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Third sound and super8ow on a striped substrate
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The propagation of third sound on a one-dimensional periodic substrate is studied for the case
when the helium film is subjected to a uniform flow field. The modifications introduced by the
flow in the band structure depend on the relative directions of the flow and the wave propagation.
A simple derivation of the effects of the flow on the location of the transmission resonances corre-
sponding to a disordered substrate is also presented. These results are relevant to the problem of
third-sound Anderson localization.

There has been much activity recently in the study of
Anderson localization phenomena in nonelectronic sys-
tems. ' ' In the realm of acoustics, the use of third-sound
waves as the excitations to be localized is particularly
promising, both in one- and two-dimensional configura-
tions. '

In the one-dimensional problem, it was suggested that
the randomness required to obtain localization could be in-
troduced by preparing a random array of parallel strips of
a second substrate. If we call a~ the van der Waals con-
stants corresponding to the first and the second substrates,
respectively, the ratio of the film thicknesses h~ and h2
on both regions is, to a good approximation, h 2/h t= (a2/at ) 'I . The speed of third sound, c = ath ~

=a2h2 is the same on both regions.
Qn the other hand, third-sound experiments in moving

superfluid films have been performed for about 20
years, ' ' partially with the goal of investigating the Ber-
noulli thinning predicted by Kontorovich. ' Of special in-
terest are the studies on the stability of persistent currents
due to Hallock and co-workers. ' ' It has been pointed
out that the addition of a uniform supercurrent to the ex-
periments described in Refs. 5 and 6 would open interest-
ing possibilities:' Since the supercurrent destroys the
time-reversal invariance, it might be expected to have sub-
stantial eff'ects on the localization of third-sound waves.
This turns out to be the case for the two-dimensional
problem, ' where the "strong" localization length
g —exp(coo/co) is replaced by the weaker form

g —exp(coo/to) . Here c0 is the excitation frequency and
coo a constant. In contrast, a detailed calculation shows
that the one-dimensional localization does not suA'er any
important modification, in spite of the absence of time-
reversal symmetry.

An analysis has also been carried out of the propagation
of third-sound waves on periodic substrates. ' The bands
of allowed wave numbers k and the corresponding gaps
were studied for this system, which is an experimentally
realizable analog of the electronic Kronig-Penney model.

It is the purpose of this paper to discuss the propagation
of third sound on a flowing superfluid helium film located
on a periodic substrate. Using simple physical arguments
I will also draw some conclusions pertinent to the related
problem of localization on a random substrate.
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FIG. l. A strip of the second substrate, the "scatterer, " cen-
tered at n1. A„and B„are, respectively, the amplitudes of the
waves traveling to the right and to the left in the region immedi-
ately to the left of the scatterer. The film thicknesses on the two
substrates are h I and h2 and the superflow velocities are v I and
v2.

A portion of the substrate is shown in Fig. 1. The veloc-
ity potential tt (x) satisfies the equation

8 t) tl 8—c +2v; +v; =0 (i =1,2), (1)
dt Bx t)x ~t Bx

where v ~ and v2 are the superflow velocities on the first and
second substrates, respectively. The second substrate is
formed by parallel strips of width 2a. To the boundary
conditions at the edges of the strips discussed in Ref. 2i we
must add the mass conservation condition v~h~ =v2h2.
The superflow will always be assumed to be parallel to the
positive x axis.

The transmission coefficient for a single strip can be cal-
culated easily. I obtain

4(h th2k tk2)

4(hth2ktk2) +f(h2k2) —(htkt) l sin (2kza)

(2)

where the wave vectors k; co/(c+v;). It is also con-
venient to define k;+ and k; as the wave vectors corre-
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Acoj ~ =+ jocu/2ay, (4)

where the + ( —) sign corresponds to propagation parallel
(antiparallel) to the flow. The magnitude of the shift is
proportional to the order of the resonance and can become
quite large as j is increased.

Due to the sign difference between Acoj+ and Acoj-, if
we create, for example, an excitation with frequency

I

sponding to waves propagating parallel (P) and antiparal-
lel (A) to the direction of the flow, respectively. We also
write u =vi/c and y =h2/hi. Note that Eq. (2) yields per-
fect transmission for all frequencies where y = 1, as ex-
pected, and also for A waves when the condition
u =y/(1+y) is fulfilled. For arbitrary values of u and y
there is perfect transmission for the following wave num-
bers:

ki~ =+' jx(y ~u)[2ay(1+ u)] ', j=1,2, . . . . (3)

The case u =0 was discussed in Ref. 6. There we con-
sidered the localization of the third-sound excitations by a
random distribution of identical, parallel strips of the
second substrate. It was found that the set of measure
zero of extended states corresponds to the transmission
resonances of the isolated scatterers. These are located at
the frequencies co, =jxc/(2a). Around each of these reso-
nances there is a region of localized states with long locali-
zation lengths, which in practice corresponds to a "pass
band. "6 From Eq. (3) we see that these resonances will be
shifted by the Bow. The value of this shift is given by

q~ =H(ki) ~ [H (ki) —1] (5)

where the explicit form for H(k i) will be given below. [In
this equation the pair of signs (+ ) is not related to the
direction of propagation. ] It is clear that values of ki such
that

~
H(ki) ( ( 1 correspond to the interior of an allowed

band, while ~H(ki)
~

& 1 corresponds to values of ki in-

side a forbidden gap. The band edges are defined by

To write an explicit expression for H(k i), I define

roj +Acoj+, it will propagate to the right but not to the left;
after successive partial reflections in the scatterers at the
left, the excitation will leak out to the right. Let us now
assume that the u =0 localization lengths for states in the
"pass bands" of Ref. 6 satisfy g(co) & A, where A is the to-
tal length of the random region. When we turn on the
flow, the single "pass band" around coJ is replaced by two
contiguous bands; while in the upper band transmission
can occur only in the direction parallel to the flow, in the
lower one transmission can occur only in the opposite
direction.

I next turn to the infinite periodic substrate, assuming
that the length of the period is I. The elementary tech-
niques used in Ref. 21 can be extended immediately to the
case u ~0. A calculation of the eigenvalues q+ of the uni-
modular matrix Q, which connects the wave amplitudes to
the right of a scatterer [(A„+i,B„+i)in Fig. 1] to those to
its left [(A„,B„)in Fig. 1], yields

r ~ = [4y (y ~ u )(1+ u ) ] ', 8~ = yy(I ~ u) [2(y +' u) ]

v~ =[y2+y~u(y +1)]2, p~ =[y2 —y+ u(y2 —1)]2

0i ~ = ~ yu(y —1)/[2(y+'u)], pz~ =y[2y+ u(1+y)]/[2(y+ u)],
with y=4a/l. I obtain

H(ki+) =r+ [v+ cos[(1+pi+)ki+ll —p+ cos[(1 —)2+)ki+l]] . (6)
I

Fig. 3, where I fixed y =1.4 and let u vary. The tilting of
the gaps becomes more pronounced for the higher order
gaps. It is also clear that the flow tends to favor (oppose)
A (P) propagation.

Finally, I present the results for the transmission
coefficient TIv corresponding to an ordered array of N
identical scatterers. The calculation is again a straightfor-
ward extension of that in Ref. 21 and yields

T&(ki~) =[I+F(y,l, ~u;W)sin [NK(ki+-)I]] ', (7)

for wave vectors corresponding to the bands of the infinite
system and

TIv(ki ~) =[1—F(y, l, ~ u;W) sinhz[Np(ki.-)l]] ', (8)

for wave vectors in the gaps of the infinite system. We
have written q ~ =exp[+ iK(ki)] in Eq. (7) and q~
=eexp[~ p(ki)l] in Eq. (8), with s + 1. The function
F(y, I, ~ u; W) is

(1 —
yz )k l]}'

The upper and lower signs again correspond to P and A
waves, respectively.

Since both source and detector are located in the lab
frame, it is convenient to use as a variable either the fre-
quency m they register or the dimensionless frequency
W=col/c. In Fig. 2, I have plotted the lowest bands for
the case u =0.1 and y = 1, with y varying over the physical
range. (The ratio between two van der Waals constants
seems to be generally smaller than 4. z5) Because the
bands are modified differently for P and A propagation,
some frequencies will be allowed for propagation in one
direction but not in the opposite one. In particular, we
note that (i) the transmission gaps are narrowed
(widened) for A (P) propagation, (ii) they are shifted
downward (upward) for A (P) propagation, (iii) a new,
thin gap appears at a frequency of about twice that of the
first gap. (This second gap is also present when y~1 even
if u =0. See Ref. 21 and Fig. 3.)

These features can be seen from a diff'erent viewpoint in
I

F yl, ~u;W 4v~p~ sin (e~ki~l)
r ~2 —[v ~ cos [(1+pi ~ )k i ~ l] —p+ cos[
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FIG. 3. Forbidden gaps (shaded areas) for y 1.4: (a) y 1,
(b) y 0.25. Positive (negative) values of u correspond to P (A)
propagation.

FIG. 2. Allowed and forbidden regions for the frequency 8'as
functions of thickness ratio for y 1 and u 0.1. The shaded
areas are the transmission gaps for (a) propagation parallel to
the flow, and (b) antiparallel to the flow. The dashed lines are
the gap edges when u 0.

where

ki+ I=+ W/(I ~u) .

As usual, the upper (lower) sign corresponds to P (A)
propagation.

The amplitude of the transmitted wave is an oscillating
function of the length of the strip array if kl ~ is in one of
the bands, and it is attenuated when ki ~ is in one of the

ga ps. In this case, we can write, for W large,
Ttv(k 1 ~ ) —exp( —x/L ~ ), where x =Nl and L ~
=

I 2p(k 1 ~ ) I is the anisotropic penetration length.
Although all the calculations presented here can also be

carried out for the "index of refraction" scatterers dis-
cussed in Ref. 6, I believe that, in that case, the substrate
roughness may substantially modify the properties of the
fiow field.

In conclusion, the calculations of Ref. 21 have been ex-
tended to analyze the effects of a uniform fiow field on the
characteristics of third sound propagating on periodic sub-
strates. It has also been shown how the transmission reso-
nances corresponding to the disordered problem are
modified by the Bow.
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