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Large enchancements in certain elastic moduli (by more than 100%) of compositionally modulat-
ed films of certain metal alloys, in particular copper-nickel, have been reported. Among the ex-
planations proposed for the phenomenon, it has been suggested that the enhancement is due to
coherency-induced strains and preliminary calculations based on nonlinear continuum elasticity have
been reported in support of this idea. We have explored this mechanism in detail for copper-nickel
superlattices. The variation of the elastic constants with strain (including up to fourth-order elastic
constants) as well as with alloy composition have been considered. The average elastic moduli have
been determined for a sinusoidally modulated film. We have found that the biaxial moduli Y[001]
and Y[111] vary as the square of the modulation amplitude (A). The biaxial modulus Y[001]
shows a small enhancement, on the order of a few percent, while Y[111]actually decreases, by a
few percent, from its value for the homogeneous alloy. We have also found a similar decrease of
Y[111]for layered copper-nickel superlattices with sharp interfaces. The relative contributions of
the strain and composition dependences of the elastic constants to the net change have been investi-

gated. While the strain dependence alone increases the modulus of the modulated film, the composi-
tion dependence decreases it. The third- and fourth-order elastic constants (reflecting the strain
dependence of the elastic moduli) have to be much larger than their experimentally determined
values (even accounting for experimental uncertainty) in order to get even a small enhancement of
Y[111]. We conclude that the enhancement cannot be explained by a continuum model of the
coherency-strained superlattice, but note that an atomic-scale effect cannot be ruled out.

I. INTRODUCTION

Qver the last decade, reports' of great enhancement
of the elastic moduli of certain alloy superlattices (formed
by a periodic modulation of their composition in one di-
mension along specific crystallographic directions) have
generated much interest, as well as some controversy. '

For sinusoidal modulation, the enhancement arises over a
limited range of wavelengths and varies as the square of
the amplitude. While this phenomenon has understand-
ably generated a great deal of technological interest, it has
also aroused considerable theoretical interest. ' "" Al-
though a number of possible explanations have been pro-
posed, ' a clear theoretical understanding of the
phenomenon is not yet available.

The proposed explanations fall largely into two
categories. One class invokes changes in the electronic
structure due to the compositional modulation in order to
explain the enhancement of the elastic moduli. In this ap-
proach the effect is most often explained as the conse-
quence of tangential contact between the Fermi surface
and the surface of the Brillouin zone perpendicular to the
direction of modulation. ' (The increased repeat dis-
tance in the direction of modulation results in a folding
over of the Brillouin zone in this direction. ) It has also
been suggested that the enhancement might arise from
changes in the electronic structure due to the formation of
a large number of interfaces, since it is well known that
electronic properties of solid interfaces are quite different
from those of the bulk.

An alternative approach is to explain the increase in the

modulus as arising, at least in part, from the large biaxial
strains introduced by the coherency between layers per-
pendicular to the modulation direction. Jankowski and
Tsakalakos"' have taken this approach and have tried to
explain the effect on the basis of nonlinear elasticity.
They have shown that the biaxial modulus Y[001] of a
noble metal (Cu, Ag, or Au) undergoes a large increase
when the metal is subjected to biaxial strains of a few per-
cent in the (001) plane.

In this paper we extend their approach and compute
Y[001] as well as Y[111]for compositionally modulated
films of copper-nickel alloys [modulated perpendicular to
the (001) and (111) planes] on the basis of nonlinear con-
tinuum elasticity. We have chosen the copper-nickel sys-
tem simply as a representative test case and the analysis
can be trivially extended to other combinations of metals.
In addition to accounting for the change of the elastic
constants due to strain (which is treated including up to
fourth-order elastic constants), we also consider the
dependence of the elastic constants on the composition of
the alloy. We present the details and the results of our
computations as well as a discussion of those results.

II. ELASTIC CONSTANTS OF A MODULATED FILM

A. Effects of strain

The effective elastic constants of a strained crystal can
be approximated using the higher-order elastic constants.
These higher-order constants are usually defined as the
constants involved in a series expansion of the crystal po-
tential energy in terms of the Lagrangian strain tensor and
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where p' and p are, respectively, the densities of the
strained and unstrained crystals, Cmnpq, Cmnpqrs ~ an
Cmnpqrsuv are, respectively, the second-, third-,
fourth-order elastic constants of the unstrained crystal, g,j.
are components of the Lagrangian strain tensor,

rj;&. ——(a;kajk —5,J )/2, (2)

and a;~ are components of the deformation matrix defined
as

Br
+ij

C)I'j

where r' and r are the coordinate vectors in the strained
and unstrained crystals, respectively, and 6,z is the
Kronecker delta. Unless it is stated otherwise, Latin in-
dices run over the three coordinate directions x, y, and z,
and summation over repeated indices is implied.

In the case of a film grown with [001] texture, the biax-
ial coherency-induced strains in the different layers can be
conveniently taken to be along the x and y axes of the
unit cell. Then the expression in Eq. (1) can be used
directly with

0,') ) =&22 = I +E

F33——1+@3,

a,z
——0 for i&j

where

(4)

E3 ——2( Cf3 /C33 )e (5)

can be determined experimentally. ' The elastic constants
of the strained crystal can be expressed in terms of the
higher-order constants as

I 0 0
Cijki (p /p)maxim +in kp~ iq( rnnpq + Cmnpqrs mrs

1 0+ 2 mnpqrsuv 9rs 9uv

Here, e is the coherency-induced strain in the plane of the
layer. In the state of biaxial strain [in the (001) plane], as
Tsakalakos and Jankowski have pointed out, " the crystal
is no longer cubic but tetragonal. The biaxial modulus is
then given by

Y[001]=C„+Ci2 —2(C(3/C33) . (6)

B. Variation of elastic constants with alloy composition

In a composition-modulated film, the elastic constants
of different layers differ not only because they are in dif-
ferent states of strain, but also because their compositions
differ. In order to account for this, we introduce
C jk] the first and higher derivatives of elastic
constants of different orders with respect to composition,
where c is a variable characterizing the composition of the
alloy —typically the proportion of one component of the
alloy, or its deviation from some predetermined value.
Here, each c in the subscript implies a derivative with
respect to c and no summation over c is implied. We can
then expand the effective elastic constants of a layer of ar-
bitrary composition, c, which is in a state of strain
described by a Lagrangian strain tensor, g,z, in a series
about an unstrained layer at some known composition, c0.
This results in a generalization of Eq. (1) to

When the modulation direction is normal to the (111)
plane, the expressions in Eqs. (4) and (5) can be used to
evaluate the deformation matrix and the strain tensor pro-
vided the elastic constants are defined in the coordinate
system of the film (z axis normal to the film plane, i.e.,
along the direction of modulation, and x and y axes in the
plane of the film). The elastic constants, deformation ma-
trix, and Lagrangian strain tensor in the film coordinate
system can be easily related to those defined in the princi-
pal coordinate system of the crystal with the help of the
coordinate-transformation matrix. ' ' The uniaxial sym-
metry of the (111) plane permits the use of Eq. (6) as it
stands' to compute the biaxial modulus Y[111],which is
the same as Y[001] in the film coordinates.

C" =(ijkl 'p ' p' im j n kp Iql mnpq + mnpqrs 7rs + mnpqc~C + mnpqrsc)rs~C + 2 mnpqrsuv jrs luv + 2 mnpq cc(~ ) + ]
0 0 0 1 0

Here, hc=c —c0 and the elastic constants, Cm„pq, and
their derivatives with respect to the composition variable,
C pq p and C pq p are evaluated at c =c0 ~ For our
computations, we have only retained terms up to second
order in Ac and g,z.

C. Average elastic moduli of modulated films

As with any composite material, the definition of the
effective elastic constants of the modulated film in terms
of those of the constituents involves some assumptions.
The variation of the composition through the film is tak-
en to be one dimensional, in accordance with the experi-
mental system. The composition is assumed to be homo-

geneous in a plane perpendicular to the modulation direc-
tion (taken to be the z direction) and varies only with z.
We then treat the composition-modulated film as a con-
tinuum. In order for this continuum approximation to be
justifiable, the wavelength of modulation must be much
larger than the interplanar spacing along the direction of
modulation. Of course, in the films on which the experi-
ments have been performed this criterion is not really sa-
tisfied. The typical wavelengths (at which the enhance-
ment of the moduli is reported to occur) is on the order of
only a few interplanar spacings. Nonetheless, we use the
continuum approximation to address this problem in or-
der that we may apply the theory of nonlinear elasticity to
it. In the remainder of the paper, unless otherwise stated,
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the word "layer" will be used to refer to an infinitesimally
thin slice of the continuum perpendicular to the z direc-
tion.

In this approach, the actual value of the wavelength is
immaterial, since, the solid being approximated by a con-
tinuum, there is no other length, such as an interplanar
spacing, to which it can be compared. The decrease of the
enhanced modulus as the wavelength is changed (away
from the value at which the modulus reaches its max-
imum) must be explained by appealing to mechanisms
which reduce the coherency-induced strains. As the
wavelength is increased, it is expected that the increasing
elastic energy stored in the strained crystal will at some
point be released by the formation of misfit dislocations. '

At this point the strains are largely relieved though not
completely removed. Hence, it is easy to see why there is
no enhancement in the elastic moduli at large wave-
lengths. The fall at shorter wavelengths is usually ex-
plained by arguing that since the wavelength is of the or-
der of only a few interplanar spacings, the modulation of
the composition is not well developed and, hence, large
strains are not developed. "

In determining the effective elastic constants of the
film, we have taken the effective primary elastic stiffness
constants of the film to be simple Voigt averages of those
of the component layers. It is known' ' that this averag-
ing procedure provides a lowest upper bound for the elas-
tic constants of the composite material. Since the struc-
ture of the film is periodic in the z direction, it is neces-
sary to average the elastic constants only over one wave-
length of modulation. We evaluate the average values of
the primary elastic constants, transform these to the film
coordinate system, and hence determine the biaxial
modulus in the plane of the film. We also evaluate the bi-
axial modulus of each layer and average this quantity over
the repeat length. The difference between the two quanti-
ties is on the order of one part in a thousand. It should be
noted that the averaging eliminates any variation of the
elastic moduli with odd powers of the amplitude, to which
both Ac and g;J. are proportional. Hence, since depen-
dence on higher (such as fourth) powers of the amplitude
is expected to be weak, it is expected that the averaged
value of the biaxial modulus will vary as the square of the
amplitude. We also point out that even in the absence of
the terms bilinear in Ac and g;J the elastic moduli can
vary nonlinearly with 2 because of the nonlinearity intro-
duced by the prefactors in Eq. (7). This is what gives rise
to the curvature of Figs. 2—4 in Ref. 12. So, even in the
absence of the higher-order terms in Eq. (7), the averaged
elastic modulus is expected to vary as the square of the
amplitude.

III. RESULTS

We have computed the average values of the elastic
stiffnesses for a composition-modulated copper-nickel
film using two models for the variation of the composi-
tion over the thickness of the film. In the first instance,
we have considered the case of a sinusoidally modulated
film where the composition of the film (proportion of one

Here, co is the average proportion of copper in the film
(we have taken co ——0.5), while A, and A are the wave-
length and amplitude of modulation, respectively. In this
case, since we also have inversion symmetry about
z=A, /2, it is only necessary to average over one half-
wavelength. In order that Eq. (8) be physically meaning-
ful, we must have A (co, as well as 3 & 1 —co. Note that
the values of 3, as determined in the experiments, do not
satisfy these criteria for all the films for which an
enhancement has been reported. This indicates devia-
tions from simple sinusoidal modulation.

At the other extreme, we have considered the case in
which there is no interdiffusion between the copper and
the nickel so that the interfaces between the copper-rich
regions and the nickel-rich regions are perfectly sharp.
The variation of the composition across one repeat length
is then in the form of a square wave:

c& for 0&z &pA, ,c(z)= .
(9)

c2 for pk(z &k,
where A. is the repeat length of the modulation and p is
the ratio of the thickness of a copper-rich region to the re-
peat length; c& and c2 are the proportions of copper in the
copper-rich and nickel-rich regions, respectively. The
average composition of the film is then given by

co =pc 1 + ( 1 —p )c2 (10)

and the quantities e&, c2, and p can be varied indepen-
dently within physical limits.

In either case, different layers are strained differently.
While some regions are in a state of compression, others
are in a state of tension. The strain arises because
coherency between layers requires that all the layers have
the same lattice constant, a, and hence the same inter-
atomic distance in the layer, whereas each layer with com-
position c(z) has a different equilibrium lattice constant,
a (z), that depends on its composition. We have taken the
equilibrium lattice constant to vary linearly with composi-
tion. This is in good agreement with the reported varia-
tion of density with alloy composition. ' The strain in a
layer at position z is then represented by

E= [a (z) —a]/a (z),

where a (z) is the equilibrium lattice constant of the layer
in question. Since the elastic constants of copper and
nickel are different, it might be suggested that the strains
in the copper-rich and the nickel-rich regions are different
and that the average lattice constant in the plane of the
film is different from that of the corresponding homo-
geneous alloy. The actual value of a must be the one that
minimizes the total elastic energy of the system. Hence,
we compute the elastic energies of the strained films at
different choices of a, using the elastic constants of the
strained layers, and determine the equilibrium value of a.
This procedure will be assumed to have been followed in

component, say copper) varies along the direction of
modulation as

c (z) =co+A cos(2vrz/A. ) .
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all cases discussed here unless it is otherwise stated.
We have used experimental values of the primary elas-

tic constants of copper, nickel, and copper-nickel alloys of
different compositions. ' The composition of the homo-
geneous alloy is taken to be Cu0 5+ Ni0 &, so that in Eq.
(7) we have co ——0.5 and hc =x. The second-order elastic
constants C~ki are fitted to a quadratic in x, and the
third-order constants C;&kI „ to a straight line. These fits
are used to determine the constants C,jk~, C;Jki, and

C;~kI „„,where the superscript 0 indicates that the quan-
tities are evaluated at x =0. The values of the fourth-
order elastic constants, C;~k~ „&q, are taken as the averages
of the values for pure copper and for pure nickel.

In Fig. 1 we show the variation of the biaxial modulus
Y[001] of pure copper with biaxial strain in the [001]
plane computed with and without the fourth-order con-
stants. For the purposes of the computations represented
here (Figs. 1 and 2), the second- and third-order elastic
constants have been taken from the pseudopotential calcu-
lations of Jankowski and Tsakalakos"' and of Tho-
mas, respectively. The simplifying relations between the
different fourth-order constants given by Hiki and Grana-
to' have been assumed to hold and following their argu-
ments we have taken (using abbreviated indices)
C

& & & &

——10C I & &. The dashed line in Fig. I shows the re-
sults of including only up to third-order elastic constants.
The rapid variation of the biaxial modulus with changes
in the strain and the resulting significant enhancement of
the biaxial modulus with a compression of a few percent
are clearly seen. These results are in essential agreement
with those of Jankowski and Tsakalakos, ' who included
up to third-order elastic constants. The solid line shows
the results of including up to fourth-order elastic con-
stants. It can be seen that in either case the curvature, or
nonlinearity, which Jankowski and Tsakalakos' have
claimed is responsible for the enhancement that survives
upon averaging over compressed and extended layers, is
small. In fact, if the fourth-order elastic constants are
neglected, the curvature is very small and negative, which
would imply a small decrease in Y[001],upon averaging,
with increasing magnitude of strain. When the fourth-
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FICJ. 2. The even part of the change in Y[001] of pure
copper (from Fig. 1) plotted vs the magnitude of the biaxial
strain, Ep. The dashed (solid) line shows the results of retaining
up to third- (fourth-) order elastic constants.

order constants are included, the sign of the curvature is
reversed but its magnitude is still small and a strain of a
few percent produces an increase of only a few percent in
the averaged value of Y[001]. This is illustrated more
clearly in Fig. 2, where the even part of the change in the
biaxial modulus,

Y, [001]=( Y[001]~, , + Y[001]~,

—2Y[001] ~, o)/2, (12)

is plotted against ez, the magnitude of the strain. Figure 3
shows the variation of Y[111]for Cuo 5Nio 5 with biaxial
strain. Experimental values ' have been used for elastic
constants of all orders. Note that while there is an
enhancement in the value of Y[111],similar to that in the
case of Y[001],the curvature in the plot is again small.

Results of our computations for sinusoidally modulated
films (with co ——0.5) are shown in Figs. 4—9. Experimen-
tal values ' for elastic constants of all orders have been
used as described above. Figure 4 shows, for 3 =0.5, the
variation of the elastic energy (in arbitrary units) and the
biaxial modulus, Y[111),with a for a sinusoidally modu-
lated film of Cu0 5Ni0 5. It can be seen that the minimum
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F1G. 1. Qarjation of the biaxial modulus Y [001] of p«e
copper with biaxial strain keeping up to third-order (dashed line)
and fourth-order {solid line) elastic constants.

0.25

0.20 I I

-0.03 -0.02 -0.01
I I

0.01 0.02 0.030
Strain (~ )

FKJ. 3. Variation of Y[111]with biaxial strain in a homo-
geneous Cup qNip 5 film including up to fourth-order elastic con-
stants.
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Flax. 4. Variation of elastic energy and 1'[111]with average
lattice constant a for a sinusoidally modulated copper-nickel
film with 3 =0.5.

FIG. 6. Plot of Y[001] vs the square of the amplitude of
modulation, A, for a Cuo &Ni0& film.

in the energy occurs when a is equal to the lattice con-
stant of the homogeneous alloy Cu0 &Ni0 5, i.e., the average
of the lattice constants of copper (3.61 A) and nickel
(3.52 A). This appears to hold in general —the value of a
which minimizes the elastic energy is the equilibrium lat-
tice constant of the alloy with the same average composi-
tion as the modulated film. Closer scrutiny reveals a devi-
ation to a slightly lower value but the difference is insigni-
ficant. A significant deviation might have reduced the
near-complete cancellation between the changes in elastic
constants between the compressed and extended regions
and might thus have led to a larger effect.

Figure 5 shows the variation of Y[001] over one half-
wavelength of the modulated film. The variation over the
remainder of the film can be obtained by reflecting about
z =0 and A. /2. The plane richest in copper is on the left,
at z =0, while the plane at z=k/2 is the one richest in
nickel. It is interesting to note that the variation is not
monotonic. This is caused by a subtle interplay between
the dependence of the elastic constants on the strain and
on the composition. The average value of Y[001] is plot-

ted against 3 in Fig. 6. The linear dependence on A, in
agreement with experiment, is obvious. As we have al-
ready stated, such a linear dependence on 3 is to be ex-
pected for the average values of elastic moduli. It is also
clear from Fig. 6 that the change in Y[001], even at the
maximum possible amplitude, is very small, much smaller
than the experimentally reported enhancement.

Results for Y[111]are presented in Figs. 7—10. Figure
7 shows the variation of Y[111]over one half-wavelength
of a sinusoidally modulated film of Cu0 &Ni0 q with an
amplitude A =0.5. Figure 8 shows the variation of the
averaged value of Y[111]with the square of the ampli-
tude of modulation. Note that the biaxial moduli of the
modulated films are actually sma/her than that of the
homogeneous alloy. However, as in the case of Y[001],
the change is small ~

In order to estimate the contributions of the various
terms in Eq. (7), particularly those that are bilinear in the
strain and Ac, we successively omit one or more of the
linear or bilinear terms. We do this by introducing artifi-
cial prefactors for these terms and rewriting Eq. (7) as

I 0 0
Cijkl (P ~P)r imr jn kp Iq[Cmnpq+tlCmnpqcAC+t2, Cmnpqrstjrs

0 1 0 1 0 2+flCmnpqrsc9rs~c+ 2f2Cmnpqrsuv Irs luv+ 2f3Cmnpqcc(~~) + ] . (13)
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FICy. 5. Variation of Y[001] over one half-wavelength of
modulation for a sinusoidally modulated film of Cu05Ni0 & with
A =0.5.

Flt:s. 7. Variation of Y[111] over one half-wavelength of
modulation for a sinusoidally modulated film of Cu0 5Ni0 q with
2 =0.5.
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FIG. 8. Plot of Y[111]vs A for

Cuo«Niobe.

0.3200

We then set the prefactors t, , tz, f, , fz, or f3 to 0 or 1 in
order to omit or retain the corresponding term. The re-
sults "are presented in Figs. 9 and 10. The relative contri-
butions of the two linear terms are shown in Fig. 9, where
values of Y[111] are plotted against A for different
combinations (tt, tz ) with f t fz f3 ——0——. It ——is clear that
the strain-dependent term increases the averaged value of
the biaxial modulus, while the composition dependence of
the elastic constants decreases it. On the whole, the de-
crease caused by the composition dependence more than
compensates for the strain-induced increase in the biaxial
modulus. The net result is a decrease of the biaxial
modulus from its value in the homogeneous alloy.

Figure 10 shows the relative contributions of the dif-
ferent bilinear terms. Average values of Y[111]are plot-
ted against A for different combinations (ft tfz, f3) with
t&

——t2 ——1. One can see that the only bilinear term which
leads to an enhancement, although still a small one, is the
one which involves the fourth-order elastic constants and
is proportional to the square of the strain. The other two

0.3285

0.3280

0.3180 I I I I

0.05 0.10 0.15 0.20 0.25
A2 f(at. fract. )2j

FIG. 10. Plots of I'[111]vs A' for Cuo qNio & with one or
more of the bilinear terms omitted (but both linear terms includ-
ed, i.e., t] ——t2 ——1). Curves are identified by the combination of
prefactors (f~,f fz& ) and the quantities t &, tz, f, , fz, and f,
are defined in the text.

bilinear terms, which are dependent on the variation of
the alloy composition, produce a decrease in the biaxial
modulus. Note, also, that the net effect of the two terms
which are linear in the strain and composition variation,
in the absence of any bilinear terms (f t fz f3 =0), is——a-—
very small decrease in the biaxial modulus.

In order to get a feeling for the magnitude of the
higher-order elastic constants necessary to see a net
enhancement, and also because experimental determina-
tions of the higher-order constants tends to have large er-
rors, we have computed the average values of Y[111]us-

ing values of the fourth-order constants that were 10
times the reported experimental values. The results of
these computations are shown in Fig. 11. The small de-
crease in the modulus has been changed to a small in-

crease. The important thing to note is that even such a
large increase in the fourth-order constants (much larger
than the experimental errors) produces only a small in-
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FIG. 9. Plot of Y[111]vs Az for CuoqNi05 excluding all bi-

linear terms (f~
=fz fz ——0) and different linea——r terms.

Curves are identified by the combination of prefactors ( t t, t2) ~

The quantities t „ tz, f~, fz, and fz are defined in the text.
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FIG. 11. Plot of Y[111]vs A for Cuo, Nio, computed with

the fourth-order elastic constants increased to 10 times their ex-

perimentally measured values.
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FICr. 12. Plot of Y[111]vs A for a square-wave-modulated

copper-nickel film. The average composition is co ——0.5; p=0. 5

and A =ci —co=co —c2.

crease in the modulus —much smaller than the observed
enhancement.

The case of square-wave modulation which corresponds
most clearly to the sinusoidally modulated film has
c0 ——0.5 and p=0. 5. The quantity which then corre-
sponds to the amplitude of modulation is A =c& —co
=co —cz. Representative results for the case of square-
wave modulation are shown in Fig. 12, where Y[11 1] is
plotted against 3 . Again, one can see that the biaxial
modulus decreases as the amplitude of modulation is in-
creased and that the magnitude of the change, though
larger than in the sinusoidally modulated films, is small.
Clearly, the decrease in the computed value of the biaxial
modulus is not an artifact of the sinusoidal modulation.

IV. DISCUSSION

We have presented results of our computations of the
elastic constants, particularly the biaxial moduli Y[001]
and Y[111],for compositionally modulated copper-nickel
films. As we have said earlier, the treatment outlined here
can be extended very easily to other metal pairs, provided
their elastic constants (up to fourth order) are known. We
have no reason to believe that the results for any other
pair of metals will be qualitatively much different from
those presented here.

From the results of our computations, it is clear that
one cannot explain the great enhancement observed in
compositionally modulated alloys on the basis of non-
linear continuum elasticity and coherency-induced strains.
While we find, as do Jankowski and Tsakalakos, ' that a
strain alone produces a large change in the elastic moduli
of any component material, we find that the averaging
over essentially equal amounts of compressed and extend-
ed material leaves only a small net change in the moduli
of the modulated alloy. We have shown that it is impor-
tant to take into account the fourth-order elastic constants

as well as the variation of the second- and third-order
elastic constants with the composition of the alloy. The
decrease in the modulus arises primarily because the de-
crease in modulus in the copper-rich regions (because of
the inherently lower modulus of copper-rich alloys)
predominates over the increase in modulus due to the fact
that the copper-rich regions are in a state of compressive
strain. On the other hand, the increase of the modulus in
the nickel-rich regions does not adequately compensate
for the decrease due to the tensile strain in these regions.
The subtle interplay between the strain dependence and
the composition dependence of the modulus is shown by
the interesting variation (see Figs. 5 and 7) of the modulus
over one half-wavelength of modulation. On the whole,
the enhancements due to coherency-induced strain are ei-
ther greatly reduced (as in the case of Y[001]) or more
than compensated for (e.g. , resulting in a decrease in
Y[111])by the decrease due to the composition depen-
dence of the elastic constants.

It is possible that the failure to predict an enhancement
in the modulus is a problem not with the mechanism, but
rather with the particular way in which we have applied it
to this situation. It might be suggested that a more physi-
cally meaningful averaging procedure for layered struc-
tures ' would yield results significantly different from
our results obtained by taking the Voigt average. Howev-
er, it does not, a priori, appear likely that the averaging
procedure of Refs. 24 and 25 (which is a "hybrid" be-
tween Voigt and Reuss averaging) will yield an elastic
modulus greater than the one given by Voigt averaging.
As has been pointed out, the Voigt average provides an
upper limit on the elastic moduli. The Reuss average, on
the other hand, gives values of elastic rnoduli lower than
or equal to those given by the Voigt average and, in fact,
provides a lower bound' for the values of elastic moduli
of composite materials. It is more likely that the difficul-
ty lies in the use of continuum elasticity to investigate
structures on an atomistic scale. The conceptual difficul-
ties associated with this have already been discussed in
Sec. II.

Alternatively, one might just as well conclude that
coherency-induced strains are not the cause of the ob-
served enhancement, and that the enhancement has its ori-
gin in some other mechanism. Among the alternative
explanations, the one that is discussed most often invokes
a mechanism analogous to that underlying the Kohn
anomaly and predicts a rise in the elastic moduli when the
edge of the diminished Brillouin zone crosses the Fermi
surface. However, it also predicts a decrease in the modu-
li at modulation wavelengths close to the peak wavelength
and on either side of it. ' This discrepancy with
experiment —such a decrease has not been observed—
remains to be explained.

The elastic moduli are measures of the variation of the
total energy of the solid with various deformations. It is
conceivable that the explanation of the enhancement lies
in a fundamental change in the electronic structure of the
material which occurs upon modulation of the composi-
tion, and which affects the shape of the total-energy sur-
face (in "deformation space") quite strongly. The investi-
gation of this idea involves computing the self-consistent
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electronic structure of the compositionally modulated ma-
terial (with variations on an atomistic scale and not treat-
ing the solid as a continuum, as we have done) and the to-
tal energy as functions of various deformations of the lat-
tice. Some approximations would doubtless have to be
made in order to account for the alloying. Such a series
of computations, with the large unit cell of the modulated
structure, is a tedious, time-consuming, and expensive
process, but ought to be undertaken if all other plausible
explanations fail.

As has been pointed out in the review by Cammarata,
the theoretical approaches to this problem have so far
fallen into two broad categories: those that invoke
coherency-induced strains and those that invoke a mecha-
nism analogous to the Kohn anomaly. We have sought to
provide a definitive answer on the usefulness of one of
these and have shown that a combination of continuum

elasticity and coherency-induced strains cannot explain
the observations. We have also suggested a third ap-
proach: an atomic-scale computation of the electronic
structure and total energy of the system. This set of com-
putations ought to provide a definitive explanation of the
phenomenon.
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