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Energy dispersion of image states and surface states
near the surface-Brillouin-zone boundary
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The nearly-free-electron model of surface-state occurrence in the the projected s,p-band gaps of
metals is extended to the study of the energy dispersion near the boundaries of the surface Brillouin
zone. The model is applied to available photoemission and inverse-photoemission data in the I Y I
direction on Cu(110) and Ni(110). Good agreement is obtained for the energy dispersion away from
Y if zo, the image-plane distance, has been chosen to force agreement at Y. In particular, the large
effective masses (as high as 2.0m) which have been reported for the first image-induced surface state
are explained.

I. INTRODUCTION

The systematics of surface-state occurrence within s,p-
band gaps of noble and transition metals have been
described by a phase model based on a combination of
elementary multiple-reflection theory and elementary
nearly-free-electron theory. ' In this paper we extend this
approach to the E ( k

~ ~

) energy dispersion of surface states
and image states. Applications of the phase model to the
effective masses of surface states and image states near
the center of the surface Brillouin zone (SBZ) have been
presented elsewhere. ' We concentrate in this paper on
bulk band gaps associated with reciprocal-lattice vectors g
which are not perpendicular to the crystal surface. The
projected gaps of concern are those which are centered on
symmetry points at the SBZ boundaries.

As illustrative examples, we shall treat the surface
states which occur along the I Y I direction in Cu(110)
and Ni(110). These cases are especially interesting since
three kinds of surface state have been observed along this
direction using photoemission and inverse photoemis-
sion: the odd and even Shockley states and the first
member of the image-state Rydberg series. The latter
state has excited attention ' because it displays an unex-
pectedly large apparent effective mass. We shall show
how the phase model can account for these data. We
shall discuss the extent to which such analysis could lead
to a determination of the shape of the surface-potential
barrier.

II. REFLECTION PROPERTIES
OF THE SURFACE BARRIER

A. Multiple-reflection model

In the multiple-reflection approach to surface-state for-
mation, " an electron is visualized as being trapped be-

tween the crystal and the surface barrier. If r&e'~ and

rze denote the reflectances at the crystal and surfacelpga

barriers, respectively, we have rc ——rz ——1, and the condi-
tion for existence of a surface state is

B. Ps and logarithmic derivatives

The phase change on electron reflection at the surface
barrier must be evaluated with respect to some reference
reflectance plane. The simplest case is that of a step bar-
rier, for which we have

tan(Pz /2) = —[(Ez—E)/e]' (3)

evaluated at the step itself. Ez is the vacuum level mea-
sured with respect to the bottom of the inner-potential
well. More generally, we have

I~ tan(P~ /2) =1, (4)

4c+4a =2~n,
where n is an integer. Strictly speaking, this is a one-
dimensional model applicable to the case where the Bragg
reflection at the crystal is specular. We show below how
this picture is modified when g, the Bragg-reflecting
reciprocal-lattice vector, is off-normal.

An underlying assumption is that the surface barrier it-
self can be treated as one dimensional; i.e., it is a function
only of the z coordinate perpendicular to the surface.
Equivalently, the barrier-phase change P~ can be treated
as a function only of the perpendicular kinetic energy,

g:—4 x /2m—:E—A k~~/2m,

where E is measured from the bottom of the inner-
potential well, and ~ is the perpendicular component of
electron momentum.
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where l is the logarithmic derivative (g/P) of the wave
function 1(t on the vacuum side of the reference plane. For
saturated image barriers, i.e., those which join continuous-
ly to the crystal potential, it is customary to integrate
Schrodinger s equation along the z axis and to evaluate P~
from the computed logarithmic derivatives. ' The numer-
ical integrations are readily carried out using a desk-top
personal computer.

In this work we have used a model barrier devised re-
cently by Jones, Jennings, and Jepsen' (JJJ barrier). Ex-
plicitly, the surface barrier potential is given (in Rydberg
units) by

I
I

I

I

~
r

I

Vg(z)= .

1 —A, (z —zo)(1—e ' ), z&zo,
2(z —zo)

Uo
p( )

p Z (Zo 0

1+He & k))—

Uo is the inner potential and zo is the position of the im-
age plane relative to the z origin. The parameters
P= Uo/A and A = —1+2UO/A. are fixed by the require-
ments of smooth continuity. The free parameter A, is a
characteristic distance over which the barrier changes
from steplike to imagelike behavior.

FIG. 1. Brillouin-zone diagram appropriate to the I FF
direction on Cu{110); g and g' are bulk reciprocal-lattice vectors
and p is the real part of the perpendicular wave vector at kll.

III. FOUR-WAVE NEARLY-FREE-
ELECTRON MODEL

To evaluate Pc we adopt the simple nearly-free-electron
(NFE) approach. We are concerned with projected bulk
band gaps which are centered at the boundary of the sur-
face Brillouin zone. We require four plane waves, "' as
opposed to the two plane waves adequate for gaps near
the zone center associated with normal g vectors.

A. Projected bulk band gaps

fi k /2m E—Vg

A' (k —g) /2m E—(6)

with a similar expression involving k' and g'. V~ is the
appropriate Fourier component of the pseudopotential.
The 4&&4 secular equation reduces to two identical 2X2
equations because there are no Fourier components of the
crystal potential which can diffract waves k or k —g into
k' or k' —g'.

Within the fundamental band gap, solutions with real E
are possible but with complex k, =p —iq. For an off-
normal g vector, the solutions for p and q are given by

For the sake of concreteness we consider in Fig. 1 the
case near the Y point at the SBZ of the (110) face of a
face-centered-cubic metal. Two bulk reciprocal-lattice
vectors are involved, g=(g„,g», g, ) and g'=(g„,g», —g, ).
The four plane waves have vectors k, k —g, k', and
k' —g', with k=(k„,k», k, ) and k'=(k„, k», —k, ). Bulk
band energies in the NFE model are given by

rj = (p —g, /2)',

y =g„(g —2k„)+g»(g» —2k» ) . (10)

At the SBZ itself (k„=g„/2, 0 =g /2) we have
p=g, /2, the bulk Brillouin-zone value. Away from the
SBZ, p deviates from the bulk Brillouin-zone value, but
only slightly (less than a few percent). The situation is il-
lustrated in Fig. 1 ~

B. Wave-function matching

Inside the crystal the wave function will be some linear
combination of the following two functions:

~ I

P&
——e~'[e " "cos(pz+5)+pe " "cos(p'z —5)],

g2 ——e '[e " "sin(pz+5)+pe " "sin(p'z —5)], (12)

where kll —~ll —gll, p —p —g„and where p and 5 are
amplitude and phase factors associated with the eigenvec-

the following expressions:

9'+ —.[2(1'—2E) —g']9'+ —l)"—2g,'(7 —2s)+4&,']g
—g, y /64=0 (7)

and

(q'+&)(2p —g, ) =p[(& —g„)'+(&»—g»)'

+(J —g. )'l

+ (p —g, )(&'+&» + p'),
where we have defined
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~le I(al( z)+~2 e (1'B2(z)
'

ll "II 11
"I

I (13)

Equating logarithmic derivatives at some matching plane
z~ yields

tan[(p —p')zM +25]= p ( —q +1')—p'( —q+1)
pp'+ —q +1 —q +1'

where 1 and 1' are the logarithmic derivatives QB1/QB1
and tpa2/QB2, respectively.

(14)

tors of Eq. (7). On the barrier side of the barrier-reference
plane, we write the wave function as a linear combination
of the form

with (pa)=(pa, +pa2)/2. Note that Eq. (19) has been
derived, rather than invoked from the multiple-reflection
model. Note also the slight distinction between the phases
tI)B1 and pa2 and the phases QB1 and QB2 obtained directly
from the logarithmic derivatives.

D. Alternative bookkeeping method

To retrieve the results of Refs. 1 and 8 we may group
the surface-state solutions in pairs. At the SBZ we
have pa1 ——QB2—=pa, and the quantization condition for
surface-state existence becomes

C. Multiple-reflection visualization pc+ pa ——2irn, (23)

p tan(pa1/2) =1—q =x tan(pa1/2) —q,
—p' tan(pa2/2) =1'—q=x' tan(pa2/2) —q,

4'c =g zM+25

Eq. (14) reduces to

—tan(pc) = tan(pa1/2+QB2/2)

(15)

(16)

(18)

Waves k and k —g are now coupled into waves k' and
k' —g' through reflection at the surface barrier. Defining
the following phases, pc, QB1, and QB2,

with the proviso that there are now odd and even branches
of the Pc curve with Pc ——Pc and Pc ——Pc+ir. Thus, we
generate the same number of solutions even though the
right-hand side of Eq. (23) is 2irn, as opposed to urn in Eq.
(22).

This maneuver is clearly a bookkeeping contrivance. It
does, however, have some physical significance. The two
n =0 solutions are the Shockley (or crystal-induced) sur-
face states, which, for the case of a step barrier, are identi-
cal to the pair of surface states considered by Bartynski
et al. The part of the wave function inside the crystal
takes the form

or, equivalently,

24c+da1+WB2=2~n, (19)
g+ =e 'cos(g~~. r~~/2) cos(pz+5),

=e 'sin(g~~. r~~/2) sin(pz+5) .

(24)

(25)
where n is an integer.

This expression can be visualized in terms of the
multiple-reflection approach as depicted in Fig. 2. Reflec-
tions at the crystal are diffractive (i.e., they are Bragg re-
flections from planes associated with vectors g and g')
with phase change Pc. Reflections at the surface barrier
are specular. In each complete cycle of multiple reflec-
tion, the electron approaches the surface barrier twice, but
with different values, e1 and e2, of the perpendicular ener-

gy:

For a repulsive pseudopotential (Vg &0) and for the 5
values appropriate to this problem, the s~~-like state f+,
which puts its charge density on surface atoms, will lie
higher in energy than the p

~ ~

-like state P which puts its
nodes on surface atoms. For n ) 1 we have the image sur-
face states, and these too will alternate between odd and
even symmetry. For the remainder of this paper we shall
use the bookkeeping system of Eq. (22) rather than the al-
ternative odd/even pairwise system.

e1 ——E (fi /2m )(k~~)—
E2 E—(fi /2m )(k—

~~

—
g~~ )

(20)

(21)

IV. APPLICATION TO Cu(110) AND Ni(110)

A. Surface barrier parameters

We may rewrite Eq. (19) as

pc+ & ya ) =~n, (22)

BARRIER

&c CRYSTAL

FIG. 2. Multiple-reflection visualization of the surface states.
In each complete cycle of multiple reflection, the trapped elec-
tron approaches the surface barrier twice, experiencing the
phase changes pa1 and pa2, reflections at the crystal are diffrac-
tive with phase change Pc.

As indicated above, we have used the JJJ barrier. The
internal parameters of this empirical barrier were chosen
to force reasonable agreement for the surface-state ener-
gies at Y. Figure 3 shows the graphical solutions ap-
propriate to Y on Cu(110). The energy of the lowest
(n = —1) state at Cu(110) Y is known to be EF—0.39 eV
from high-precision angle-resolved photoemission work;
the energy of the next lowest state is given variously as 2.0
eV (Ref. 15), 2.5 eV (Ref. 5), and 1.8 eV (Ref. 7) above
EF, by extrapolation of the data of Ref. 7, we may place
the energy of the third surface state (or first image state)
at Cu(110) Y in the energy window 5.5+0.4 eV above EF.

This match at Cu(110) Y was obtained with the follow-
ing parameters: zM ——0, where the origin is taken at the
outermost atomic layer, and zo —z~ ——2.4 a.u. The pa-
rameters A, and Uo were not treated as disposable, but
were fixed at A, =0.9 a.u. , a value in the middle of the
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FIG. 3. Graphical solutions for the lowest six surface states
at Y (solid curves and circles) and at the midpoint between I
and Y (dashed curves and open circles) showing the different
kinds of dispersion.
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range favored in Ref. 13; Uo ———11.4 eV, the free-
electron value. In investigating the dispersion away from
F, all parameters were frozen.

FIG. 5. Comparison between theory (solid curves) and experi-
ment (open circles from Ref. 6) for surface states in the I YI
direction on Ni(110). The projection of the bulk band structure
is indicated by hatching.

B. Bulk-band-structure parameters
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FIG. 4. Comparison between theory (solid curves) and experi-
ment (open circles from Ref. 7, open squares from Ref. 5, dots
from Ref. 4) for surface states in the I Y I direction on
Cu(110). The projection of the bulk band structure is indicated
by hatching.

The parameters governing the behavior of Pc are the
energies of the edges of the projected bulk band gap.
These are taken from the known properties' of the
bulk band structures. The parameter Vg is not a constant
but has to be continually readjusted to fit the variation
with k~~ of the width of the projected gap. There are
complications associated with the proximity in energy of
the d band, especially in Ni. On the other hand, we know
from rather general theoretical considerations' '" that Pc

must increase by ~ on traversing a projected bulk band

gap. The approximate discussion of this paper rests on
the assumption that the form of the variation of Pc across
the gap is not strongly model dependent.

C. Results

The calculated E(k~~) dispersion relations for surface
states in the I YI direction on Cu(110) are compared
with the available experimental data ' ' in Fig. 4. The
overall agreement with experiment is seen to be reason-
able. The corresponding comparison for Ni(110) (zo —zM
=2.4 a.u. ) is shown in Fig. 5. Once again the overall
agreement is reasonable. (The experimental data near the
n = —1 state fall close to a predicted bulk direct transi-
tion, ' and so the identification of this experimental
feature is ambiguous. ) The self-consistent slab calcula-
tions of Kleinman and co-workers on Cu(110) (Ref. 21)
and Ni(110) (Ref. 22) are also in good agreement with the
data for Shockley (n = —1,0) states; these calculations
employ a short-range barrier and therefore do not gen-
erate the image states.

D. Conclusions and discussion

We conclude that if agreement for a surface-state ener-

gy has been obtained (or forced) at Y, then agreement for
the energy dispersion of that state across the SBZ is inev-
itable, at least within the currently attainable precision.
In particular, the rather flat dispersion observed for the
n =1 image state ' is well reproduced by the model. It is
therefore not necessary to invoke surface corrugation '

or many-body effects to account for the large effective
masses.

Adopting the colorful language of Pendry et a1. , we
can describe the broad sweep of the results of Figs. 4 and
5 in terms of a "battle" between the crystal and the vacu-
um. The crystal is trying to pull the surface-state disper-
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sion curve into a form characteristic of the crystal —in
this case dispersing upwards away from Y at a rate im-
posed by the projected bulk band gap. The vacuum, on
the other hand, is pulling towards free-electron-like
behavior —i.e., upwards dispersion centered on I with
m*=m. For the n = —1 state, it is clear that the crystal
wins. For the higher states (n &2) of the Rydberg series
it is clear that the vacuum wins; the dispersion curves for
these states converge on the curves Ez+A k~~/2m or2 2

Ev+A' (k~~ —
g~~) /2m, whichever has the lower energy;

and the effective mass is negative at Y.
For n =0 and n = 1, the contest is more evenly

matched. The n =0 state at Y is a Shockley or crystal-
induced state. It occurs for step barriers or other short-
range barriers and is the even s~~-like counterpart of the
odd p~~-like n = —1 state. On approaching I, however,
the energy of this state approaches very closely that of the
n =1 state, and it is perhaps more appropriate near I to
regard it as part of the image-state Rydberg series. The
n =1 state is primarily imagelike, dispersing downwards
away from Y. Its dispersion curve, however, is severely
distorted from free-electron-like form on traversing the
projected bulk band gap. It is therefore an image state but
with considerable crystal-induced character. There is thus
a continuous gradation of behavior between the two ex-
tremes, and the theoretical possibility of a "drawn match"
(m '/m = + oo ) cannot be excluded.

V. SURFACE-BARRIER DETERMINATION

For the (110) faces of Cu and Ni, we have achieved
reasonable agreement for surface-state energies and
dispersions using a JJJ barrier with an image-plane dis-
tance zo at 2.4 a.u. from the outermost atomic layer —that
is to say, at 1.2 a.u. from the jellium edge. This value is
comfortably close to the jellium range of values. ' We
hesitate to draw a strong conclusion here for the following
reasons.

Our numerical experiments with the JJJ barrier and
other empirical barriers have not yet produced an ansatz
for the surface barrier which is accurately transferable
over all five gaps on all three low index faces. Fitting the
surface-state energies in a subset of these gaps is possi-
ble. ' ' ' The derived values of zo depend on the choice
of ansatz —a lack of uniqueness well known from analyses
of preemergent fine structures in low-energy electron dif-
fraction. ' ' We are limited in this analysis by the cru-
dity of the NFE representation of the crystal electronic
structure. Also, requirement of self-consistency influ-
ences the energies of surface states, especially those which
are partially occupied and which therefore enter into the
determination of the self-consistent surface potential.

We conclude that gap-to-gap and face-to-face compar-
isons of surface-state energies are a promising way to re-
fine the shape of the surface barrier, but that such work is
best carried out in the context of self-consistent first-
principles calculations. We repeat the observation made
in Ref. 1 that the perpendicular energies of the dozen or
so known surface states in NFE-type gaps on Cu span the
entire range of the inner-potential well. Their accurate
reproduction should impose strong constraints on any ac-

ceptable form for the surface barrier, especially in the in-
teresting changeover region between steplike and image-
like behavior.
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APPENDIX: ANALYTICAL APPROXIMATIONS
FOR IMAGE STATES

The main features of the image-state dispersion rela-
tions described above can be derived analytically with use
of the WKB approximation for the barrier phase change.
Ignoring the distinction between Ps, (/+2) and Pz~(Pz2),
we write the WKB forms'

Pg )/m = —,[(1 Ry)/(E —e))]'~ —1,
P~, /~= —,[(1 Ry)/(E —e, )]' ' —1 .

(Al)

E =Ev —e„+(fi /2m*)k~~,

e„=—„(1Ry) /(n +a )

a =1—yc/~

m/m =1 . (A3)

The binding energy e„ therefore changes in going from
k~~

——0 to k~~
——g~~/2, and there are two sources for this

change: (i) the coefficient for e„changes from —,', to —,
'

in

Eqs. (A2) and (A3), and (ii) Pc changes by ~ on traversing
a projected band gap. Source (ii) is dominant and has
been considered in a previous treatment of this problem.

For the gaps considered here it is reasonable to take
g,zM ——m/2, whence we have Pc —— vr/2 at the bott—om
and pc=+a/2 at the top of the gap. ' The binding en-
ergy of the lowest image state n =1 increases from 0.14
eV at I to 1.51 eV at the SBZ boundary. It is this in-
crease in e„which flattens the dispersion curve and ac-
counts for the large effective masses which have been ob-
tained experimentally: m "/rn =1.7+0.3 Ni(110) (Ref. 6)
and 2.0+0.4 on Cu(110) (Ref. 7). The E„(k~~) curves are
not parabolic, and so it is not strictly permissible to
characterize the dispersion by a single effective mass.
What the experimentalists really mean here is that the
overall energy dispersion is less than free-electron-like by
a factor designated as m /m *.

Solving for the energies in the vicinity of the SBZ boun-
dary and expanding as far as (k~~ —g~~/2) yields

E=Ev e„+(fP/—2m)(g~~/2) +(fi /2m')(k~~ —g~~/2)

e„= ~ (1 Ry) /( n +a )
(A2)

a =1—yc/~

m /m *= 1 ——,
' (R g

~ ~

/2m )/e„.
Since e„&&fi

g ~~
/2m, the effective mass is negative, as ex-

pected.
Near the center of the SBZ, it is clear that if E& is close

to Ev, c.2 will be very small. We are then justified in set-
ting $~2 ———m to obtain
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