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Exact solution to a new anisotropic dimer model with domain-wall behavior

John F. Nagle and Carlos S. O. Yokoi*
Department of Physics, Carnegie Me-/ion University, Pittsburgh, Pennsyivania 152l3

(Received 4 August 1986; revised manuscript received 2 February 1987)

The exact solution is given for the thermal behavior of a dimer model that has two kinds of
infinite energy excitations that can be described as heavy and light domain walls in a 2x1
adsorbed-atom model. These walls may reverse their direction with respect to the anisotropy axis
and, upon meeting, unlike walls may annihilate. In the general case there are three phases and
the intermediate phase is an incommensurate phase with a difference in population of the two
kinds of walls. A further generalization of the model is given in which like walls may also annihi-
late.

We have discovered an exactly solvable cooperative
model with two independent energies, a and b, which has
the thermal behavior shown in Fig. 1. For the special case
when b ~, Fig. 1(a), the model is closely related to a
model first solved by Kasteleyn' called the K model. The
specific heat of both models is zero in the low-temperature
phase followed by a square-root divergence above the tran-
sition. The square-root divergence above T, and a finite,
but not necessarily zero, specific heat below T, has been
called a 2 -order transition because it involves an extra
piece proportional to (T—T, ) 3/ added to the free energy
above T, . The same kind of thermodynamic behavior was
later found for two-dimensional commensurate-incom-
mensurate (CI) transitions and the connection between
the two kinds of problems has been observed. ' For the

special case when b 0 the specific heat of the new model
has a square-root divergence on the low-temperature side
of the transition and is finite on the high-temperature side.
This will be called an inverted 3 -order transition. For the
general cases 0 & 8& e and for s & 8& there are two
transitions, a z -order transition at a lower temperature
and an inverted —', -order transition at a higher tempera-
ture. For the special case when b-a the model is the fer-
roelectric stannous chloride dihydrate model, which has a
symmetric logarithmic divergence in the specific heat simi-
lar to the two-dimensional Ising model. In this context the
more usual logarithmic Ising-like transition appears as a
multicritical point where the —, -order transition becomes
confluent with the inverted —,

' -order transition.
The exactly solvable model that has the preceding

thermal behavior is a dimer model on the 4-8 lattice shown
in Fig. 2. Each lattice site is covered by one end of a dimer
which covers a bond and two neighboring lattice sites and
with the crucial constraint that no lattice site is covered by
two dimers. The energy for each dimer on either vertical
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FIG. 1. The specific heat C as a function of K&T/e foi (a)
r 8/e ~, (b)r 2, (c)r 1, (d)r i, and(e)r 0. Each
curve goes to zero at kttT/e 0.

FIG. 2. The 4-8 lattice is shown by the solid lines, and the
dashed lines portray the unit cells, indexed by (i,j), of the dimer
model which has activities z or w for dimers on bonds around the
squares, as indicated, and activity 1 for each dimer on all hor-
izontal and vertical bonds.
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or horizontal bonds is taken to be zero; the ground state
has each of these bonds occupied by a dimer. Each dimer
on a tilted bond around the squares has energy e for those
bonds marked by the activity z =exp( —s/kaT) in Fig. 2
and energy 6 for those bonds marked by the activity
w =exp( —6'/kg T).

Using the Pfaffian method' the exact solution for the
free energy per dimer is

p 2K f' 2'
F/N = —kgT(1/16m )g d8Jr dgln1detM(z, w, 8, &) 1,

with
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detM(z, w, 8, y) = —2cos8(vz +v 'w )+(1+4z w ),
(2)

where u =exp(i8) and U =exp(ip) The. critical behavior
of this model is determined by the roots of M, which are
shown in Fig. 3. For z = —,

' or for w =
2 one root ap-

pears at 8=0=&. This root locates the critical points
which divide the zw square in Fig. 3 into four regions
which will be named (i) the LT (low-temperature) region
for z ( —,

' and w ( —,', (ii) the HT (high-temperature)
region for z & —,

' and w & 2, and two intermediate tem-
perature regions, (iii) IT+ for z & —,

' and w ( 2, and
(iv) IT for z & —,

' and w & 2. For values of z and win
the two off'-diagonal regions, IT+ and IT, there are also
roots at values of ~ 9 between 0 and n/3 and some con-
tours of B are shown in Fig. 3.

The density of z dimers minus the density of w dimers is
given by

where

cose=(1+4z w )/2(w +z ) in IT—
=1 in LT and HT .

Also, the specific heat is given by

C/N = (Cr + C2)/eke T in regions IT-
=C2//nk~T in regions LT and HT,

where

2[hz (4w —1) —6'w (1 —4z )]Ci=
(I+4z w ) 1(z~ —w )1[(I—4z~)(4w~ —1)] '

(4)

(5)

I/2

FIG. 3. The zw activity plane for s &0 and 8&0 with the loci
of zeros of det M indicated by solid lines. The dashed lines are
the thermal trajectories for r = —,', 1, and 2. The dot-dash lines
are the loci of zeros of det M for x =0.3 in the generalized model
with like-wall dislocations.

p, = ~e/x, (3) and

r

x/2

C2=8(s+8) (4z w +z w )„sin 8f(4z w +1) —16z w cos 8] d8,

and 6 is given in Eq. (4). The crossover from the pair of
2 -order transitions to the Ising-like transition that occurs

when z = —,
' =w is fully displayed by Eq. (5) with the C~

contribution accounting for the 2 -order transitions and
the C2 term accounting for the Ising-like transition. By
noting that the transition temperature varies with the
relevant parameter, e —6, in a linear fashion, one may as-
sign a conventional crossover exponent p = l.

Some intuitive understanding of the behavior of this
model can be obtained by examining a domain-wall iso-
morphism. In turn, this isomorphic model should be of in-
terest in the study of p xl, domain-wall, commensurate-
incommensurate phase transitions in adsorbed monolayers
on solid substrates. " The domain-wall isomorphism is
illustrated in Fig. 4 in which the heavy lines indicate, for
the particular dimer state under consideration, those
ground-state bonds that do not have dimers and those z
and w bonds that do have dimers. In the upper left corner
is shown, by a heavy octagon, the smallest perturbation,
with energy 2(a+8). Starting at the bottom left is a
heavy line that wanders through the center of the figure

I

and goes out the top. This will be called a z wall because it
must utilize only z bonds when it is going upwards. How-
ever, the upwardly directed wandering is reversed in the
middle, during which reversal the wall utilizes only w

bonds. On the far right of the figure a w wall is shown
which utilizes z bonds only when reversals occur, as in the
lower right-hand corner.

The domain-wall picture illustrates an important con-
servation property for the 4-8 lattice. Let n, be the
number of z bonds minus the number of w bonds for each
row of the lattice. The conservation property is that for
any dimer state n, „is the same for every row. For exam-
ple, in Fig. 4, n, =0. The addition or deletion of loops
does not change n, — . However, if the w wall in Fig. 4
were deleted, then n, would increase to l. In general,
n, —„counts the number of z walls minus the number of w

walls, and the corresponding density p, „ is proportional
to the density of z walls minus the density of w walls. Al-
though this illustrative discussion should suffice to con-
vince most readers, it is also possible to prove this conser-
vation property rigorously.
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FIG. 4. An illustration of the domain-wall isomorphism and
the adsorbed atom state for a particular dimer state of the mod-
el.

From the exact result for p, the density of z walls
equals the density of w walls in the low-temperature region
in Fig. 3 and it seems very likely that the density of
infinitely long walls of both kinds is zero in this low-
temperature region. From the exact result for p, „ the
density of infinitely long z walls is definitely diferent from
the density of infinitely long ~ ~alls in the IT —regions in
Fig. 3. Because p, becomes zero again in the HT region,
it appears that this is the important underlying feature,
which stems from the conservation principle elucidated
above, that characterizes the intermediate phases IT —.

To our knowledge, the inverted 2 -order transition has
not previously been observed as the exact solution of any
model before, although it has been found using the free
fermion approximation to the axial next-nearest-neighbor
Ising model'2 and a model of adsorbed atoms. ' In our
model this transition is clearly associated with proceeding,
as temperature increases, from a phase with nonzero p,
to one with p, — =0. However, the description of the
high-temperature phase in terms of domain walls is not
completely clear. There could be equal nonzero densities
of infinitely long z walls and w walls or there could be only
finite length walls that occur in loops. Certainly, in either
the T=~ limit or on the isotropic ~ =z line, the model
becomes isotropic in space so there should be no preference
for either z or w walls in the upward direction. Perhaps
the wall orientation becomes isotropic in the entire HT re-
gion, in which case the phase above the inverted 2 -order
transition is best described as a disordered lIuid phase. If
so, then this model exhibits the full sequence of a low-
temperature commensurate phase, followed by a phase
transition into an incommensurate domain-wall phase, fol-
lowed by another phase transition into a fully fluid phase.
Further information for discussing this kind of question
will come from a study of the decay of the correlation
functions in the two principle directions, like the ones re-
cently performed for the K model. '

Starting from the domain-wall picture one may con-
struct states of 2x1 adsorbed atoms in several ways. One
way, which is shown in Fig. 4 by the filled circles, places
atoms at the centers of the octagons in one of the com-
mensurate phases and at the centers of the vertical bonds

in the other commensurate phase, and each domain wall
separates unlike phases. The w walls are formed by plac-
ing atoms on each vertical wall bond which makes them
into heavy walls. The z walls in Fig. 4 are formed by leav-
ing each vertical wall bond vacant, which makes them
light walls. (The dashed lines in Fig. 4 join the centers of
the pairs of neighboring occupied or unoccupied sites and
give a somewhat less wiggly representation of the domain
walls. ) The energy of each adsorbed atom state is 2s times
the number of pairs of neighboring horizontal sites that
are unoccupied plus 28 times the number of occupied
pairs. These are the energies of wall formation. As one
proceeds from row to row, the centers of each wall are
forced to move by two lattice spacings either way along the
x direction. This is diff'erent from the more typical picture
in which walls can either not move as one proceeds from
row to row or can move by two lattice spacings with higher
energy, and this difl'erence is reflected in diA'erent local en-
ergies for the adsorbed atom configurations. Nevertheless,
this model should be in the same universality class for
phase transitions as models with more realistic local in-
teractions because the nature of critical points is deter-
mined not by the details of short-range interactions but by
the nature of the long-range correlations. For domain-wall
models this means that the important features are the
symmetry (striped nature) of the walls which must have a
degree of wandering freedom and a mutual repulsion,
which in our case is the inability of the walls to touch or
cl oss.

Because of the conservation of n, „from row to row in
the dimer model, the number of adsorbed atoms is con-
served in each row in this 2x 1 adsorbed atom model.
Nevertheless, pairs of unlike walls can be annihilated or
created simply by moving one atom by one lattice site in a
homogeneous domain, thereby creating either the terminus
of a loop or a wall reversal, often called a dislocation point,
at which the other phase is inserted. The dislocation
points in this model are quite diferent from the ones
present in an exactly solvable dimer model introduced by
Bhattacharjee. ' In terms of the present model, his model
with no dislocations is very similar to the special case
w =0, in which heavy w walls are prohibited. His disloca-
tions are locations where two light z walls annihilate,
thereby breaking the mass conservation from row to row.
%e can also generalize our model to allow dislocations be-
tween like walls simply by adding bonds with activity x,
corresponding to an energy of like-wall dislocation, be-
tween sites 3 and 4 and also between sites 5 and 6 in Fig. 2.
The resulting formulas are much more complicated and
the details will be presented in a subsequent paper. How-
ever, numerical analysis indicates that for each value of
0 & x & 1 the IT — regions become one region in the zw
plane in Fig. 3. The boundary of the new IT region is
characterized by two lines of zeros in det M, as is shown by
the dot-dash lines in Fig. 3 for x 0.3, but there appear to
be no zeros within the new IT region. For the special case,
w =0 and x&0, there is only one Ising transition, in agree-
ment with Bhattacharjee's result. ' However, for ~~0 it
appears that the generalized model undergoes an Ising-like
transition from the LT phase to the IT phase followed by
another Ising-like transition from the IT phase to the HT
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phase. This suggests that the high-temperature phase in
the ~ =0 model with like-wall dislocations may in some
sense be more like an incommensurate phase rather than
the more disordered phase that is attained at high temper-
ature when wWO.
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