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Residual resistivity of defects in metals
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A simple expression for the residual resistivity of defects in metals is derived which includes the
Bloch-wave character of the electronic structure of the host metal lattice at its Fermi surface. This
expression involves, apart from Friedel phase shifts of the defect, only the average Fermi velocity
and the average s, p, d, etc. partial-wave character of the electron states of the host metal atom at
its Fermi energy, both of which are easily obtained in the course of a standard band-structure calcu-
lation. The explicit dependence on the partial-wave character makes the expression somewhat dif-
ferent from the well-known formula for the jellium matrix (which is, however, recovered in the
free-electron limit), and the expression derived earlier by Gupta and Benedek. Calculations for im-
purities in copper show good agreement with experiment. We also show that the residual resistivi-
ties are extremely sensitive to the values of the Friedel phase shifts. Very minor changes in their
values alter the residual resistivities dramatically. This indicates the major role played by these
phase shifts in determining the residual resistivities, and the need for their accurate determination.

I. INTRODUCTION

The calculation of the residual resistivity of defects in
metals is tedious since, even within the relaxation time
solution of the Boltzmann equation, it requires the evalua-
tion of rather laborious double integrations over the Fermi
surface involving the matrix elements of scattering by the
defect potential. For simple-metal impurities in simple
metals, these matrix elements have been evaluated using
the pseudopotential theory and the linear-response approx-
imation. Such an approach is, however, unlikely to be
valid for defects such as vacancies or interstitials, or inter-
stitial impurities such as H, where the perturbation creat-
ed is rather large and the linear-response theory no longer
valid. ' For the jellium matrix, an alternative approach
based on the scattering theory can be used where the ap-
proximation of a weak perturbation is no longer necessary
and the calculation is valid to all orders in the strength of
the defect potential. The spherical nature of the Fermi
surface allows the integrations to be performed analytical-
ly, and the resulting final formula for the defect resistivity
is extremely simple and requires essentially the knowledge
of the phase shifts of the potential of the defect at the
Fermi energy.

Indeed, similar problems are encountered elsewhere,
especially in the evaluation of the electron-phonon cou-
pling constant A. for the calculation of the superconduct-
ing transition temperature T, in metals and compounds.
There, also, one is required to evaluate tedious double-
Fermi-surface integrals involving the matrix elements of
the electron-phonon interaction. In this case, however,
a useful approximation has been introduced by Gaspari
and Gyorffi ' for transition metals, which results in a
tremendous simplification. The integrations over the Fer-
mi surface are performed analytically and the resulting fi-
nal expression for X is rather simple and involves essen-
tially the phase shifts of the muffin-tin potential and the
partial and the total densities of states at different atomic

sites. This formula has been widely employed in the cal-
culation of A, and the prediction of T, for many metals
and compounds, and the results obtained are, generally
speaking, in rather good agreement with experiment. '

This includes Nb and its compounds which have rather
complicated Fermi surfaces. An attempt along similar
lines was made by Gupta and Benedek" for the calcula-
tion of the residual resistivity. They obtained a formula
very similar to that obtained by Friedel' for a jellium ma-
trix. In their derivation, however, they also used the opti-
cal theorem, ' which allowed the wave-function character
at the Fermi surface to be expressed directly in terms of
the total densities of states (DOS's) at the Fermi energy.
This, unfortunately, puts serious limitations on the validi-
ty of their formula, not only in the case of transition met-
als of interest, such as Nb and Pd, with a strong d com-
ponent at the Fermi energy, but also for noble metals such
as Cu. ' '

In this paper we present an alternative derivation,
without invoking the optical theorem, and obtain a for-
mula for the residual resistivity which is similar, but not
identical, to that obtained by Gupta and Benedek. The
derivation of this formula is given in Sec. II, where we
show that the residual resistivity of a solute or a defect is
strongly dependent on the partial s, p, d, f, etc. -type
DOS's of the host at its Fermi energy, and the Friedel
phase shifts of the defect potential. Calculations of the
defect resistivities for some substitutional impurities are
presented in Sec. III and final remarks are given in Sec.
IV.

II. DERIVATION OF THE FORMULA
FOR RESIDUAL RESISTIVITY

As usual, we will use the Boltzmann equation to calcu-
late the residual resistivity where it can be expressed in
terms of an integral over the Fermi surface of the scalar
product of the vector mean free path A(k) and the elec-
tron velocity Vk of an electron with wave vector k and
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band index n. In the relaxation-time approximation, A(k)
is taken to be in the same direction as Vk,

A(k) =r(k)Vk,

where r(k) is the relaxation time due to the scattering by
the defects. The residual resistivity p of the defect can
then be written as

in the interstitial region may be expanded in terms of the
spherical Bessel (j~) and Neumann (n~) functions,

1
RI(k, r) = [j~(irr)cos6~(E) —n~(xr)sin6~(E)),

Nl(ir, R)

where
1 e dSk

r(k)Vk. Vk, (2) NI (Ir,R ) =j&(IVER )cos5I (E)—n, (I~R )»n51 (E),

where FS denotes the integral over the Fermi surface.
The relaxation time r(k) is related to the probability
P(k, k') of scattering from an initial unperturbed state k
to the final perturbed state k' through the relation

1 =n;N QP(k, k')(I —cos9),
r(k)

(3)

P(k, k')=
~

T(k, k')
~

5(Ek —Ek ), (4)

where the transition matrix T(k, k ) is given by

and describes the scattering of an electron from the initial
state with wave function Ok in the pure metal to the final
state Wk in the solid with the defect by the extra potential
b Vof the defect.

We now make the muffin-tin (MT) approximation in
which the whole crystal is divided into touching spheres
and the potential outside these spheres (the interstitial re-
gion) is assumed constant. Within the augmented-plane-
wave (APW) formalism' the wave function inside a MT
sphere of radius R in the unperturbed lattice can be writ-
ten as

4'k(r) = gi AI~(k)RI(k, r)YI~(r),
&&0 i,

where

(6)

where 8 is the angle between Vk and Vk (cosO
= Vk. Vk /

~

Vk. Vk
~

), n; the number of defects, and N
the number of units cells, each with volume Qo (NQo is
the volume of the crystal). Further, P(k, k') can be writ-
ten as

where ir =PE, and 6I(E) is the phase shift of the muffin-
tin potential V(r) of the host metal evaluated at the ener-

gy E. Rydberg atomic units %=2m =e /2=1 will be
used throughout this paper.

In order to calculate the wave function O'I, in the pres-
ence of the defect, we assume that the potential of the de-
fect is localized so that b, V [AV(r)= V'(r) —V(r), where
V'(r) is the defect potential] vanishes outside the muffin-
tin sphere. We also neglect here the size effect of the
solute and, further, do not consider the case of magnetic
impurities, although the generalization to these problems
is quite straightforward. We restrict ourselves here to the
case of substitutional impurities or defects with one atom
per unit cell; the formalism can be extended rather simply
to the case of interstitial impurities by filling the intersti-
tial region with fictitious muffin-tin spheres of an ap-
propriate radius and then treating the interstitial impurity
as a substitutional defect. The wave function +'k in the
presence of the defect (assumed to be located at the origin)
can be written as a sum of two terms, the wave function
+k of the unperturbed lattice and an outgoing spherical
wave %",

(10)

The scattered wave +' can be expressed for r ~ R in
terms of Hankel functions hi jt+i——ni,

0"(r)= g i'Bf~(k)h~(jar) YI~ (r),
I, rn

where BI' (k) are constants to be determined. Inside the
muffin-tin sphere of the defect, +k may, however, be
written in terms of the solutions RI' of the radial
Schrodinger equation [as in Eq. (6)] for the defect poten-
tial V'(r),

A,m(k) = g a, (k)JI(kgR) YI~(kg ),
8

r ' A~~(k)RI(k r) Yl~(r)
+0 Im

(12)

and we have assumed the MT sphere to be situated at the
origin. In Eq. (7), as(k) are the coefficients of expansion
of the wave function (g is a reciprocal-lattice vector)
which can be readily obtained in an APW calculation, jI is
the spherical Bessel function, YI the spherical harmon-

ics, ks ——(k+g)/
~
k+g ~, and RI is the radial wave func-

tion which, of course, depends on k only through the elec-
tron energy Ek and is normalized so that it is unity at the
MT boundary, i.e., R~ (k, R ) = 1. Note that in the
Korringa-Kohn-Rostoker (KKR) formalism' the coeffi-
cients AI can be obtained directly from the solution of
the eigenvalue-eigenvector matrix. Taking the potential
outside the MT sphere to be zero, the radial wave function

RI'(r) =, [jI(~r)cos5~(E) —ni(~r)sin5~(E)],
NI'(Ir, R )

(13)

with

N( (K,R ) =j~(IVER )cos5&(E) —ni(IVER )sin6I (E) (14)

The requirement that the wave function and its radial
derivative determined from Eq. (10) be continuous to

where again RI' is normalized to unity at r =R. Outside
the MT sphere, RI' can be expressed in terms of the phase
shifts 6I of the defect potential,
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those determined from Eq. (12) determines both Ar' and
BI' . In particular,

;(s, s ) Nr'(rr, R)
Nr rr, R

(15)

&& I Rr'(k', r)1( V(r)Rr(k, r)r dr .
0

(16)

Note that Eqs. (2) and (4) impose the condition that k, k'
in Eq. (16) be on the Fermi surface. Hence in what fol-
lows we drop the index k in Rr(k, r), and the radial wave

which is the quantity of interest in the present work.
The transition matrix T (k, k') can now be calculated

using Eqs. (5), (6), and (12), and one obtains

4 2

T(k, k') = g Ar"(k')Ar (k)
l, m

functions Rr(r), Rr'(r) and the phase shifts 5(,5r will be as-
sumed to be evaluated at the Fermi energy E =EF. The
radial integral in Eq. (16) can be easily evaluated (see Ap-
pendix for derivation) and expressed in terms of the phase
shifts 5r and 5r of the host and the solute muffin-tin po-
tentials at the Fermi energy,

R Sinkif r Rr'(r)b V(r)Rr(r)dr =—
0 EF Nr'Nr

where AI ——6I —5I, and NI, N~' are the values determined
from Eqs. (9) and (14) at E =EF. With this and Eq. (15)
we may rewrite Eq. (16) as

ih)
(4rr)2, sinbr e

T(k, k'}=— g Ar~(k')Ar~(k) q, (18)
QpVEF rm Nr

substituting Eq. (18) in Eq. (4), and then, in Eq. (3), we
obtain, for the relaxation time r(k) due to the scattering
by the defect,

n;(8rr) dSk

sincere

Ar* (k')Ar (k)r(k) NAApE~ Fs
~

Vk,Ek
~ r

™ r~ (1—cos8} . (19)

Equation (2) in conjunction with Eq. (19) provides a
vehicle for calculating the residual resistivity p of the de-
fect. As can be seen from these equations, however, it
remains a laborious task. In Sec. I we emphasized the
great similarity between this problem and the calculation
of the electron-phonon coupling parameter A, . As in the
calculation of k, we therefore invoke the spherical-band
approximation proposed by Csaspari and Cxyorffy ' and

write, at the Fermi energy,

Ar (k) =ar(EF) Yr (lr} . (20)

As noted by Gaspari and Gyorffy, although Eq. (20) is a
serious approximation, it nonetheless retains most of the
nonstructural features of a real band structure. With this
approximation the integrals are easily performed analyti-
cally, and one obtains'

4M
P=N

12m 2

g (1 + 1)[A r sin pr +Ar + ( sin pr + (
—2A r Ar + (sin(r) r sinpr + (cos(pr + (

—(t r )],2 2 2 ~ 2

EF0

which can be further rearranged and written as

p= C g [(21+1)Ar sin Pr
I

—2(l + 1)Ar Ar+(sin(lt rsinPr+(cos((t r+) 4r )], —

(22)

I

from the backscattering from the host lattice. '

The coefficients AI depend on the partial-wave charac-
ter, s, p, d, etc. , at the Fermi surface of the host-metal
atoms. Following Gaspari and Gyorffy, ' the coefficients
Ar can be expressed in terms of the partial DOS, Dr(EF ),
of one spin of angular momentum type l inside the
muffin-tin sphere of the host-metal atom at the Fermi en-
ergy EF through the relation

where

A

2
a((EF )

(23)
where

Dr(EF )

Ir(EF )N (EF )
(26}

4M 12m

N e VFEFQo

(24)

(25)

N(EF)= +Dr(EF)
I

is the total DOS inside the muffin-tin sphere, and

(27)

and VF is the electron Fermi velocity averaged over the
Fermi surface. ()r r is the Friedel phase shift which, in ad-
dition to h~, may be allowed to include the contribution OI

R
(21+1)f dr r Rr (r) .

7T 0
(28)

The integral Ir in Eq. (23) is directly related to the ener-
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gy derivative of the logarithmic derivative, L~(E), evaluat-
ed at the Fermi energy EF,

II ——R L((EF), (29)

4~ ( „jl(kr)
+I, = g~'jt(kR)YI~(k) Y( (r) .

00 ( j((kR)
(30)

From this, one obtains

Ai =j l(kR) Y(~ (k),
so that

(31)

ar=j I(kR ), (32)

where k is the Fermi wave vector ( k =kF ). Since the
host-metal phase shifts 6~ ——0 for a jellium matrix, one
also has

(33)

and hence, from Eq. (23), one obtains

Ai ——1. (34)

Substituting this in Eq. (22) and noting that Vz ——2kF and
EF =kF (in a.u. ), and rearranging the terms, one obtains

p=, g (I +1)sin (y, +, y, ) . —n; 4 2

N e ZkF
(35)

Equivalently, the resistivity p in pQ cm/at. /o can be writ-
ten as

p=0.218 g (l+1)sin (P(+)—P(),
ZkF

(36)

where Z is the valence of the matrix and kF is in a.u.
This is the formula which was first derived by Friedel'
for the resistivity of a defect in a jellium matrix. Note
that in Eqs. (35) and (36), $1=5I, the defect phase shift, in
contrast to Eq (22), where . P~ depends upon 51 ——5~ —5&,

the difference of the defect and the host-atom phase

where LI =(1/R~)(dR~/dr) and LI =dL~(E)/dE.
The coefficients A~ are easily obtained in the course of

an electronic-structure calculation. A table of these coef-
ficients has been given by Papaconstantopoulos et al. '

for metallic elements with Z (49. Equation (22) is the fi-
nal result of this paper. It shows that in a metal where
the DOS at the Fermi energy departs significantly from
the free-electron behavior, the resistivity no longer de-
pends only upon the differences Pl+& —P~, but instead
upon each individual component weighted appropriately
by the corresponding partial-wave character at the Fermi
surface. This equation rectifies the inherently inaccurate
feature of the Gupta-Benedek model, " where the use of
the optical theorem' constrained the coefficients AI to be
all equal and independent of their l value, thus ignoring
the essential features of the Fermi surface.

It is easily seen that for a jellium matrix, one recovers
from Eq. (22) the classic formula derived by Friedel, '

since in this case the wave function inside the muffin-tin
sphere can be written as

shifts, and P&, the backscattering contribution. From Eq .
(34) we see that in the free-electron case Al ——1, so that all
partial waves are equally weighted. This is a result which
is recovered in the electronic-structure calculations of
Papaconstantopoulos et al. ,

' where one finds from their
Table II that for Na, for example all AI are nearly equal
to unity, independent of the I value.

III. APPLICATION TO THE CASE OF COPPER

The expression of the residual resistivity, Eq. (22), has
been derived here using the scattering theory without con-
straints on the strength of the defect potential and, in the
spirit of the work of Gaspari and Gyorffy, ' incorporates
the effects of band structure in the spherical-band approx-
imation. This is a general expression and is va1id for both
simple and transition metals. The residual resistivity of
defects can be calculated simply, without performing la-
borious Fermi-surface integrals, from the Friedel phase
shifts of the defect evaluated at the Fermi energy of the
host matrix, and the average electron velocity and the
average s, p, d, etc. partial-wave character of the electron
states of the host metal at its Fermi surface. These quan-
tities can be readily obtained from band-structure calcula-
tions. ' ' The present formula for the residual resistivity
is different from the previous work of Gupta and
Benedek" in that it incorporates explicitly the s, p, d, etc.
character of the electron states at the Fermi surface.

As an example of the application of this formula, here
we calculate the residual resistivities of only a few impuri-
ties in copper, which is a well-studied metal and where ex-
perimental data are available. Most of the information
needed here on copper (and for other metals) has been tab-
ulated by Papaconstantopoulos et al. ' With a lattice
constant a=6.83 a.u. , these authors find the values of AQ,

A&, and A2 to be 0.564, 0.862, and 0.928, respectively,
and the densities of states of both spins, N (EF ), equals
3.92 states/Ry atom at the Fermi energy EF——0.598 Ry of
copper. The Fermi velocity VF is unfortunately not avail-
able in these tables. This can be estimated from the Fermi
surface and the DOS. From Ref. 1 we find the Fermi-
surface area in Cu to be 0.98 times the corresponding area
in the free-electron approximation. From this and the
value of the DOS we deduce for VF in copper a value of
1.044 a.u. , which is to be compared to its value of 1.42
a.u. in the free-electron approximation. This allows us to
obtain the presummation constant C in Eq. (22) and we
find a value of 6.25 pQcm/at. %, which is substantially
larger than its free-electron value of 3.80 pQcm/at. %.
This difference indicates that it is not justified to replace
the presummation constant in copper by its free-electron
value.

Friedel phase shifts for several impurities in Cu have
been given by Coleridge. ' We have listed them in Table I
for convenience. Coleridge distinguishes the d phase
shifts of ez and t,z symmetry. In Table I we have given
their mean value obtained by taking into account their or-
bital degeneracy. These phase shifts have been used to
calculate the residual resistivities from Eq. (22). The re-
sulting values have been listed in Table I, together with
the experimental results from Ref. 14. Also listed in
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TABLE I. Friedel phase shifts Po, g, , gz (in

pA cm/at. % in copper (from Ref. 14).
rad from Ref. 14) and the impurity resistivity in

Alloy
Friedel phase shifts

00 02

Residual resistivity
Coleridge This work Expt.

Cu(Zn)
Cu(Al)
Cu(Si)
Cu(P)

Cu(Au)
Cu(Ni)
Cu(Pd)
CU(pt)

0.197
0.201
0.634
0.659
0.182

—0.010
—0.370

0.500

0.193
0.398
0.829
0.958

—0.087
—0.060
—0.190
—0.190

0.132
0.227
0.232
0.344

—0.147
—0.264
—0.180
—0.230

0.36
1.30
4.02
5.39
0.54
1.13
0.72
2.13

0.32
1.35
4.28
5.71
0.58
1.57
0.54
1.92

0.33
1.13
3.95
6.70
0.55
1.1 1

0.89
2.10

Table I are the values calculated by Coleridge, ' who used
a set of 19 points in the irreducible —„th portion of the

Fermi surface (a total of approximately 900 points on the
entire Fermi surface of copper) to perform the Fermi-
surface integrals, and also did not put constraints on the
nature of the vector mean free path (his calculation, how-

ever, shows that the relaxation-time approximation, which
he refers to as the Ziman approximation, is an exceedingly
good approximation for the calculation of the residual
resistivities). A comparison in Table I shows that our cal-
culated resistivities are, generally speaking, in fairly good
agreement both with the experimental ones and those cal-
culated by Coleridge, especially considering the fact that
our Eq. (22) for the calculation of resistivities is an ex-
tremely simple formula which requires practically no cal-
culations (on a computer). The worst agreement is ob-

tained for three cases, Cu(A1), Cu(Ni), and Cu(Pd), where
the calculated values differ from the experimental ones by
20—40%. One is tempted to interpret this discrepancy as
the inadequacy of the approximations leading to Eq. (22),
especially the spherical-band approximation. This inter-
pretation is indeed not true since we notice from Table I
that the resistivities calculated by Coleridge for Cu(A1)
and Cu(P) by performing involved Fermi-surface integra-
tions also differ from the experimental values by more
than 20%. We note here that a direct comparison be-
tween our calculated values and those calculated by
Coleridge is not meaningful since a total mesh of 900
points on the whole Fermi surface of copper is too coarse
to call these calculations accurate, due to inherent numeri-
cal uncertainties.

The true cause of the discrepancy can be traced in the
Friedel phase shifts which, in conjunction with the
partial-wave-character coefficients Ao, A&, and Az, play
the dominant role in determining the residual resistivities.
As an example, if we choose the Friedel phase shifts for
Cu(A1) calculated by Braspenning et al. ,

'
$0 ——0.32 rad,

P&
——0.39 rad, and Pz

——0.19 rad, we obtain for the residual
resistivity p a value of p=1.04 pO cm/at. %, which is to
be compared to the value of p=1.35 pQcm/at. % ob-
tained from the phase shifts of $0——0.201 rad, P&

——0.398
rad, and hz=0. 227 rad from Coleridge and the experi-
mental value of p=1.13 pQ cm/at. %%uo . Wenotic e tha t the
two sets of Friedel phase shifts are not significantly dif-
ferent from each other, yet very minor differences change

the resistivity by more than 30%. There are two terms in
Eq. (22) which contribute to the residual resistivity. The
contributions from the first term, which are always posi-
tive, can be identified as the ss, pp, and dd scattering
terms, while those from the second, which are subtracted
and can be either positive or negative depending on the
phase shifts, can be identified as the sp and pd scattering
terms. With the Friedel phase shifts of Coleridge, these
five terms give contributions of 0.08, 2.09, 1.36, 0.46, and
1.72, respectively, to the residual resistivity, while those
from Braspenning et aI. give contributions of 0.20, 2.01,
0.96, 0.72, and 1.40, respectively. This comparison indi-
cates the extreme sensitivity of each of these five terms to
the Friedel phase shifts and demonstrates the controlling
role of these phase shifts over the need of performing cal-
culations involving rather elaborate Fermi-surface in-
tegrals, in determining the residual resistivity of a defect.
In the particular case of Cu(Al), a comparison of calculat-
ed and experimental data seems to indicate that the
Friedel phase shifts calculated by Braspenning et al. are
preferable to those of Coleridge. If one chooses the
Friedel phase shifts intermediate between those of
Coleridge and Braspenning et a/. , namely $0——0.26 rad,
P& ——0.39 rad, and Pz ——0.21 rad, one obtains a value of
p= 1.17 pA cm/at. %, in excellent agreement with the ex-
perimental value of p = 1.13 p 0 cm/at. %.

A similar picture emerges for Cu(Ni) and Cu(Pd).
Braspenning et al. obtain Friedel phase shifts of
Po ———0.06 rad, P& ———0.04 rad, and Pz ———0.20 rad for
Cu(Ni), again not significantly different from those of
Coleridge Po ———0.01 rad, P, = —0.06 rad, and

Pz
———0.264 rad. The two sets of phase shifts yield values

of residual resistivities p=0.92 and 1.57 pQcm/at. %,
respectively, which differ from each other by more than
50%. Again, with phase shifts intermediate between these
two sets, $0= —0.03 rad, P&

———0.05 rad, and Pz ———0.23
rad, we obtain a value of p=1.20 pQ cm/at. %%uowhic h is
in good agreement with the experimental value of p= 1.11
pQ cm/at. % For Cu(Pd) it appears that the d-phase
shift g= —0.18 rad is too small. Keeping Po and P& un-
changed but with Pz ———0.23 rad instead, we obtain a
value of p=0.88 pQ cm/at. %%uo, inexcellen t agreement
with the experimental value of p =0.89 pQ cm/at. %%uo .
This again shows the extreme sensitivity of the residual
resistivity to the Friedel phase shifts. In view of this,
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given a set of Friedel phase shifts, only an order-of-
magnitude agreement between calculated and experimen-
tally determined residual resistivities can be reasonably ex-
pected.

~ ~ l(l+1)—U, + V(.) —E+ UI ——0,
r 2 (A2)

The radial Schrodinger equations for UI and U~' at en-
ergy E are

IV. CONCLUSIONS

We have derived in this paper, a very simple expression,
Eq. (22), for the calculation of the residual resistivities of
defects in metals, which does not require the calculation
of any laborious Fermi-surface integrals. The main in-
gredients which appear in the calculation are the Fermi
velocity and the average partial-wave character of the host
metal at its Fermi energy, and the Friedel phase shifts of
the defect evaluated at the Fermi energy of the host ma-
trix. The calculations have been presented for several im-
purities in copper where Friedel phase shifts are available,
and the calculated values are, in general, in good agree-
ment with available experimental data. We have also em-
phasized the extreme sensitivity of the calculated resistivi-
ties on the Friedel phase shifts. This is a point which has,
to date, not been recognized in the literature and under-
lines the need for an extremely accurate determination of
these phase shifts.
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APPENDIX

—U;+ V'(r) —E + I (I + 1)
U,'=0,

r
(A3)

U i Ut —Ut Ut + [ V{r ) V'(r) j U—t ( r ) Ut ( r) =O .

Upon integration, one obtains

U~'r V'r —V r U~ r dr

(A4)

= ( U t Ut —Ut Ut') o

= ( U t U, —Ut Ut ).=~ .

Noting that

(A5)

UI ——«R I, UI ——R I +rRI,
we obtain, from Eq. (1),

I =R (R tRt RtRt')„—

We may now substitute the values of R~ and RI' from
Eqs. (8) and (13), and making use of the Wronskian

jt(X)nt(X) n, (X)j,—(X)= 1/X', (A7)

we obtain

where Ut ——dUt/dr, U, =d'U, /dr', etc. Multiplying (A2)
by Ut' and (A3) by Ut and subtracting, one obtains

(Al)

Let us suppose

I= R~ rhV rR~'rr dr
R J

UI rhVr UI'rdr,

where UI ——rRI and UI' ——rR&', to be evaluated at E =EF.

sin(5't —5t )I=——
V EF 1Vt'cVt

(A8)

where Xt and Nt are defined in Eqs. (9) and (14), respec-
tively, and 6~ and 6I are the phase shifts evaluated atE=E .
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