used to give a reasonable interpolation of the
zone integration for both the density of states and the
charge density.'?
To avoid drastic oscillations from iteration to iteration
a 3/7 mixing ratio of the present and previous charge
densities is used to obtain a charge density from which the
new Hartree and exchange-correlation potentials are com-
puted. Because the form of the operators are the same,
the new potential are combined with the local part of the
ionic pseudopotential:

VLch: U10c+ VH[p] + VXC[p] ,

|\l/nkf2

where we have indicated that the Hartree and exchange-
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correlation potentials are functionals of the density. The
combined potential is somewhat smoother in real space
than either the Hartree or local ionic potentials alone.
This reduces the size of the reciprocal-space expansion
from which matrix elements are calculated.

2. Matrix-element evaluation

The nonorthogonal basis set leads to the generalized
matrix equation

(H—ES)¥Y=0.

We will develop expressions for the matrix elements under
the assumption that there are several atomic species in the
crystal but only one atom of each species within the unit
cel. This assumption provides adequate generality
without unduly complicating the algebra. In addition, for
notational simplicity we assume that the optimized atom-
ic functions on a given site have the same orbital angular
momentum.

Our basis set divides into two parts, plane-wave and lo-
cal functions, and accordingly the matrix elements can be
divided into three types: plane-wave—plane-wave, plane-
wave—local, and local—local. In the following, the sym-
bol L denotes the angular momentum quantum numbers
(I,m) 7, is the position of the pth atom in the unit cell,
¢p,. is an LCAO formed from a localized function of an-
gular momentum L at 7, within the unit cell, G is a
reciprocal-lattice vector, k is a Brillouin zone wave vector,
and |k+G) is a plane-wave basis function. The Bloch
basis functions ¢, , are constructed from the optimized
(i.e., nonoverlapping) atomic functions:

1 ik-(R+7,)
¢p’L:—‘/—J_V_~§fp,,([rp—Rl)Y,_(rp—R)e )

(A3)

where Y (r) is a spherical harmonic, and r,=r1—1, is the
position in unit cell measured from the pth lattice site.
The plane-wave basis functions are defined as

’k+G>:(_l____ei(k+G>-r, (A4)

NQ)'?

where N is the number of unit cells in the crystal and Q,
is the unit-cell volume.
The overlap matrix S is given by

Sk+6.k+6 =08G,6' »

Skt =Fp(G)fp( | k+G )Y, (k+G), (A5)

SpL,p’L"_‘Sp,p'SL,L’ ’
where the structure factor is

47Ti_1 —iG-T
F(G)=—TL__, =7
P Q)2

and
Fa(lk+G )= [ ji(|k+G|rf, (rridr .

The Hamiltonian matrix elements are
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2 nl LH xc
Hy g+ = |k+G |86 6+ Ukicr+a + V66 »

Hyy6.o0=Tircpr+Ulvc o +VilSlpl,

HpL,p’L'=8p,p'8L,L’[ TpL,pL + U;;lll,,pL ] + V;fi,l,i;’i[p] .
As indicated, the kinetic energy and the nonlocal part of
the pseudopotential are completely diagonal within the lo-
cal function subspace. Since the kinetic energy and nonlo-
cal part of the pseudopotential are independent of the
charge density, matrix elements involving these operators
are only evaluated in the first iteration of the self-
consistent procedure and stored for use in later iterations.

A variety of methods are used to evaluate the matrix
elements. Our discussion begins with the simplest terms
and proceeds to the more complicated terms. The only
nontrivial part of the overlap matrix S is that between
plane waves and localized functions. As indicated in Eq.
(A5), these factor into an angular part that can be evaluat-
ed analytically and a part that depends on the magnitude
of the reciprocal-space vector k+G. This latter part is
evaluated on a numerical mesh and is interpolated to find
the value at | k+G|.

The plane-wave—plane-wave matrix elements of the ki-
netic energy are diagonal and computed as needed. The
kinetic energy part of the plane-wave—local matrix ele-
ments are found from the plane-wave—local overlap in-
tegrals using the relation

Tyicpor=k+G|*SkiGpL -

The special construction of the LCAO basis functions en-
sures that the local-local kinetic energy matrix elements
are rigorously diagonal in lattice site and angular momen-
tum, and are independent of the wave vector. This results
in a significant computational savings compared to earlier
implementations of this technique.!” We evaluate these
elements using a momentum space integral involving the
Fourier transform of the atomic functions:

9max

2
Torpr = {bo | V| $p ) == [ [1u(9) | "g*dq ,

(A6)

where

Jplq)= fowfpl(r)j,(qr)rzdr .

This procedure is generally considered to be more accu-
rate numerically than a differencing scheme to evaluate
derivatives, but does require that we compute the Fourier
transform of our optimized basis functions. In principle,

|
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FIG. 9. Convergence of the diagonal kinetic energy term for
the “optimized” local function with cutoff of the q space in-
tegral in Eq. (A6).

it is not possible to localized a function in real space and
Fourier space. This, together with discrete nature of our
basis functions and the quartic term in the sum leads to a
slight numerical instability as g, is increased. The
value of the kinetic energy we use is taken from the aver-
age of values in the horizontal region of the curve between
400 to 600 a.u. (see Fig. 9).

The (fully diagonal) local-local matrix elements of U™
are evaluated directly by summation on a numerical real-
space radial mesh:

Uptpr =<1 | U™ |$pr) = [ forNU(r)rkdr .

This term (and the corresponding kinetic energy term) are
independent of crystal structure.

The plane-wave—local matrix elements of the nonlocal
potential have the form

Ui =Fu(G)YL(k+G) [ ji( |k+G | NU(r)
X fo1(r)ridr .

The factor before the integral is evaluated as needed,
while the integral is found with a look-up procedure on a
precomputed table of values.

The matrix elements of the nonlocal pseudopotential
within the plane-wave subspace are evaluated using the
expression

Url:l+G,k+G’ =Fp1(G)FP‘;(GI) 2 (21 +1)Pl(ek+0,k+G') f U,;’,l(r)],( | k+G | r)j,( | k+G’ | r)rzdr .
I

The matrix elements of the combined local potentials,
yLHxe s evaluated as follows. The plane-wave—plane-
wave part is trivial because the potential is represented on
a reciprocal-space mesh. (The computation of this poten-
tial from the eigenvectors is discussed in Appendix C.)
The plane-wave—local matrix elements are evaluated in

one step by a “partial” fast Fourier transform (FFT) of
the quantity

Py (r)=VEEx(1)¢,, (1) .

The term “partial FFT” refers to a technique we
developed for efficiently finding a small number of
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Fourier coefficients of a function known on a dense real-
space mesh. The technique is described in Appendix B.
The local-local matrix elements are more involved. In
previous work, these terms were evaluated by transform-
ing the potential and local-basis functions to a real-space
mesh with the FFT and summing in real space. Because

J

Vit = S VHIX(G) [ ey (1)¢,(r)dr
G

=47 3 VEI(G) |
G L”

where
C(L,L'\L"= [ Y}®)Y, DY} ®)dt

are Gaunt coefficients that can be evaluated with a look-
up scheme (since only a few terms are required) and

K= fow Sot () fprr(P)jp(Grridr

The term within large parentheses in Eq. (A7) can be
evaluated once and stored, and K can be evaluated with a
look-up scheme from a precomputed table of values.

APPENDIX B: PARTIAL FFT

In this appendix the technical details of the “partial”
fast Fourier transform (FFT) procedure is discussed. The
procedure is designed to solve the problem of efficiently
calculating a limited number of Fourier components of a
function known on a fine (dense) mesh in real space. The
functions we are concerned with have the periodicity of
the crystal lattice. Accordingly, we assume that they are
known on a set of points in real space within the Wigner-
Seitz cell; the problem is to find their long-wavelength
Fourier coefficients without calculating all the coeffi-
cients and then discarding the unwanted ones.

Let {r;} denote the dense real-space mesh and let f(r;)
be a function known on this mesh. The set {r;}, of size
N, is conjugate by construction to a large set of
reciprocal-lattice vectors {G;}. Let {g;}] be the subset of
{G;} containing the limited number n of reciprocal-
lattice vectors for which we seek the transform of f(r;).
We choose {g;} (by including a few unwanted reciprocal-
lattice vectors if necessary) so that periodic extension of
the volume containing it generates the large set {G;].

By construction {g;} is conjugate to a course real-space
mesh {R;} containing » vectors within the Wigner-Seitz
cell. Every vector in {r;} may be written as the sum of an
element of {R;} and a vector 7 contained in a cell (a re-
duced Wigner-Seitz cell) centered on each Ry:

ri:Rk +Tm (B1)
or schematically
() ={Ry} X {7} .

By construction, there are N /n vectors in {7, }.
Computational efficiency dictates that the small set of
reciprocal-lattice vectors {g;} be just large enough to

> iy, (G)C(L,L',L")K; AG) |,
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of the difficulty in retaining high precision with the large
FFT that would be required for the localized functions in
the present case, we elected to use an approach requiring
only one-dimensional numerical integrations. By expand-
ing the exponential term in the Fourier transform of
VLHX we arrive at the following form:

f

describe the highest-frequency components of the quantity
of interest. To take optimal advantage of the FFT algo-
rithm, however, the size of this set n should be a highly
composite number and we may wish to enlarge the cell
slightly to achieve this. For example, an initial choice of
a {G;} containing (11)* points could be improved by in-
creasing to (12)°=(2)%3)? points.
We are interested in the evaluating quantities such as

N‘-I i °T:
F(g))= 3 e ¥f(r). (B2)
i=0

With use of (B1) this may be rewritten as

n—1N/n—1 R
—ig;- R,) ‘
Fig)=3 3 e ™™, 4Ry
k=0 m=0

N/n—1 _ . . n—1 _ . .
= 3 TS e Ry, Ry | (B3)
m =0 k=0
where we have written
hp () =f(Ry +7p,) (B4)

to emphasize that the term within large parentheses can
be evaluated with an FFT.

To compare the performance of this reduced FFT to an
FFT over the entire set {G;}, we estimate and compare
the number of operations required in the two procedures.
The term ‘“‘operation” denotes a complex multiplication
and a complex addition, and for convenience, we assume a
uniradix transform. From Eq. (B2), we require N /n-
independent transforms (which can be evaluated in paral-
lel), each of which requires n Inn operations. For each g;,
N /n explicit operations are also required. Thus the total
number of operations is (N/n)n(Inn +1)=N(lnn +1),
which should be compared to N InN operations if the
FFT were performed over the large set {r;}. For the
present case, a 50% savings in the number of operations is
achieved on average.

APPENDIX C: CHARGE DENSITY CALCULATION

We have to calculate the charge density and the corre-
sponding new output potential to iterate our potential to
self-consistency. We need p(G) t evaluate
VH(G)=4me’p(G)/G? and p(r) to evaluate V**(p). Ow-
ing to the factor of 1/G2, the higher G components of
VH(G) converge more quickly than p(G).
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In order to calculate p(r) accurately from p(G) by using
the FFT, we need to employ very high G-vector com-
ponents of p(G), because p(r) has rapid spatial variations
near the nuclei. We have found this to be an impractical
procedure and have developed a new method to evaluate
p(r) directly on the finite mesh points in real space. Even
with the new method the number of mesh points might
well be a problem [due to the sharpness of p(r)], but the
final quantity that we need is the exchange-correlation en-
ergy functional, which is much smoother than p(r).
While the method is a bit complicated, it is more efficient
and accurate than the usual FFT method. In addition, the
fully symmetrized p(G) is obtained as a side benefit with
little additional effort.

As discussed in the text, the eigenfunctions are expand-
ed as a sum of plane wave and LCAO’s constructed from
localized nonoverlapping functions,

‘I/,,k(r Ea,,k(G)lk+G)+2 L nk ¢pL(k r).

(C1)
The charge density in the crystal is
plr)= 2 20(€es —€nx) [ Wak(r) | g
n,k

where O(¢) is a step function which is zero for € <0 and 1
for €>0. When combined with the normalization factor
1/ N, the sum over k becomes an average over the whole
Brillouin zone.

Rather than attempting to compute the energy band at
a large number of wave vectors, we use a Gaussian
weighting scheme which makes it possible to represent the
average behavior near the Fermi energy with a relatively
coarse mesh in the BZ (in practice, 30 to 35 points in IBZ

are used). The sum over the full BZ is equivalent to a
sum over the IBZ:
1 BZ 1BZ
— > > 2 w(k)(
Ny Nop &,

where R, represents a point group operator of the system
and w(k) is a geometric weighting factor for each k in the
IBZ. We replace the occupancy factor 20(ey —e,y) with
W,k a new occupancy number determined by a Gaussian
weighting scheme. Then,

2 Rop Ew

OPR

nkpnk(r) » (C2)

where p,y is the square modulus of (C1), and here and
below the prime on the nk summation indicates a sum
over the irreducible 5zth of the Brillouin zone. Substitu-

tion of the explicit form of the wave function yields
J

Proc(r)= EROPzw(k 2
OP R p,L,L'
2Ry X

OP R p,L,L' | nk

op

2Ry 2D

OP R p,L,L’

pLL’ ¢pL ¢pL

p(r)zppw(r)+ploc(r)+pmix(r) s (C3)

corresponding to the plane-wave—plane-wave, local-local,
and plane-wave—local terms in the sum of the squares of
the occupied eigenfunctions. We discuss these in turn
below.

1. Plane-wave part of the charge density in r space

Our aim is to express the part of the charge density
arising from a complete Brillouin zone sum of the square
of the plane-wave part of the eigenfunctions as a weighted
sum over the irreducible fraction of the zone. Using (C1)
and (C2) we find

1
EROPEw ‘Q’O

0PR

Ppw(T
a k(G) i(G—-G')r

X Ea,,k

which can be rewritten in the form

Ppw(r)= ZRop ZAG el(G G)r’
N0p Ryp
where
1
oo =g 2w W Glas(G)
nk

The quantity

I(G—G')-r;
P(r)= 3 Agge ‘
G,G’

where (r;} is the real-space mesh conjugate to the
reciprocal-lattice vectors used to expand the plane-wave
part of the eigenfunctions, is a simple Fourier transform
which can be done easily by an FFT of small size. The
vectors r; have the same symmetry as the G’s because
these are defined on a FFT mesh. Therefore,

Pl i) == SRP(r) =~ 3 P(Rypry)

op Rop op Rop

Because the real-space mesh in the FFT has the lattice
symmetry, R,,r; is another mesh point in the Wigner-
Seitz unit cell. Therefore, the plane-wave part of charge
density is easily calculated and symmetrized on a coarse
spatial mesh.

2. Localized part of charge density in r space

The localized functions employed here are strictly
nonoverlapping. Accordingly, we may without approxi-
mation compute this part of the charge density in the cen-
tral unit cell at R=0. The result is

dpL(nk)der(nk)(ﬁpL(rp )d’;L'(I'p)

S w(K)Wdpr (nK)dpr Ank) |$pr (£,)8,0(x,)*

(c4)
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where

DpLL': 2' LU(k)WnkdpL(nk)dPL'(nk) .

n,k

The transformation properties of the localized func-
tions are known and may be used to simplify this expres-
sion. Since atom site p transforms onto itself under
point-group rotations (given that the unit cell contains
only one atom of a given species) the rotated functions in
(C4) are linear combinations of the localized functions on
the same lattice site. Temporarily suppressing the indices
pand [,

0p¢m 2 Am m’ op )¢m’ ’

where m is the magnetic quantum number and A4, ,, is
the rotation matrix for angular momentum / correspond-
ing to R,,. Since the result of the group operation is to
replace a particular localized function by a linear com-
bination of functions on the same lattice site, Eq. (C4) is
equivalent to the simpler expression

P loc 2 ¢pL

pL,L'

oL ®pr (T, (C5)

where the “symmetrized” coefficients D are themselves

J

—ik-(r,)
pmix )= EROP 2 Ew(k)Wnk rp u:k(r)dPL
OP R pL | nk
We define
By (D=3 wk)Wye “'u,(r)d?(nk)
n,k

and accumulate this quantity on the coarse » mesh. Then,
bringing the rotation operators inside the functions yields

2 N 2 L(Ropr)¢pL[Rop(rp)] .

p,L 0PR

Pmix(T)

Using
¢pL [Rop(rp )] = 2 ALL’(Rop )¢pL'(rp ),
T

we rewrite this in the form

pmix(r): 2 [N 2 2 ALL (R (I'p)
P op R
+c.c. |fpl |rp |)
=3 B,(0)fp(I1, ) (C6)

p

The quantity Ep involves only the plane-wave part of the
eigenfunctions. Accordingly, we accumulate it on the
course r mesh and interpolate it, using the FFT procedure
described earlier, onto the fine r mesh at the last step of
the calculation.

(nk)
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given by

D

pLL' = 57 N EEEAm m,(ROP)DPL Lz m’ '"z(R"P)'

°p R, p M1 My

The quantity D prL is just a coefficient and ¢, (r,) may
be read from a premade atomic data file that contams
wave-function values on a sufficiently fine mesh. Thus,
the accumulation and symmetrization of charge density
information related to the local-local part of the square of
the eigenfunctions involves only the small number of
quantities D, b+ Which need be combined with the large
number of ¢pL values as the last step of the calculation.

3. Mixed part of charge density in r space

The third term in the charge density is the cross term
between the plane wave and localized-function expansion
of the eigenfunctions. We define

1/2 Ea"k

to be the periodic part of the plane-wave component of
the eigenfunction. Then in the central cell the mixed part
of the charge density may be written in the form

u,,k(r lG.r

¢pr(1,)+c.c.

Now we turn to the calculation of the density in G
space. The most direct method is to use an FFT on the
real-space function because we have already obtained the
information of p(r) on the FFT mesh. Although this is
practical for V,.(r) due to the smoothness of the poten-
tial, the uniformly spaced r mesh is still not dense enough
to represent p(r). For example, in our calculations, the
exchange and correlation potential v,. is typically well
described by a set of 12K reciprocal-lattice vectors; the
full charge density would require of order 30K G vectors.
Analytic treatments of the localized part of the W, will
provide the most efficient approach to the problem.

The decomposition (C3) in real space implies an analo-
gous decomposition in reciprocal space. We write

-é— fﬂoe‘iG"p(r)dr
0
=Ppw(G) +Pioc(G) +-pmix(G) .

We will evaluate each contribution in turn.

4. Plane-wave part of charge density in G space

The plane-wave part of the charge density was evaluat-
ed on the course mesh in reciprocal space. However, this
function is intrinsically smooth because it was constructed
from the lower G vector components of eigenfunction.
Therefore, the ppw(G) can be obtained by FFT on the
course mesh without any loss of accuracy.
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5. Localized part of charge density in G space

Fourier transformation of Eq. (C5) yields

Pioc( G) = —fQ ~i¢r 3 D

pL,L’

'pLL ¢pL I'p )¢PL )dr .

Changing the integration variable leads to
—iG-T,

PoclG)=—~ 3 Dy e g

Q p,L,L’
X fnoe_iG"cﬁp,_(r)tb;Lr(r)dr. (€7

We expand the plane wave and the atomic wave function

J

ploc
QO 5 v

For a charge density constructed from localized functions
with d symmetry, the / =0, 2, and 4 Bessel transforms are
required in this expression. We should also note that
Ploc{G) need only be accumulated on a set of representa-
tive G vectors which provide the expansion in each star of
G.

6. Mixed part of charge density in G space

We need to evaluate the Fourier transform of (C6):

1 _iGIT B
Pl G) =~ fnoe G ng(r)f,,(ter

Since B,(r) is a smooth function, we expand it in Fourier
series

1= 3e%B,(G)= e 7' " (G
G’ G’

which leads to

e % =3 4n(—i)'Y} (G

Lm

$p (D=1, (MY, (1),

)Y 1 (1) (Gr) ,

which allows us to separate the integral in (C7) into radial
and angular parts. The radial part is a Bessel transform
which can be done very accurately in a dense one-
dimensional mesh. The angular integration of the product
of three spherical harmonic functions yields the Gaunt
coefficients C(L,L’,L"). Since p(G) has the symmetry of
the crystal, selection rules limit the ensuing sum to only a
few nonvanishing coefficients which are obtained analyti-
cally. The result is

2 Dprie "3 (—iV 'CULL,LYLAG) [ f,(rPjpriridr .

pmirlG)= 3 e
Q<&

—i(G— G)r (G,)

X [o, e Spndr . (C8)

Since f(r) is spherically symmetric, this reduces to a
zeroth-order Bessel transform of the radial function. Al-
though a direct evaluation of (C8) would require
{Ng XN, } operations where N, is the number of plane
waves required to span ¢,, there are two features in the
structure of (C8) which allow a considerably reduced cal-
culation. First, the quantity p.,;,(G) has the point-group
symmetry of the crystal by construction, and therefore
only needs to be evaluated on a set of representative G’s.
Second, the intermediate sum over G’ is self-limiting be-
cause of the smooth form of B. The number of opera-
tions involved in evaluating (C8) is so small that the cal-
culation runs relatively quickly.

Once p(G) has been accumulated on a set of representa-
tive G’s the Hartree potential is combined with the
reciprocal-lattice representation of the exchange and
correlation potential as described in Appendix A, and the
resulting screening potential is returned to be included as
an input potential in the SCF cycle in the usual way.
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