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Characterization of the microstructure of disordered media: A unified approach
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Transport and mechanical properties of porous and other two-phase composite media have been

expressed in terms of different sets of statistical correlation functions. A general methodology is

put forth which provides a means of deriving and computing all of these different types of correla-
tions (for a certain class of model microstructures), and of establishing the relationships between

these functions. This is done by obtaining series representations of a new and general n-point dis-

tribution function H„. The distribution function H„also characterizes the structure of liquids.

Applications of this treatment to compute bulk properties are described.

It is well known that the bulk properties (e.g. , electrical
conductivity, elastic moduli, and fluid permeability) of
two-phase composite media depend upon an infinite set of
correlation functions which statistically characterize the
microstructure. The particular set of functions is not
unique and, as a result, a variety of different types of
correlation functions have arisen in the literature because
of basic differences in either the physical processes one
chooses to study or in the approaches taken to characterize
a particular physical process. ' '

The n-point correlation functions S„(x ) (which give
the probability of finding n points with positions x"
= (xi, . . . , x„l in one of the phases, say phase 1) are fun-
damental to the study of the conductivity of composite ma-
terials, ' fluid permeability of porous media, effective
rate constant in porous media, and the elastic moduli of
composite materials. ' For the case of spheres distributed
throughout a matrix or void, bounds on the conductivitys
and fluid permeability have been derived which depnd
upon the point/n-particie distribution functions G„(xi,.
r") (which give the correlation associated with finding a
point xi in the matrix and a configuration of n spheres with
coordinates r").

Other important descriptors of the microstructure of
disordered media involve information about the two-phase
interface. For example, bounds on the rate constant and
fluid permeability of porous media have been obtained
which are given in terms of the specific surface s (expected
interface area per unit volume —a one-point correlation
function) and the surface-matrix F, (xi,x2) and surface-
surface F„(xi,xq) correlation functions. ' F, and F„
give the correlations associated with finding a point on the
two-phase interface and another point in the matrix phase
or on the interface, respectively. For beds of spheres, the
Auid permeability has also been shown to be closely re-
lated to a surface-particle (center) correlation function
F,~(x ri).iA systematic means of representing and calcu-
lating surface correlation functions for nontrivial models
has been lacking, and hence application of property rela-
tions which depend upon such information has been very
limited.

This work is concerned with the development of a gen-
eral framework from which one may derive and calculate
the various kinds of correlation functions described above

(S„,G„~'), F, , F„,and F,~), which have been treated sep-
arately in the past, and their generalizations (e.g., F, ~,
F„~,F„,etc.). Such a formalism will enable one, more-
over, to establish the relationships between these correla-
tion functions. This is accomplished by obtaining series
representations of the general n-point distribution function
0„, which characterizes the special mixture of particles
described below. Interestingly, the H„(as described
below) also characterize the structure of liquids. For sim-
plicity, we shall consider media composed of equisized
spheres distributed, throughout the matrix (or void), with
an arbitrary degree of penetrability. " The concept of a
distribution of spheres becomes very general if one allows
the spheres to penetrate one another in varying de-
grees. '

Consider adding p spherical "test" particles of radius
bi, . . . , b~, respectively, to a system of N equisized, spheri-
cal included particles of radius R centered at r . The p
test particles are capable of excluding the centers of the in-
cluded particles from spheres of radius ai, . . . , a~, respec-
tively, surrounding the test particles. For b; )0,
a;-R+b;, and for b; -0, we allow the test particles to
penetrate the included particles so that a; R —c; (0(c; ~ R ), where a; is the minimum distance between test
and included particles (see Fig. 1). It is natural to associ-
ate with each test particle i a subdivision of space in two
regions: the space available to the ith test particle D; and
the complement space D . Let 4'; denote the surface be-
tween D; and D . ' The n-point distribution function
H„(x;xt';re) characterizes the correlation associated
with finding test particle 1 centered at x~ on the surface
Si, . . . , and test particle m centered at x on 4', and test
particle m+1 centered at x +i in D ~i, . . . , and test
particle p centered at x~ in D~, and of finding any q of the
included particles with configuration r~, where n p+q.
Here x~ —m —

xm+ i . . . , xz.
From this single function 0„,one can obtain all of the

various sets of correlation functions described above by let-
ting the radii of all the solute particles shrink to zero
(b; 0) and setting a; -R, i 1, . . . ,p. For example, in
this limit, the n-point matrix probability function S„(x )
-H„(8;x";8) and Gv

' (xi,rs) H( ; 8xr i),nowhere 8
denotes the null set. Similarly, the two-point surface-
correlation functions in this limit are given by
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FIG. 1. Schematic of a mixture of test and included particles.
The included particles of radius R and test particles with radii
b; )0 (i 1, . . . ,p) are indicated by the shaded and unshaded
particles, respectively.

F~ppg (x(,x2) H2(x(, x2', IB), Fgg (x},x2) H2(xt, x2, H;H),
and Fz(xt, rt) H2(xt, S;r~). In some cases, the sizes of
the test particles one wishes to introduce in a porous medi-
um are not always negligible compared to the pore size,
and hence the distribution functions will depend upon the
relative size of the particle and pore. Such generalized
quantities have a particularly simple application in the
theory of gel chromatography. '

We have derived' two equivalent but topologically
different series representations of the H„ for general en-
sembles of particles. Interestingly, in the special case of an
equilibrium ensemble, these two expressions for the
H„(x;xi';rq) can be shown' to be (for rn 0) iso-
morphic to the well-known Mayer and Kirkwood-Salsburg
(KS) hierarchies of liquid-state statistical mechanics, 's for
a certain mixture of spheres. For this reason, we refer to
them as the Mayer and KS representations. In general,
both series have the general form

H -g( —1)'H" (1)
s 0

where H„(') is an integral that depends upon certain proba-
bility density functions which describe the microstructure;
quantities which, in principle, are known for the ensemble
under consideration. For example, the sth term of Eq. (1)
in the Mayer representation is given by'
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Here m(r;a) 1 —e(r;a) is the step function which is uni-
ty for r & a and zero otherwise, y;~ ~ x; —rj ~, and p„(r")
is the commonly employed n-particle probability density
(which characterizes the con6guration of n-included parti-
cles). Accordingly, given the p„ for the model, one can
calculate the H„using Eqs. (1)-(4). The KS representa-
tion is equivalent to the Mayer representation but involves
probability density functions that are different from the p„
of (3). The Mayer and KS representations of the H„en-
able one to compute all of the correlations described above
and their generalizations. These series expressions also
provide a means of establishing the relationship between
the various types of correlation function that have arisen in
the literature.

We should note that these equations generalize series
representations of the S„derived by Torquato and Stell's
and the G„' obtained by Torquato for composite media.
In the context of liquids, the representations of the H„pro-
vide generalizations of certain expected values that arise in
potential distribution theory and in scaled-particle
heory

Elsewhere' this formalism was applied to exactly
evaluate the H„(for any n) for fully penetrable (i.e., ran-
domly centered) spheres. The methodology described
above, moreover, has enabled us to show that conductivi-

H(s)(xm xr-m r') -(—1) a
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FIG. 2. Comparison of the Doi lower bound on k, /k for a bed
of impenetrable spheres (computed in Ref. 17) and the Kozeny-
Carman empirical formula, as a function for the sphere volume
fraction p2. The quantity kg is the Stokes dilute-limit permeabil-
ity.
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ty bounds due to Beran (which involve the S„)and to Tor-
quato (which involve the G„(')) are, in fact, identically the
same for dispersions of impenetrable spheres.

Using Eqs. (1)-(4), the two-point surface correlation
functions F, , F„, and F,~ have been recently computed
and related to one another for an equilibrium distribution
of rigid spheres as a function of the sphere volume fraction
p2, for virtually all p2 .These results for F, and F„
were utilized in Ref. 17 to compute the Doi lower bound
on the inverse permeability k ' for such a porous medium
with heretofore unattained accuracy. Figure 2 shows, for
the first time, that rigorous bounds on k ' that depend
upon one- and two-point correlation functions can yield re-
sults which are relatively close to the well-known Kozeny-
Carman empirical formula. This indicates that rigorous
bounds which depend upon additional three-point informa-
tion on the medium, such as the Weissberg-Prager bound,
may lead to accurate estimates of k for a wide range of pz.
We are currently in the process of calculating the Weiss-
berg-Prager bound for rigid spheres using Eqs. (1)-(4).

Lastly, we would like to point out that the nature of the
infinite series (1) enables us to obtain successive upper and
lower bounds on the n-point function H„. We find' that

for even m

H„~ 8'„' for l odd,

H„~ 8'„O)for I even,

where

(sa)
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gr(l) g ( 1)kH(k) (6)
0

is the partial sum. For odd m, the inequalities in (5) are
reversed. The importance of bounds lies in the fact that, in

general, the HJ"' of (1) become progressively more dif-
icult to compute as k increases. Bounds on the 8„,there-
fore, offer a means of approximating the H„when an exact
determination is out of the question. The KS representa-
tion of the H„ turns out to provide a means of bounding
the distribution function that is more powerful than the
corresponding Mayer representation. The Mayer series,
however, proves to be superior to the KS series for the pur-
poses of exactly evaluating the 0„.
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