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Exact contact critical exponents of a self-avoiding polymer chain in two dimensions
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Using previous results obtained from conformal invariance, we propose exact values in two di-
mensions for the contact exponents 8l of one end point inside a self-avoiding polymer chain, and
82 of two interior points inside the chain: Hl —,

' and 82 —,", . These values, as well as the
"limiting-ring-closure probability index" Yi= v(2+H|) —", , are in excellent agreement with nu-
merical data. They are particular cases of an infinite set of exact critical exponents for multiple
contacts, which we give here.

The end-to-end distance distribution function of a self-
avoiding walk (SAW) chain, i.e., a polymer chain in a
good solvent, has been the subject of numerous studies
from the early days of polymer and critical-phenomena
physics. ' The correlations between two points forming a
segment inside a chain have also been considered ' (for
references, see in particular Ref. 7). Of special interest
are the universal distributions of the probability in d di-
mensions

P, (I ) -S ""F,(I /S"),

a 0, 1,2,
of having the extremities of a large chain segment of S
links inside a large polymer chain at a relative distance r
(Fig. I). The case a 0 corresponds to the two extremities
of a chain, a=1 to one segment at the extremity of an
infinite chain, and a=2 to a segment inside a very large
chain. v is the well-known critical exponent governing the
swelling of a polymer. The short-distance behavior of the
functions F, is characterized by the critical exponents 0, :
F, (x) —x ' for x~ 0. One has" Hp=(y —I)/v, while Hi,
H2 are only known to order O(e ), e=4 —d. The numeri-
cal results for Oi, 02 in two and three dimensions have been
reviewed. The exponent 8& is related by hyperscaling to
the probability Pi for a polymer to form a "tadpole" ring
of size S: P i —S ', since the "limiting-ring-closure
probability" exponent Yi =(d+Hi)v. It was studied in
detail fifteen years ago by Trueman and Whittington and
Guttmann and Sykes (for earlier studies, see Refs. 3 and

1 1 I IPs'(rl »» rm —I» ~ ~ ~ » ri» ~ ~ » rm —i )I I (2)

of having these relative configurations r', a = 1, . . . , m; —1

in subgroup i (Note that . the relative positions of sub-
groups i are not considered and are integrated over. )

When the distances r,' vanish, the configurations of the

4). In this Brief Report, we propose exact values in two di-
mensions (2D) of the critical exponents Hi and H2, using
recent results of conformal invariance theory. ' ' We
find Oi = —,', 82= l2 . Thus we also obtain, using' ' v= 4

in 2D, Yi = —", . These results are only two particular cases
of an inftnite set, given here, of exact 2D critical ex-
ponents corresponding to the multiple contacts inside a
SAW chain. These multiple-contact exponents are entire-
ly new, since their existence has not been recognized be-
fore (except for Hi, H2). Here we define them and give
their exact values in 2D and also d=4 —e, to O(e). For
proving these results, we shall rely on a very recent work of
ours, ' where we derived an infinite set of 2D exact critical
"enhancement" exponents y, associated with polymer net-
works of arbitrary and fixed topology.

Let us consider a SAW chain and a general set of corre-
lation points along the chain [Fig. 2(a)]. We assume the
diA'erent parts of the polymer separated by successive
correlation points to have (approximately) the same large
size S. We group the correlation points into I subgroups
i =1, . . . , I, the subgroup i having m; points. Then we
look at correlations inside each subgroup i: The m; points
have m; —1 relative positions ri, . . . , r', —i. Thus we
define a restricted probability weight

a=0

FIG. 1. Short-range two-point correlations inside a SAW
chain.

(a)

FIG. 2. (a) Correlation points on a SAW chain, with 1 3

subgroups i 1,2, 3, mi 3, m2 m3 2. (b) Reduced graph as-
sociated with short-range correlations: n4 2, n6 1, X 4.

35 5290 1987 The American Physical Society



35 BRIEF REPORTS 5291

2~+2v (4)

for S large. This swollen radius R gives the physical scale
of the correlations and we may use for Pg, according to
scaling principles

P, [r.'I -R -'"F,[rJR],
where Fg is a universal function of the reduced dimension-
less variables rJR. Fg generalizes functions F,(l). The
dimensional factor R in (5) comes from the normali-
zation condition

mi —1

and from equality (3).
Now, when all the X variables rJR =xu,' (the u,' being

axed vectors), tend to zero with the same scale x, Fg will
develop an asymptotic short-distance behavior (in concise
notations)

Fg(x[u})-x", (x 0),
where eg is a new critical exponent depending on Q. Ac-
cordingly, fixing the relative distances r, to arbitrary
values, and letting R (i.e., S) go to infinity, Pg(5) scales

SAW coalesce to a reduced graph 9' [Fig. 2(b)], obtained
by contracting the rn; points of each subgroup i to a simple
vertex. 0 is then exactly the graph of a polymer network,
or branched polymer, with fixed topology, which we stud-
ied in Ref. 14. This branched polymer is a physical system
diff'erent from the SAW chain, i.e., its branching points
can be imagined to be of a chemical nature, but we shall
see that the statistical properties of this branched polymer
are related to those of the contacts inside the SAW chain.
It is described by the set of numbers [nz] of L-leg vertices,
L ~ 1 [Fig. 2(b)]. (L -1 corres onds to the extremities of
the chain. ) Naturally, the set nt. ] can be deduced from
the set [m;J. We only need the simple topological result

I
g (m; —1) g 2 (L —2)nt+1=X, (3)

i 1 L,(~ 1)

where X is the number of independent loops inside the re-
duced graph 0 (Fig. 2). Thus, according to (3), the total
number of independent relative variables r,' in the I sub-
groups appearing in Pg(2) is exactly equal to X. The
latter is also given in terms of [nLI by the second sum in
(3).

Here, graph 9 is Eulerian: It exists by construction as a
walk which reaches once and only once all the edges of 0;
it is the polymer itself. According to Euler's famous solu-
tion 'i of Konigsberg's seven bridges, this is equivalent to
having the total number of odd vertices inside the graph
equal to 0 or 2: g~d L, nz -0 or 2, a rule satisfied, e.g.,
by the graphs of Figs. I and 2. Graphs not satisfying this
condition correspond to correlations between several
chains. Actually, Euler's rule will not play any crucial role
here, and our results can be extended to correlations be-
tween different chains.

The end-to-end mean squared distance R of a single
self-avoiding chain of number of links S scales like

like

P —Rg (7)

We call these new exponents Y and 8 the contact ex-
ponents. Y is the contact probability exponent, while 8 is
the spatial contact exponent. We now give the exact value
in 2D of Yg (hence Og) and also in d 4 —e, to O(e). The
contact probability Pg is equal to

Pg =Zg/Z, (9)

where Ze is the restricted partition function of the poly-
mer network 0, and Z the full partition function of the
single. self-avoiding chain. Recently, using results of con-
formal invariance theory, ' of numerical simulations, '

and renormalization theory, ' ' we have found ' the exact
scaling behavior of Zg for any topology of 9:

Z, -s"' ', (s- ), (10)

ye 1 P nL cd vd&
L, (~ 1)

and where oL are new irreducible critical exponents, asso-
ciated with L-leg vertices. The physical meaning of Eq.
(11) is the following. Each L-leg vertex appearing nz
times in the self-avoiding graph contributes a partial criti-
cal exponent aL to the overall critical enhancement ex-
ponent yg

—1. This crL differs from zero only for d &4
(i.e., below the upper critical dimension) and would be
identically zero for Brownian chains. Therefore, for the
latter with v- —,', one has yg

—1 ——,
' dX, a result which

can be obtained by straightforward dimensional analysis.
Correspondingly, the term —vdX in (11)has the same di-
mensional origin, but with a general exponent v, the size
R(4), instead of S, giving indeed the physical scale for a
self-avoiding polymer. We have given'" the fundamental
exact values in two dimensions

cd (2 L) (9L+2)/64 . — (12)

These az are found in two dimensions from conformal in-
variance. We have shown20 that they read in d dimensions
cd,

—vxL+(vd —1)L/2, where 2xz. is the decay ex-
ponent for the correlation function of a bundle of L poly-
mers attached together at both ends ("watermelon"
configuration). '3 In two dimensions, the values of xz be-
long to the conformal table of central change C 0, and
are given by Kac's ' formula xL, -2~ 1-2h~+ 1' 3/2,

xz-zt, -2h~+z 3, both giving xz - (9L —4)/48 for L ~ l.
These values were identified numerically on strips. ' Us-
ing v- —, in 2D gives (12). In d 4 —e dimensions, cia is
fo nd to be

oL-(2 —L)Le/16+0(e ) . (13)

and we call this short-distance limit of Pg the 5'-contact
probability. It is the probability for a SAW to form the
set 9 of contacts. Using (4) we find the scaling behavior of
the 5'-contact probability

Pg-S
(8)

Yg=v(dX+Hg) .
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Therefore we obtain from (9)

p pe 7 (14) ( 44 )~p
where -y is the usual enhancement exponent of a self-
avoiding chain, which corresponds to a simple graph with
ni =2, nL~i =0, X =0. We therefore find from (8), (14),
and (11)

Yg—= y
—

yg =2~i g nL~c+ vd~ .
L(~ i)

(i 5)

According to (8), we get the result for the short-distance
exponent L9g,

(a)

4L )

(b)

vHg =2oi — g nLaz .
L(~ &)

(i 6)
(c)

Formulas (15) and (16), together with (12) and (13), are
our main results, giving the exact values of Yg and Hg in
2D, or in d=4 —e to O(s), for any contact graph Q.

Let us specialize to D =2, for which' ' v= —', (and
y = » ). We have, using (3),

and

Yg= ~~ + ~ g nL(L —2)(9L+50)
L(~ i)

Hg= 24 + ~'~ g nL(L —2)(9L+2)
L(~ i)

(i 7)

(18)

Let us consider now the three geometrical cases of Fig. 1 .
Cases a, b, c correspond, respectively, to reduced graphs
Qp[n2 = I, X = 1], Qi[ni = l, n3 = I,X = 11, and 92[ni =2,
n4 = I,Ã = I]. Therefore, (17) and (18) give

y
—1Yp= —,", (=2v+ y

—1), Hp= —",
V

17 g 5 (i9)

Y2 16 s ~2 12

For the tadpole graph 9'
~, our exact result Y ~

=2. 1 25 com-
pares extremely well with Y

&

=2. 1 3 + 0.01, obtained long
ago by Trueman and Whittington (TW) by the Monte
Carlo method, and Yi =2.10~0.10 and Yi =2.15+( ios ob-
tained by Guttmann and Sykes (GS) by series expan-
sions. Accordingly, the exact value 0~ =

6 =0.8333. . .
agrees extremely well with the values 0~ =0.84 ~ 0.0 1

(TW) and Hi =0.84+ 0.13 (GS) given in a review. A
numerical value of H2 has been obtained by Redner:
02 = 1 .93 + 0.27. This is slightly too high, with respect to
our conjectured exact value 02 = ,'2 = 1 .583 33. . . , but the
agreement is still good.

Let us also note a striking fact. The Brownian values of
the above critical exponents are yg —1 = —(d/2) X,

FIG. 3. Multiple contacts forming L loops, generalizing the
case X I of Fig. 1 .

Yg=(d/2)~, Hg=0, in agreement with (8), and (13) and
(15) for a=0. Therefore, due to (17) and (3) one has

r

Yg —Yg= —6+ g n (L —4), d=2 .
L(~ i)

[f one uses the O(a) expansion of Yg given by (15) and
(13) and2 2v= 1+a/8+O(az), one finds for a=2, the ap-
proximation

Yg —Yg g 6+ $ nz(L —4) +
L(~ &)

i.e., a frontal coefficient —,
' replaces the exact ~ ! This ex-

traordinary coincidence of O(s) asymptotic expansion for
e =2 and 2D exact values, explains the numerical observa-
tions which puzzled various authors.

Let us finally illustrate our general result in three
geometrical cases, which generalize that of Fig. 1 . We
consider the probabilities of making a multiple contact
point of order X with X loops (Fig. 3), and with initial
[Fig. 3(a)], initial-internal [Fig. 3(b)], and internal [Fig.
3 (c)] closures The g.raphs are, respectively, Qp ~ [n 2~
=1], Qi ~[ni -I,n2~~i I], and Q2 ~[nt -2,nz~~2 -1].
Therefore, Eqs. (17) and (18) give, respectively,

Yp,r= i6 ~'+~+ 32, Hpc= 4
"'—T~+ s

Yi ~ = (9K+25), Hi ~ =X(9X+I)/12,
16

Y2 ~ = (9K+34), H2 ~ =X(9K+10)/12 .
16

For X = 1, we recover (19).
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