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We derive a theory of magnetic susceptibility Q') of Bloch electrons including the effects of
periodic potential, spin-orbit interaction, and localized magnetic moments. We use a temperature-
dependent Green s-function technique to evaluate the thermodynamic potential which is then used
to obtain a general expression for g. Our formula for g is expressed as g=gMK+Pgc~, where gM~
is the magnetic susceptibility of Bloch electrons obtained by Misra and Kleinman, which includes

spin, orbital, and spin-orbit contributions, P is the shift in the electron paramagnetic resonance fre-
quency, and Pc~ is the Curie-Weiss susceptibility. The second term, which is obtained for the first
time by us, is due to the interaction of conduction-electron magnetic moment and the localized mag-
netic moments. Many-body effects, although not included from first principles, are discussed on the
final results of P, in view of their importance. We also discuss the importance of the theory in pos-
sible applications. Finally, we believe that the theory presented in this work is the most general and
thorough treatment which has yet been made of this problem.

I. INTRODUCTION

The problem of magnetic susceptibility (X) of Bloch
electrons has been studied for many years. This is one of
the quantities, which forms an important basis in under-
standing both the single-particle and many-particle effects
in the solids. Although much work has been done since
the foundations laid in this area by Landau' and Pauli, it
is only recently that the basic mechanisms which con-
tribute to the quantity in solids have been reasonably un-
derstood. " A complete expression for the orbital mag-
netic susceptibility was first derived by Misra and Roth, '
and the theory was applied to alkali metals, through the
use of a pseudopotential technique, with fairly good agree-
ment with experiment in most of the cases. However, the
theory was incomplete in the sense that it ignored the ef-
fects of spin and spin-orbit interactions on g. Misra and
Kleinman had derived a more complete theory and
expressed 7 as a sum of three contributions:
=70+7,+X... where X is the orbital susceptibility of
Misra and Roth (MR), X, is the effective Pauli spin sus-
ceptibility, and 7, , is a contribution due to the effect of
spin-orbit interaction on the orbital motion of Bloch elec-
trons. It may, however, be noted that the effect of spin-
orbit interaction on the spin of electrons is incorporated
through the effective g factor in 7,. However, many-body
effects were not considered by these authors.

It is well known that the one-electron description is
inaccurate insofar as it disregards the spatial correlations
between electrons, as demonstrated, for instance, by the
grossly incorrect results it yields for the spin susceptibili-
ty. Misra et al. have considered the many-body effects
on P and derived a reasonably complete theory for this
quantity. They have discussed the many-body effects on
all the three contributions to g. The results of
exchange-enhanced spin susceptibility of alkali metals
based on their theory using pseudopoential formalism and

degenerate perturbation theory agree fairly well with ex-
periment.

The theories reviewed above have been successfully ap-
plied to simple metals ' " and narrow-band-gap semi-
conductors' ' which do not have unpaired either d or f
shells. The presence of unpaired d or f shells is charac-
teristic of transition and rare-earth metals and their com-
pounds and alloys. The interaction of localized magnetic
moments associated with these unpaired d of f shells with
the magnetic moment of conduction electrons has an im-
portant effect on the various properties of these solids.
These interactions which are popularly known as s-d or
s fhybridization a-re mainly responsible for several prop-
erties in these solids. Indeed, the hybridization of f elec-
trons with the band electrons in rare-earth and actinide
compounds and dilute alloys is known to give rise to
many interesting features and new developments in high-
energy photon and electron spectroscopy, itinerant versus
localized magnetism, valence instability, dense Kondo
behavior, anisotropic interactions, or heavy-fermion super-
conductivity.

It is clear, thus, from the foregoing remarks that the
magnetic susceptibility of free and interacting Bloch elec-
trons is well understood in the absence of localized mag-
netic moments. However, as discussed in the preceding
paragraph, the effect of localized magnetic moments on
the conduction electrons is extremely important to study
the magnetic properties in magnetic solids. We derive,
therefore, in this paper, a first-principles theory of mag-
netic susceptibility of Bloch electrons including the effects
of periodic potential, spin-orbit interaction and localized
magnetic moments, and report some new findings. The
final result for 7 can be expressed as a sum of two contri-
butions: X =XMK+X~, where XMK is the Misra-
Kleinman susceptibility and P& is a new contribution
which is expressed as a product of the shift in the
electron-paramagnetic-resonance (EPR) frequency, P, and
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the Curie-Weiss susceptibility, Xcw. In the process, we
have derived for the first time a complete expression for P
which is very much similar to the expression for the
Knight shift (A). ' ' The theory is the outcome of a
complete and most thorough treatment of the well-known
magnetic interactions in solids. Although we do not in-
clude the effects of electron-electron interactions from
first principles, we briefly discuss them on the final re-
sults of our derivation, in view of their importance in the
calculation of X. The reason for this omission is that de-
tails of many-body effects on the various constituent
terms of 7 have already been published.

We organize the paper in the following way. In Sec. II,
we discuss the Hamiltonian of the problem and obtain the
equation of motion of the Green's function in the presence
of the relevant magnetic interactions in a representation
defined by the periodic part of the Bloch function. In
Sec. III, we derive a general expression for 7 and outline
the physical significance of the various contributing
terms. Finally, in Sec. IV, we summarize, discuss the im-
portance of the present work in possible applications and
conclude our results.

Xjg —— 87r cr 3(o"ri )ri
cr5(ri ) +

rJ r,
'

+2r & II+ —AJ c ArJ =XJ +XJB . (2.6)

In Eqs. (2.5) and (2.6), gJ and J~ are the Lande g factor
and total angular momentum of the jth ion, respectively,
( ) denotes the thermal average value, rJ =r —RJ, where
Rj is the position vector of the jth site, and II is the elec-
tronic momentum operator in the presence of spin-orbit
interaction:

II=p+ a XV~.fi

4m c
(2.7)

In Eq. (2.6), the terms from left to right on the right-
hand side form the parts of contact, dipolar, and orbital
interactions of the conduction-electron magnetic moment
with the localized magnetic moment at RJ.

G satisfies the lattice translational symmetry in the ab-
sence of magnetic field. However, magnetic field 8 des-
troys this symmetry. In order to take care of this lack of
lattice periodicity in the presence of magnetic field, we de-
fine

II. EQUATION OF MOTION OF CxREEN'S FUNCTION
G(r, r', B,p, g, ) =e' '"'G(r, r', B,p, gi), (2.8)

(gi H)G(r, r', B—,p, gi) =&(r—r'),
where

l=0, +I, +2, . . . ,
(21+ 1)i~

(2. 1)

(2.2)

The one-particle Green's function G(r, r', B,p, gi) in the
presence of periodic potential V(r), spin-orbit interaction,
applied magnetic field B, and localized magnetic moment

p satisfies the equation

where the exponential on the right-hand side represents
the Peierl's phase factor defined in the symmetric gauge,
G satisfies the crystal translation symmetry, and
h =eB/2'.

Substituting Eq. (2.8) in Eq. (2.1), and following the
techniques outlined in Refs. 7 and 18, we write Eq. (2.1)
in a representation defined by the periodic part of the
Bloch function P„~(r), where n is the band index, k is the
reduced wave vector, and p is the spin index, as

g being the chemical potential and P ' =kii T. Further,

2

H= p+ —A + V(r)
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[gi H(x )]G(k,k—)=I .

Here

H(a) = (p+iruc) + V+ o"VVX(p+@c)
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(2.9)

where

(2.3)
aV'g
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(2.10)

H; = g po(pj ) 'Xja .
J

( 4)
In Eq. (2.10),

sc=k+E'h~ Vk, (2.1 1)
In Eq. (2.3) the first four terms are the well-known in-

teractions in the presence of magnetic field, where A is
the magnetic vector potential, cr are the Pauli spin ma-
trices, gp is the free-electron g factor, and pp is the Bohr
magneton. In Eq. (2.4), HJ represents the interactions be-
tween the localized magnetic moment due to unpaired d
or f shells and the conduction electron magnetic moment.
Here

(2.5)

and we have used the relation

(2.12)

where XJ." is the paramagnetic susceptibility tensor of the
jth ion and is of Curie-Weiss tyPe; XJ is Xjz with B=0,
and e, z is an antisymmetric tensor of third rank and we
follow Einstein summation convention. We can now
write H(x), separating the field-independent and field-
dependent parts, as

and H(a. ) =Ho(k)+H'(k), (2.13)
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where Hp(k) is the field-independent Hamiltonian, Gp =[4—Hp(k 0l ) j (2.18)

Hp(k) = (p+iiik) + V+ n V VX(p+Rc)
2m 4m c

and is diagonal in the basis U„~. Furthermore we have

and

(2.14) VkGp= Gp& Gp
m

(2.19)

H'(k)= —~ h &II V&+ ,'g I.—~"w
m

p 5

2m
h aph ys5ayVk Vk

VkV/Gp= GpGp5 rm
2

(G II G IIi'G +G 11rG II 6 ) .
m

Here

rj Vk
a p

+ Q ppXj B Xj —2l Ez~yh'yp
J rj.

(2.15)
(2.20)

Using Eqs. (2.15), (2.19), and (2.20) in Eq. (2.17) and re-

taining terms up to second order in magnetic field B, we
obtain after a little algebra

A ap —Capyk (2.16)

G(k gi ) =Gp +GpH'6p+ GpH'GpH'Gp+

where

(2.17)

Equation (2.9) can then be solved by a perturbation expan-
sion

6 =6., d+ g Xj'"6)„(gi),
J

(2.21)

where G„nd is same as G obtained by Misra et al, their
Eq. (3.17), in the absence of electron-electron interactions
and with the modification that their II's are (A'/m ) times
our II's, and

(gi)=ppB"GpXj'Gp 2i —p e, „hrpB"(G Oj GpII 6 —6 II G 0 G )
m

2

i pph—pB"(G II G II 6 X'. 6 +6 II 6 X'. 6 II G +G II G X'. G II G )
m

+ 2 gpppB"B "(Gpo'GpXJ Gp+GpXJGpo. "Gp)+ g ppX~ "B"B"GpX'GpX'Gp,
J

(2.22)

where

a Jr.+J =
rj.

(2.23)

and one-particle states, tr involves summation over one-
particle states only; the contour c encircles the imaginary
axis in a counterclockwise direction. 0 can be separated,
using Eq. (2.21), as

III. DERIVATION OF X

The magnetic susceptibility X can be calculated from
the formula

Q =Q„„d+0)„,
where

+cond= c cond

and

(3.5)

(3.6)

a' n
aa„aa. . .'

where 0 is the thermodynamic potential:

0= ——Tr ln( —G~, )

(3.1)

(3.2)

Qt„——gX,"" ——tr 'f, P(g)6, (g)dg

so that Eq. (3.1) can be written as

+cond+bloc ~

(3.7)

(3.8)

Here

tr, G d
2VTl

(3.3) where X, nd is the magnetic susceptibility of Bloch elec-
trons in the absence of localized magnetic moments and

P(g) = ——ln(1+e ~'~ ~') . (3.4)
a'n,

BB„BB
(3.9)

While Tr involves summation over imaginary frequencies The evaluation of X„„d is discussed in detail in Ref. 7.
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VP VjLC

Xcond XMK r

where

(3.10)

These results were first obtained, using Roth's function,
by Misra and Kleinman. Therefore, we write

XM"K ——X,""+X,""+X,", . (3.11)

Here X„X„and X, , are the orbital, spin, and spin-orbit
contributions to the magnetic susceptibility.

We shall now derive an expression for X&"". From Eqs.
(2.22) and (3.7), we obtain

. fi „, ~ f'(E„) 3f(E„) 4$(E„)toe= X j ) j 0 jnp, np'f(Enk)+1 ~ hapPOB &jnp, np'IInp mp 'II"mp np"+ +
jk m mn E „

f(E„) 2$(E„)+ np, mp'IImp' qp"Xjqp + 2
Eqn Emn Emn Eqn

f(E„) 2$(E„) 2$(E„)
.X- . .HP + +E E E E E Eqn mn mn qn qn mn

f(E.) 2$(E„)
p IImp qp Hqp +

Emn Eqn Emn

f(E„) 2$(E„)+ H p pH p pXj p p 2 +E „ E „

Cn .HP —HP, CV,
' C~, IIP, —HP, Cp jnp, mp ™p'np np, mp' jmp'np ~i ~ i ~ Qp jnp, mp' mp'np np, mp' jmp'np+ j E „ mn

+ 4 gopoB B"(+jnpnp'o'np, ', np+~np, np +jnp np')f'('En )

where

jnp, mp' mp'np np, mp' jmp', np
X' o. ~ + cr X'

+ 2goP n
mn
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(3.12)

Aj Cj 2l' @oB E~&h &pOjm
(3.13)

Repeated indices imply summation. In the last term of Eq. (3.12), the matrix elements are taken between Bloch func-
tions, while the other terms are expressed as functions of matrix elements taken between the periodic parts of the Bloch
function.

Using the partial integration technique and the periodic nature of the integrand, it can be shown as

H ~ .HP H HP .Xrt
~ ~& & ~ np, np jnp, mp' mp', np-np, np npmp jmp'np, '

E2EPl k mn mn

X .II . -HP-
c

~ &+& 2 jnp, np' np', mp" mp"np
apPM) Em mn

Hnp mp' jmp' qp" qp" np
2

EqnEmn

a ~ p+n pnQj n p, m p' ,
+m p', n p

3E „

np, mp' mp', qp" jqp", np
2
mn qn

np, mp' jmp', qp" qp", np
2

Eqn Emn

Xnp np np mp' jmp'np
3E „

jnp mp'L~mp' qp" qp", np
2

EqnEm.

C~ .HP. —HP .C~
2A gpgrp jnp mP mP "P "P mP Jmp "P ~(E )+ J J E2 n

mn

(3.14)

From Eqs. (3.9), (3.12), and (3.14), and Eq. (3.40) of Ref. 18, we obtain
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X)""——P, XJ",
where
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j j + Io+ j.o. + jRKK (3.16)

l 2 a p 2 I
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k
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7 j II
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and
Yf' T V TT

PjRKKY Xj AJJ
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~jj' PO ~ +(n kpn'k'p'+ nk'p', nkp
k, k'

—i(k —k') R", ~ ~ i(k —k').R", f(Enk)++ kp, nn k p +nk'p''nkp '', ) E —Enk n'k'

(3.20)

(3.21)

Xloc PXcw (3.22)

and Xcw is the Curie-Weiss paramagnetic susceptibility of
the solid. Therefore, we have from Eqs. (3.8), (3.10), and
(3.22),

XMK+ PXCw . (3.23)

This is a complete expression for the magnetic susceptibil-
ity of Bloch electrons. Apart from containing the well-
known orbital, spin, and spin-orbit contributions, it also

It may be noted that, as before, repeated indices imply
summation. All the matrix elements in Eqs.
(3.17)—(3.21), are taken between the periodic parts of the
Bloch function. Pj is the EPR shift at the jth site. P„
P, and P, , are the spin, orbital, and spin-orbit contribu-
tions to the EPR shift. PR&KY is an additional contribu-
tion to this shift due to Ruderman-Kittel-Kasuya-Yosida
(RKKY) type of interactions, defined through the
coupling constant AJJ . It may be noted that P is the
counterpart in EPR of the Knight shift K in the NMR.
It is no surprise that exactly similar mechanisms con-
tribute to both the quantities. If the crystal is homogene-
ous, as in the case of ordered magnetic systems, P is same
at every site and

contains the paramagnetic interactions which give rise to
the Curie-Weiss susceptibility modified due to the interac-
tion between the conduction electron magnetic moment
and localized magnetic moment. Furthermore, X&, con-
tains a RKKY type of interaction which could be either
ferromagnetic or antiferromagnetic. Thus, all the mag-
netic interactions in the solid have been adequately con-
sidered in the theory.

One of the most important aspects of the magnetic sus-
ceptibility calculations is the many-body effects on the
various components of X. These effects have been con-
sidered from first principles in earlier works. ' ' Howev-
er, for the sake of completeness, we briefly discuss them.
X„ the spin susceptibility, becomes exchange enhanced by
electron-electron interactions, as also P, . The electron-
electron interaction effects on the orbital contributions, g
and P„are normally small and incorporated through ef-
fective mass corrections. The many-body effects on X, ,
and P, , are interesting insofar as that some of the terms
in both X, , and P, , become modified like X, and P„
and the rest like X, and P, . Thus these effects on X, ,
and P, have a mixed character. However, the many-
body effects on these terms are small and may be neglect-
ed in a realistic calculation. Further, many-body effects
on PJR«Y can be incorporated following the procedure
outlined in an earlier publication on the many-body theory
of indirect nuclear spin-spin interactions.
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IV. SUMMARY AND CONCLUSION

In this work, we have derived a general theory of mag-
netic susceptibility 7 of Bloch electrons including the ef-
fects of periodic potential, spin-orbit interaction, and lo-
calized magnetic moments. 7 is expressed as a sum of a
contribution due to conduction electrons and an addition-
al new contribution due to the interaction of conduction-
electron magnetic moment and the localized magnetic
moment. While the conduction-electron contribution is
the familiar Misra-Kleinman susceptibility (X~K), which
satisfactorily accounts for the magnetic susceptibility of
simple metals and semiconductors, the additional contri-
bution gi„would be important for magnetic solids. We
discuss below the importance of this theory in possible ap-
plications.

Recently, there has been considerable interest in
semimagnetic narrow-band-gap semiconductors of the
lead salt family. These semiconductors are multiband sys-
tems with strong spin-orbit interaction. They show some
unusual and possibly unique properties, related to other
semiconductors. They are highly diamagnetic in the in-
trinsic form and this diamagnetism decreases with in-
crease in carrier concentration, as has been shown by us in
our earlier work. ' The temperature dependence of carrier
susceptibility shows an interesting characteristic in that it
decreases with an increase in temperature, becomes zero at
different temperatures for different carrier concentrations,
and then becomes negative. ' This has been shown as due
to the fact that with increase in temperature, 7, and 7, de-
crease monotonically, but 7, , which is positive at low
temperatures, decreases and changes sign. Furthermore,
the magnetic susceptibility measurements of these
semiconductors, when alloyed with magnetic impurities
like Mn, show certain remarkable characteristics. Howev-
er, these measurements are not unanimous in their find-
ings. Hamasaki indicated that the magnetic susceptibili-
ty of Pb& Mn Te followed a Curie-Weiss law from 77 to
350 K for x from 1.5 at. % to 10 at. %. The Curie tem-
perature was not more than a few K, suggesting quite
weak ferromagnetic Mn-Mn interactions. Morris used
samples with x=2 and 5 at. % and found Curie-Weiss
behavior between 1 and 60 K, with a small, possibly zero,
Curie temperature. On the other hand, Andrianov et
al, ' ' studied samples with x from 0.1 to 6.5 at. % over
the temperature range 4.2 to 300 K. Their plots of 1/X
versus T show a marked bend near 100 K. On the as-
sumption that extrapolation of high-temperature segments
of these curves yields a valid Curie temperature, they ob-
tain 0 between —50 and —100 K for x (1.5 at. %,
where the Curie Weiss law is written in the form

I/X cc (T—0). Thus, they conclude that there is a strong
antiferromagnetic coupling which, Liu and Bastard sug-
gest, indicates that super exchange (antiferromagnetic)
dominates indirect exchange (ferromagnetic). We believe
that the present theory, if suitably applied, would be able
to shed some light on the origin of these anomolies.

Another interesting class of compounds, to which the
theory could suitably be applied, includes the rare-earth
monopnictides RX (R may correspond to Ce, Pr, Nd, Sm,
Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, and X may cor-
respond to N, P, As, Sb, and Bi) which exhibit metallic
behavior and their magnetic properties are due primarily
to the 4f electrons. The theory could also have interest-
ing applications in the intermetallic compounds, namely
V3Si, V3Ga, Nb3Sn, and Nb3A1, possessing 315 crystal
structure. These compounds are known to be good super-
conductors. Susceptibility and NMR measurements have
revealed a close relationship between the superconducting
transition temperature (T, ) and their normal-state proper-
ties. Indeed, susceptibility measurements show that the
higher the transition temperature, the stronger the tem-
perature dependence of the susceptibility in the normal
state.

In summary, the principal result of this work is a first-
principles derivation of the magnetic susceptibility of
Bloch electrons in the presence of periodic potential,
spin-orbit interaction, and localized magnetic moments,
which can be applied to a varieties of solids. However,
there is still scope for further improvement. Firstly, the
averaged localized-magnetic moment approximation [Eq.
(2.4)] is not a good one below and in the vicinity of Kondo
temperature. Secondly, the effect of electron-phonon in-
teraction which is important in all the temperature-
dependent calculations has not been considered. It may be
noted that, in realistic calculations, the effect of electron-
phonon interaction is normally incorporated through the
modification of band structure via the Debye-Wailer fac-
tor, through the Fermi function and through the effective
mass corrections. However, an elucidation of the present
work by including from first principles the magnetic field
dependence of electron-phonon self-energy might be of in-
terest in this connection.

In conclusion, we believe that apart from the above
omissions and as distinguished from earlier works, the
theory presented in this work is a thorough and general
treatment of important magnetic interactions in solids.
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